RU2399017C1 - Следящий рулевой электропривод - Google Patents

Следящий рулевой электропривод Download PDF

Info

Publication number
RU2399017C1
RU2399017C1 RU2009116657/02A RU2009116657A RU2399017C1 RU 2399017 C1 RU2399017 C1 RU 2399017C1 RU 2009116657/02 A RU2009116657/02 A RU 2009116657/02A RU 2009116657 A RU2009116657 A RU 2009116657A RU 2399017 C1 RU2399017 C1 RU 2399017C1
Authority
RU
Russia
Prior art keywords
input
output
adder
low
pass filter
Prior art date
Application number
RU2009116657/02A
Other languages
English (en)
Inventor
Александр Валентинович Булатов (RU)
Александр Валентинович Булатов
Александр Сергеевич Гончаров (RU)
Александр Сергеевич Гончаров
Василий Васильевич Романов (RU)
Василий Васильевич Романов
Сергей Михайлович Миронов (RU)
Сергей Михайлович Миронов
Антон Игоревич Попов (RU)
Антон Игоревич Попов
Original Assignee
Закрытое акционерное общество "Научно-исследовательский институт механотронных технологий-Альфа-Научный центр" (ЗАО "НИИМЕХАНОТРОНИКИ-АЛЬФА-НЦ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое акционерное общество "Научно-исследовательский институт механотронных технологий-Альфа-Научный центр" (ЗАО "НИИМЕХАНОТРОНИКИ-АЛЬФА-НЦ") filed Critical Закрытое акционерное общество "Научно-исследовательский институт механотронных технологий-Альфа-Научный центр" (ЗАО "НИИМЕХАНОТРОНИКИ-АЛЬФА-НЦ")
Priority to RU2009116657/02A priority Critical patent/RU2399017C1/ru
Application granted granted Critical
Publication of RU2399017C1 publication Critical patent/RU2399017C1/ru

Links

Images

Abstract

Изобретение относится к ракетной технике, в частности к электрическим рулевым приводам, и может быть использовано, например, в системах управления беспилотными летательными аппаратами. Технический результат - улучшение динамических характеристик. Для увеличения полосы пропускания, резкого спада амплитудно-частотной характеристики на частотах свыше полосы пропускания и обеспечения малого фазового запаздывания в полосе пропускания при больших и малых амплитудах входного сигнала следящий рулевой электропривод содержит первый и второй сумматоры, первый и второй фильтры нижних частот, блок эталонной модели, первое устройство сравнения, усилитель мощности, исполнительный двигатель, редуктор и датчик обратной связи, первый ограничитель, первое дифференцирующее устройство. Электропривод также содержит датчик скорости, второе устройство сравнения, второе, третье и четвертое дифференцирующие устройства, третий, четвертый, пятый и шестой сумматоры, первое и второе устройства деления, регулятор скорости, второй ограничитель, блок модели двигателя, третий, четвертый, пятый и шестой фильтры нижних частот, первое и второе устройства выделения модуля, первое и второе логические устройства и функциональный преобразователь. 5 ил.

Description

Изобретение относится к ракетной технике, в частности к электрическим рулевым приводам, и может быть использовано, например, в системах управления беспилотными летательными аппаратами (ЛА).
Известен следящий электропривод (патент РФ №2216707), содержащий последовательно соединенные сумматор, корректирующее устройство, усилитель мощности, электродвигатель, потенциометр обратной связи. Электродвигатель через редуктор поворачивает органы управления ЛА. Усилитель мощности выполнен релейным. Редуктор не охвачен потенциометрической обратной связью, т.е. положение рулей контролируется опосредованно. Электропривод работает в автоколебательном режиме, параметры которого определяются корректирующим устройством. Данный привод обладает невысоким быстродействием; кроме того, привод в процессе работы создает вибрации в диапазоне 90-150 Гц, что негативно сказывается на рабочих характеристиках ЛА.
Известен рулевой электропривод (патент РФ №2285227), работающий в линейном режиме, содержащий электродвигатель, редуктор, выходной вал которого связан с рулями управления и осью потенциометра обратной связи. В блоке электроники расположены формирователь команд, усилитель мощности и корректирующая цепь обратной связи. Электропривод имеет недостаточно высокие динамические характеристики; так при заявленном коэффициенте относительного демпфирования привода, равном 0,7, фазовое запаздывание для линейной системы второго порядка на уровне частоты пропускания составит порядка 90°, что является значительной величиной, негативно влияющей на управление ЛА.
Наиболее близким к изобретению является следящий электрический рулевой привод (патент Украины №73793), содержащий первый сумматор, на первый вход которого подается сигнал задания, последовательно соединенные первый фильтр нижних частот, блок эталонной модели, первое устройство сравнения, последовательно соединенные усилитель мощности, исполнительный двигатель, редуктор и датчик обратной связи, выход которого подключен ко вторым входам первого сумматора и первого устройства сравнения, последовательно соединенные второй сумматор, первый ограничитель, выход которого подключен к третьему входу первого сумматора, первое дифференцирующее устройство, второй фильтр нижних частот, причем вход первого фильтра нижних частот подключен к первому входу первого сумматора. Данный электропривод обладает недостаточно большой полосой пропускания по угловому положению (порядка 15 Гц) и недостаточно резким спадом амплитудно-частотной характеристики на частотах свыше полосы пропускания. Это обусловлено использованием в качестве эталонной модели апериодического звена первого порядка, которое создает необходимое малое фазовое запаздывание, но исключает резкий спад амплитудно-частотной характеристики на частотах выше полосы пропускания, что приводит к низкой помехоустойчивости.
Использование канала управления с эталонной моделью позволяет компенсировать небольшие параметрические возмущения следящего электропривода. Однако при увеличении частоты входного воздействия, управляющий сигнал ограничивается характеристикой «насыщения» усилителя мощности и амплитудно-частотная характеристика «заваливается». Возможности расширения полосы пропускания за счет уменьшения постоянной времени эталонной модели, увеличения «полки» ограничителя канала эталонной модели и весов сигналов, суммируемых во втором сумматоре, формирующих сигнал коррекции, ограничены; увеличение указанного сигнала1 не приведет к увеличению напряжения на двигателе из-за характеристики насыщения усилителя мощности. Поэтому для дальнейшего увеличения быстродействия требуется введение дополнительных устройств, формирующих фазоопережающие корректирующие сигналы.
Техническим результатом, на достижение которого направлено изобретение, является увеличение полосы пропускания привода, формирование более резкого спада амплитудно-частотной характеристики на частотах свыше полосы пропускания при обеспечении малого фазового запаздывания в полосе пропускания при больших и малых амплитудах входного сигнала, что позволит улучшить динамические характеристики и помехоустойчивость ЛА в целом.
Технический результат достигается тем, что в следящий электрический рулевой привод, содержащий первый сумматор, на первый вход которого подается сигнал задания, последовательно соединенные первый фильтр нижних частот, блок эталонной модели, первое устройство сравнения, последовательно соединенные усилитель мощности, исполнительный двигатель, редуктор и датчик обратной связи, выход которого подключен ко вторым входам первого сумматора и первого устройства сравнения, последовательно соединенные второй сумматор, первый ограничитель, выход которого подключен к третьему входу первого сумматора, первое дифференцирующее устройство, второй фильтр нижних частот, причем вход первого фильтра нижних частот подключен к первому входу первого сумматора, дополнительно введены датчик скорости, соединенный с валом исполнительного двигателя, второе устройство сравнения, последовательно соединенные второе дифференцирующее устройство и третий сумматор, последовательно соединенные первое устройство деления, четвертый сумматор, регулятор скорости, второй ограничитель, пятый сумматор, блок модели двигателя, шестой сумматор, выход которого подключен ко второму входу пятого сумматора, последовательно соединенные третий фильтр нижних частот, третье дифференцирующее устройство, первое устройство выделения модуля, четвертый фильтр нижних частот, первое логическое устройство, выход которого подключен к входу делителя первого устройства деления, последовательно соединенные пятый фильтр нижних частот, четвертое дифференцирующее устройство, второе устройство выделения модуля, шестой фильтр нижних частот, второе логическое устройство, последовательно соединенные второе устройство деления и функциональный преобразователь, причем вход делимого второго устройства деления соединен с выходом четвертого фильтра нижних частот, вход делителя второго устройства деления соединен с выходом второго логического устройства, второй вход первого логического устройства соединен с выходом функционального преобразователя, первый вход первого сумматора соединен с входами третьего и пятого фильтров нижних частот, выход первого сумматора подключен ко второму входу третьего сумматора, выход которого подключен к входу делимого первого устройства деления, выход датчика скорости подключен ко второму входу шестого сумматора, выход блока эталонной модели соединен с входом первого дифференцирующего устройства, выход которого подключен к первому входу второго устройства сравнения и к входу второго фильтра нижних частот, выход которого подключен к входу второго дифференцирующего устройства, выход блока модели двигателя подключен ко вторым входам четвертого сумматора и второго устройства сравнения, выходы первого устройства сравнения и второго устройства сравнения подключены соответственно к первому и второму входам второго сумматора, выход второго ограничителя соединен с входом усилителя мощности, третий фильтр нижних частот выполнен с широкой полосой пропускания, пятый фильтр нижних частот выполнен с узкой полосой пропускания, функциональный преобразователь выполнен с реализацией нарастающей зависимости выходного сигнала от входного с начальным участком, формирующим постоянный уровень выходного сигнала, первое логическое устройство выполнено с реализацией блокировки прохождения сигнала с функционального преобразователя при малых уровнях сигнала на выходе четвертого фильтра нижних частот, второе логическое устройство выполнено с реализацией исключения режима деления на ноль второго устройства деления.
Работа устройства поясняется чертежами, где на фиг.1 изображена схема следящего электрического рулевого привода, на фиг.2 приведены осциллограммы сигналов с выходов датчика скорости и блока модели двигателя, на фиг.3 представлена зависимость сигнала на выходе второго устройства деления от частоты сигнала задания, на фиг.4 - статическая характеристика функционального преобразователя, на фиг.5 - амплитудно-частотная и фазо-частотная характеристики электропривода при отработке гармонического входного воздействия с большой (3°) и малой (0,3°) амплитудами.
Следящий электрический рулевой привод (фиг.1) содержит первый сумматор 1, на первый вход которого подается сигнал задания, последовательно соединенные первый фильтр 2 нижних частот, блок 3 эталонной модели, первое устройство 4 сравнения, последовательно соединенные усилитель 5 мощности, исполнительный двигатель 6, редуктор 7 и датчик 8 обратной связи, выход которого подключен ко вторым входам первого сумматора 1 и первого устройства сравнения 4, последовательно соединенные второй сумматор 9, первый ограничитель 10, выход которого подключен к третьему входу первого сумматора 1, первое дифференцирующее устройство 11, второй фильтр 12 нижних частот, датчик 13 скорости, соединенный с валом исполнительного двигателя 6, второе устройство 14 сравнения, последовательно соединенные второе дифференцирующее устройство 15 и третий сумматор 16, последовательно соединенные первое устройство 17 деления, четвертый сумматор 18, регулятор 19 скорости, второй ограничитель 20, пятый сумматор 21, блок 22 модели двигателя, шестой сумматор 23, выход которого подключен ко второму входу пятого сумматора 21, последовательно соединенные третий фильтр 24 нижних частот, третье дифференцирующее устройство 25, первое устройство 26 выделения модуля, четвертый фильтр 27 нижних частот, первое логическое устройство 28, выход которого подключен к входу делителя первого устройства деления 17, последовательно соединенные пятый фильтр 29 нижних частот, четвертое дифференцирующее устройство 30, второе устройство 31 выделения модуля, шестой фильтр 32 нижних частот, второе логическое устройство 33, последовательно соединенные второе устройство 34 деления и функциональный преобразователь 35. Вход делимого второго устройства 34 деления соединен с выходом четвертого фильтра 27 нижних частот, вход делителя второго устройства 34 деления соединен с выходом второго логического устройства 33. Второй вход первого логического устройства 28 соединен с выходом функционального преобразователя 35. Первый вход первого сумматора 1 соединен с входами первого фильтра 2 нижних частот, третьего фильтра 24 нижних частот и пятого фильтра 29 нижних частот. Выход первого сумматора 1 подключен ко второму входу третьего сумматора 16, выход которого подключен к входу делимого первого устройства 17 деления. Выход датчика 13 скорости подключен ко второму входу шестого сумматора 23. Выход блока 3 эталонной модели соединен с входом первого дифференцирующего устройства 11, выход которого подключен к первому входу второго устройства 14 сравнения и к входу второго фильтра 12 нижних частот, выход которого подключен к входу второго дифференцирующего устройства 15. Выход блока 22 модели двигателя подключен ко вторым входам четвертого сумматора 18 и второго устройства 14 сравнения. Выходы первого устройства 4 сравнения и второго устройства 14 сравнения подключены соответственно к первому и второму входам второго сумматора 9. Выход второго ограничителя 20 соединен с входом усилителя 5 мощности.
Функциональные элементы 5, 6, 13, 18-23 образуют контур 36 регулирования скорости; функциональные элементы 2-4, 9-11, 14 образуют канал 37 управления с эталонной моделью; функциональные элементы 24-35 образуют устройство 38 коррекции коэффициента усиления основного контура регулирования следящего привода.
Основной контур регулирования следящего привода образуют функциональные элементы 1, 16, 17, 36, 7, 8.
Функциональные элементы 1-4, 9-12, 14-35 реализованы с использованием микроконтроллера.
Электропривод работает следующим образом.
На первый вход первого сумматора 1 подается сигнал задания, на второй - сигнал, поступающий с датчика 8 обратной связи. Датчик 8 обратной связи может быть реализован, например, в виде кодового датчика или потенциометрического с преобразованием выходного сигнала в цифровой вид. Ошибка по положению через третий сумматор 16, первое устройство 17 деления, контур 36 регулирования скорости, редуктор 7, датчик 8 обратной связи отрабатывается основным контуром регулирования следящего привода. За счет контура 36 регулирования скорости электропривод быстро отрабатывает возмущения, действующие на исполнительный двигатель 6; при этом в значительной степени уменьшается влияние изменения параметров (например, момента сухого трения, который может сильно меняться из-за большого диапазона изменения температуры вследствие изменения вязкости смазки; сопротивления обмотки двигателя вследствие нагрева и т.д.).
Специфика применения следящего электропривода из-за жестких требований по габаритно-массовым показателям не позволяет использовать датчики скорости с высокой крутизной характеристики и с малой величиной пульсаций выходного сигнала. Поэтому вместе с датчиком 13 скорости в контур 36 регулирования скорости введены пятый и шестой сумматоры и блок 22 модели двигателя, образующие наблюдатель скорости. Блок 22 модели двигателя представляет собой фильтр нижних частот, динамические характеристики которого аппроксимируют динамические характеристики исполнительного двигателя 6. Например, блок 22 модели двигателя может быть реализован как апериодическое звено первого порядка. Управляющий сигнал одновременно подается с выхода второго ограничителя 20 на вход блока 22 модели двигателя через пятый сумматор 21 и на исполнительный двигатель 6 через усилитель 5 мощности. Шестой сумматор 23 формирует сигнал ошибки между сигналами с выхода блока 22 модели двигателя и с выхода датчика 13 скорости, которая с определенным весом подается на второй вход пятого сумматора. В результате наблюдатель, выполненный на функциональных элементах 21-23, осуществляет «подслеживание» сигнала с выхода блока 22 модели двигателя за сигналом скорости исполнительного двигателя 6, формируемого датчиком 13 скорости. Второй блок 20 ограничителя введен, чтобы ограничить сигнал, подаваемый на первый вход пятого сумматора в соответствии с характеристикой «насыщения» усилителя 5 мощности по напряжению питания. В результате на выходе блока 22 модели двигателя формируется сигнал оценки скорости исполнительного двигателя без отставания по фазе от сигнала датчика 13 скорости, но с существенно меньшей величиной пульсаций, что иллюстрируется осциллограммой, приведенной на фиг.2. Датчик 13 скорости может быть реализован, например, в виде тахогенератора постоянного тока с преобразованием выходного сигнала в цифровой вид.
Сигнал оценки скорости подается на второй вход четвертого сумматора 18, на выходе которого формируется сигнал ошибки по скорости.
Регулятор 19 скорости может быть выполнен с пропорциональным или пропорционально-интегральным законами регулирования.
Канал 37 управления с эталонной моделью формирует сигнал коррекции, поступающий на третий вход первого сумматора 1 с выхода первого ограничителя 10. Канал 37 управления с эталонной моделью работает следующим образом. Входной сигнал следящего рулевого электропривода, пройдя через первый фильтр 2 нижних частот, поступает на вход блока 3 эталонной модели. Блок 3 эталонной модели представляет собой фильтр нижних частот, динамические характеристики которого аппроксимируют желаемую динамику электропривода в нижней части диапазона частот. Например, блок 3 эталонной модели может быть реализован как апериодическое звено первого порядка. Первое устройство 4 сравнения формирует сигнал разности между сигналом с выхода блока 3 эталонной модели и сигналом об угловом положении с выхода датчика 8 обратной связи.
Первое дифференцирующее устройство 11 формирует сигнал желаемой скорости электропривода, который во втором устройстве 14 сравнения сравнивается с сигналом оценки скорости исполнительного двигателя 6, поступающим с выхода блока 22 модели двигателя.
Сигналы с выходов первого устройства 4 сравнения и второго устройства 14 сравнения несут информацию об отклонении выходного угла следящего электропривода и скорости исполнительного двигателя от желаемых в нижней части диапазона частот отрабатываемого гармонического входного воздействия. В результате оба указанных сигнала отклонений поступают на входы второго сумматора 9, где суммируется с определенными весами. Выходной сигнал второго сумматора 9 ограничивается первым ограничителем 10, на выходе которого формируется сигнал коррекции.
Указанный сигнал коррекции позволяет электроприводу «следовать» за эталонной моделью в нижней части частотного диапазона.
При увеличении частоты сигнала входного воздействия с большой амплитудой, управляющий сигнал ограничивается характеристикой «насыщения» усилителя 5 мощности и амплитудно-частотная характеристика «заваливается». Поэтому для расширения полосы пропускания электропривода при отработке входных воздействий с большими амплитудами, в электропривод дополнительно введены второй фильтр 12 нижних частот и второе дифференцирующее устройство 15, на выходе которого формируется дополнительный фазоопережающий сигнал коррекции, который вводится в основной контур регулирования следящего привода через второй вход третьего сумматора 16.
При отработке заданных гармонических воздействий с малыми амплитудами даже на больших частотах усилитель 5 мощности в насыщение не уходит. При настройке сигнала коррекции, вырабатываемого каналом 37 управления с эталонной моделью, и дополнительного сигнала коррекции, формируемого на выходе второго дифференцирующего устройства 15, на обеспечение малого фазового запаздывания в заданном диапазоне частот, получается весьма большая фактическая полоса пропускания по уровню минус 3 дБ (50-70 Гц), что может оказать негативное влияние на помехоустойчивость и, в конечном счете, на работоспособность ЛА в целом.
Поэтому в следящий электропривод введены функциональные элементы 24-35, образующие устройство 38 формирования сигнала коррекции коэффициента усиления основного контура регулирования следящего привода, позволяющее формировать частотные характеристики в области высоких частот.
Сигнал задания подается на две параллельные ветви, состоящие из функциональных элементов 24-27 и 29-32. Первая ветвь включает в себя последовательно соединенные третий фильтр 24 нижних частот, третье дифференцирующее устройство 25, первое устройство 26 выделения модуля и четвертый фильтр 27 нижних частот; вторая ветвь - последовательно соединенные пятый фильтр 29 нижних частот, четвертое дифференцирующее устройство 30, второе устройство 31 выделения модуля и шестой фильтр 32 нижних частот. Две указанные ветви отличаются тем, что третий фильтр 24 нижних частот выполнен с широкой полосой пропускания и незначительно подавляет амплитуду проходящего через него сигнала задания, а пятый фильтр 29 нижних частот - с узкой полосой пропускания, в результате чего на его выходе формируется сигнал, амплитуда которого уменьшается с увеличением частоты входного воздействия. Третье дифференцирующее устройство 25 и четвертое дифференцирующее устройство 30 устраняют влияние постоянной составляющей сигнала задания.
На выходах первого (26) и второго (31) устройств выделения модуля формируются сигналы, не зависящие от знака входного воздействия, которые сглаживаются четвертым (27) и шестым (32) фильтрами нижних частот и поступают, соответственно, на вход делимого и через второе логическое устройство 33 на вход делителя второго устройства 34 деления.
При малых частотах задающего воздействия сигналы на выходах третьего фильтра 24 нижних частот и пятого фильтра 29 нижних частот имеют практически одинаковую амплитуду, в результате чего на выходе второго устройства 34 деления образуется сигнал, соответствующий низким частотам сигнала задания. При увеличении частоты задающего воздействия, амплитуда на выходе пятого фильтра 29 нижних частот уменьшается. В итоге на вход делителя второго устройства 34 деления поступает меньший сигнал, а на выходе образуется сигнал большей величины, соответствующий увеличенной частоте сигнала задания.
Второе логическое устройство 33 формирует постоянный сигнал на входе делителя второго устройства 34 деления при малых сигналах на выходе шестого фильтра 32 нижних частот, чтобы исключить ошибки в работе указанного устройства деления при малых сигналах, в частности ситуацию деления на ноль.
На фиг.3 приведена зависимость сигнала X на выходе второго устройства 34 деления от частоты f сигнала задания, полученная в ходе проведения экспериментальных работ на следящем электроприводе, с реализованными предложенными техническими решениями, где е. м. р. - единицы младшего разряда двоичного кода сигнала X, реализованного с использованием микроконтроллера. Указанный сигнал на выходе второго устройства 34 деления несет информацию о частоте входного воздействия и эффективно используется для перестройки частотных свойств следящего электропривода, несмотря на некоторый разброс, обусловленный пульсациями и разными фазовыми сдвигами сигналов с выходов четвертого (27) и шестого (32) фильтров нижних частот. Для этого сигнал с выхода второго устройства 34 деления поступает на вход функционального преобразователя 35, который преобразует этот сигнал в сигнал, используемый для изменения коэффициента усиления основного контура.
Функциональный преобразователь 35 выполнен с реализацией нарастающей зависимости выходного сигнала Y от входного X с начальным участком, имеющим постоянный минимальный отличный от нуля уровень сигнала Ymin при малых значениях сигнала, поступающего с второго устройства 34 деления. Пример зависимости выходного сигнала от входного функционального преобразователя 35 в виде монотонно нарастающей ступенчатой функции, которая легко реализуется с использованием микроконтроллера, приведен на фиг.4.
Сигнал с выхода функционального преобразователя 35 через первое логическое устройство 28 поступает на вход делителя первого устройства 17 деления, которое позволяет менять общий коэффициент усиления основного контура регулирования. При частотах входного задающего воздействия, не превышающих желаемую полосу пропускания, сигнал на входе делителя минимален (коэффициент деления Ymin), коэффициент усиления основного контура регулирования максимален и электропривод обладает максимальными частотными свойствами. При частотах задающего воздействия, находящихся за желаемой полосой пропускания, сигнал на входе делителя увеличивается, общий коэффициент усиления уменьшается и частотная характеристика следящего электропривода «заваливается».
На фиг.5 приведены амплитудно-частотные и фазо-частотные характеристики (АЧХ и ФЧХ) следящего рулевого электропривода с реализацией предложенных технических решений, которые демонстрируют достигнутый технический результат. АЧХ и ФЧХ сняты в ходе отработки входных синусоидальных задающих воздействий с амплитудами 3° (I) и 0,3° (II). Для сравнения на фиг.5 пунктиром представлены АЧХ и ФЧХ блока 3 эталонной модели, в качестве которой использовано апериодическое звено первого порядка.
В нижней части частотного диапазона характеристики близки к характеристике блока 3 эталонной модели. В средней части частотного диапазона начинает проявлять себя дополнительный фазоопережающий сигнал коррекции, вырабатываемый вторым дифференцирующим устройством 15. АЧХ-II проходит выше АЧХ-I, т.к. в последнем случае проявляется «насыщение» усилителя 5 мощности. В верхней части частотного диапазона начинает проявлять себя устройство 38 коррекции коэффициента усиления основного контура регулирования следящего привода, в результате чего увеличивается степень подавления входных воздействий за пределами полосы пропускания. Фазовое запаздывание на частоте пропускания (по уровню АЧХ минус 3 дБ) составило 46° для ФЧХ-1 и 42° для ФЧХ-II.
Таким образом, совокупность существенных признаков, характеризующих заявляемый следящий рулевой электропривод, позволяет получить увеличение полосы пропускания с малыми фазовыми запаздываниями и резкое подавление амплитуды входного воздействия за частотой пропускания при больших и малых амплитудах входного сигнала.

Claims (1)

  1. Следящий электрический рулевой привод, содержащий первый сумматор, на первый вход которого подается сигнал задания, последовательно соединенные первый фильтр нижних частот, блок эталонной модели, первое устройство сравнения, последовательно соединенные усилитель мощности, исполнительный двигатель, редуктор и датчик обратной связи, выход которого подключен ко вторым входам первого сумматора и первого устройства сравнения, последовательно соединенные второй сумматор, первый ограничитель, выход которого подключен к третьему входу первого сумматора, первое дифференцирующее устройство, второй фильтр нижних частот, причем вход первого фильтра нижних частот подключен к первому входу первого сумматора, отличающийся тем, что в него введены датчик скорости, соединенный с валом исполнительного двигателя, второе устройство сравнения, последовательно соединенные, второе дифференцирующее устройство и третий сумматор, последовательно соединенные первое устройство деления, четвертый сумматор, регулятор скорости, второй ограничитель, пятый сумматор, блок модели двигателя, шестой сумматор, выход которого подключен ко второму входу пятого сумматора, последовательно соединенные третий фильтр нижних частот, третье дифференцирующее устройство, первое устройство выделения модуля, четвертый фильтр нижних частот, первое логическое устройство, выход которого подключен к входу делителя первого устройства деления, последовательно соединенные пятый фильтр нижних частот, четвертое дифференцирующее устройство, второе устройство выделения модуля, шестой фильтр нижних частот, второе логическое устройство, последовательно соединенные второе устройство деления и функциональный преобразователь, причем вход делимого второго устройства деления соединен с выходом четвертого фильтра нижних частот, вход делителя второго устройства деления соединен с выходом второго логического устройства, второй вход первого логического устройства соединен с выходом функционального преобразователя, первый вход первого сумматора соединен с входами третьего и пятого фильтров нижних частот, выход первого сумматора подключен ко второму входу третьего сумматора, выход которого подключен к входу делимого первого устройства деления, выход датчика скорости подключен ко второму входу шестого сумматора, выход блока эталонной модели соединен с входом первого дифференцирующего устройства, выход которого подключен к первому входу второго устройства сравнения и к входу второго фильтра нижних частот, выход которого подключен к входу второго дифференцирующего устройства, выход блока модели двигателя подключен ко вторым входам четвертого сумматора и второго устройства сравнения, выходы первого устройства сравнения и второго устройства сравнения подключены соответственно к первому и второму входам второго сумматора, выход второго ограничителя соединен с входом усилителя мощности, третий фильтр нижних частот выполнен с широкой полосой пропускания, пятый фильтр нижних частот выполнен с узкой полосой пропускания, при этом функциональной преобразователь предназначен для реализации нарастающей зависимости выходного сигнала от входного с начальным участком, формирующим постоянный уровень выходного сигнала, первое логическое устройство предназначено для реализации блокировки прохождения сигнала с функционального преобразователя при малых уровнях сигнала на выходе четвертого фильтра нижних частот, а второе логическое устройство предназначено для реализации исключения режима деления на ноль второго устройства деления.
RU2009116657/02A 2009-04-30 2009-04-30 Следящий рулевой электропривод RU2399017C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009116657/02A RU2399017C1 (ru) 2009-04-30 2009-04-30 Следящий рулевой электропривод

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009116657/02A RU2399017C1 (ru) 2009-04-30 2009-04-30 Следящий рулевой электропривод

Publications (1)

Publication Number Publication Date
RU2399017C1 true RU2399017C1 (ru) 2010-09-10

Family

ID=42800584

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009116657/02A RU2399017C1 (ru) 2009-04-30 2009-04-30 Следящий рулевой электропривод

Country Status (1)

Country Link
RU (1) RU2399017C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2574334C1 (ru) * 2014-11-10 2016-02-10 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военная академия Ракетных войск стратегического назначения имени Петра Великого" Министерства обороны Российской Федерации Устройство управления частотой вращения асинхронного двигателя электроустановок
CN108255096A (zh) * 2017-12-08 2018-07-06 中国航空工业集团公司成都飞机设计研究所 一种直接驱动阀式作动器的模型装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2574334C1 (ru) * 2014-11-10 2016-02-10 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военная академия Ракетных войск стратегического назначения имени Петра Великого" Министерства обороны Российской Федерации Устройство управления частотой вращения асинхронного двигателя электроустановок
CN108255096A (zh) * 2017-12-08 2018-07-06 中国航空工业集团公司成都飞机设计研究所 一种直接驱动阀式作动器的模型装置
CN108255096B (zh) * 2017-12-08 2020-10-20 中国航空工业集团公司成都飞机设计研究所 一种直接驱动阀式作动器的模型装置

Similar Documents

Publication Publication Date Title
CN102969971B (zh) 电动机控制装置
JP6566104B2 (ja) 電動パワーステアリング装置
US5428285A (en) Position controller for controlling an electric motor
KR101460463B1 (ko) 모터 제어 장치
CN103633914B (zh) 马达控制装置
WO2014167852A1 (ja) モータ駆動装置
WO2016007705A1 (en) System and method for robust active disturbance rejection in electric power steering
US5959266A (en) Elevator speed control apparatus
EP2402234B1 (en) Dynamic system compensator for actively controlled power steering systems
US9919605B2 (en) Driving force controller for electric vehicle
JP6222411B2 (ja) 電動パワーステアリング装置
CN105790668A (zh) 一种能克服传动间隙非线性的双环自抗扰控制器
US5506930A (en) Control apparatus for a variable speed motor
RU2399017C1 (ru) Следящий рулевой электропривод
CN110609470A (zh) 一种基于过渡过程的抗积分饱和设计方法
KR102279041B1 (ko) 자동차의 전기 모터의 회전 속도를 제어하기 위한 시스템 및 방법
Dong et al. On a robust control system design for an electric power assist steering system
JP5362339B2 (ja) モータ制御装置
CN113364391B (zh) 电机控制系统及其震动抑制方法
KR101481645B1 (ko) 디지털 가버너 제어장치의 pid 게인의 오토튜닝 방법
US8095252B2 (en) Piloting method and device avoiding the pilot induced oscillations
RU2800527C1 (ru) Следящий рулевой электропривод
CN113875145B (zh) 马达驱动装置以及马达驱动装置的控制方法
CN116324632B (zh) 车辆系统振动抑制控制设备和振动抑制控制方法
JP5805016B2 (ja) モータ制御装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130501

NF4A Reinstatement of patent

Effective date: 20140820

PC41 Official registration of the transfer of exclusive right

Effective date: 20150126