RU2395598C1 - Способ переработки концентратов, содержащих благородные металлы и сульфиды - Google Patents

Способ переработки концентратов, содержащих благородные металлы и сульфиды Download PDF

Info

Publication number
RU2395598C1
RU2395598C1 RU2008145568/02A RU2008145568A RU2395598C1 RU 2395598 C1 RU2395598 C1 RU 2395598C1 RU 2008145568/02 A RU2008145568/02 A RU 2008145568/02A RU 2008145568 A RU2008145568 A RU 2008145568A RU 2395598 C1 RU2395598 C1 RU 2395598C1
Authority
RU
Russia
Prior art keywords
noble metals
mixture
concentrate
sodium carbonate
melting
Prior art date
Application number
RU2008145568/02A
Other languages
English (en)
Other versions
RU2008145568A (ru
Inventor
Сергей Георгиевич Рыбкин (RU)
Сергей Георгиевич Рыбкин
Юрий Львович Николаев (RU)
Юрий Львович Николаев
Евгений Владимирович Богородский (RU)
Евгений Владимирович Богородский
Original Assignee
Открытое акционерное общество "Иркутский научно-исследовательский институт благородных и редких металлов и алмазов" ОАО "Иргиредмет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Иркутский научно-исследовательский институт благородных и редких металлов и алмазов" ОАО "Иргиредмет" filed Critical Открытое акционерное общество "Иркутский научно-исследовательский институт благородных и редких металлов и алмазов" ОАО "Иргиредмет"
Priority to RU2008145568/02A priority Critical patent/RU2395598C1/ru
Publication of RU2008145568A publication Critical patent/RU2008145568A/ru
Application granted granted Critical
Publication of RU2395598C1 publication Critical patent/RU2395598C1/ru

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

Изобретение относится к области металлургии благородных металлов, в частности к пирометаллургической переработке сульфидных концентратов, содержащих благородные металлы. Способ переработки концентратов, содержащих благородные металлы и сульфиды, включает термическую обработку исходного концентрата и плавку в смеси с карбонатом натрия, кремнеземсодержащим флюсом и углеродистым восстановителем с получением сплава благородных металлов и шлака. При этом термическую обработку исходного концентрата проводят в смеси с нитратом и карбонатом натрия в соотношении 1:(0,5÷1,6):(0,1÷0,4) при температуре 400÷600°С с получением спека. Полученный спек выщелачивают в воде с последующим отделением от раствора нерастворимого осадка. Высушенный нерастворимый осадок подвергают сушке и плавке с карбонатом натрия, кремнеземсодержащим флюсом и углеродистым восстановителем с добавлением буры и оксида кальция. Техническим результатом является повышение извлечения благородных металлов в сплав и снижение затрат на переработку концентратов. 4 табл.

Description

Изобретение относится к области металлургии благородных металлов (БМ), в частности к пирометаллургической переработке сульфидных концентратов, содержащих благородные металлы.
Целевым продуктом обогатительной переработки руд и песков, содержащих благородные металлы, являются богатые гравитационные концентраты, так называемые «золотые головки», представляющие собой неоднородную смесь минералов и обломков горных пород, в значительной степени представленную сульфидами металлов (пирит, арсенопирит, галенит, халькопирит, сфалерит и т.п.), оксидами и гидроксидами железа (магнетит, гематит, лимонит, гетит) и группой оксидов слагающих минералы - кремния, алюминия, кальция, магния. Благородные металлы - золото, серебро и металлы платиновой группы присутствуют в концентратах в самородном виде, в форме интерметаллидов, сульфидов. Содержание благородных металлов в богатых гравитационных концентратах, в зависимости от степени доводки, составляет, в среднем 10,0÷20,0% в сумме.
Известен способ переработки сульфидных концентратов гравитационного обогащения, содержащих благородные металлы, включающий плавку концентрата в смеси с флюсами, металлическим железом и углеродистым восстановителем с получением шлака, первичного штейна и золота лигатурного [1]. Первичный штейн смешивают с флюсами, глетом, металлическим железом, углеродистым восстановителем и плавят с получением шлака, обедненного вторичного штейна и веркблея. Веркблей купелируют с получением золота лигатурного. Недостатками способа-аналога являются значительные затраты, обусловленные применением трех высокотемпературных операций и использованием дорогостоящих реагентов.
Известен способ переработки концентратов, содержащих благородные металлы и сульфиды, который принят за прототип, как наиболее близкое к заявляемому техническое решение [2].
По известному способу сульфидный гравитационный концентрат подвергают термической обработке - окислительному обжигу при температуре 500-700°С, продукт термообработки - огарок гравитационного концентрата смешивают с карбонатом натрия, кремнеземсодержащим флюсом - кварцевым песком и углеродистым восстановителем и плавят при температуре 1200°С с получением сплава благородных металлов и шлака. Недостатками способа-прототипа являются высокие затраты, связанные с улавливанием и утилизацией сернистого ангидрида (SO2) обжиговых газов, и повышенные потери благородных металлов с пылью операции обжига и относительно тугоплавкими шлаками от плавки огарков концентрата.
Задачей, на решение которой направлено заявляемое изобретение, является снижение затрат на переработку концентратов, содержащих благородные металлы и сульфиды, и повышение извлечения благородных металлов в целевой сплав. Поставленная задача решается за счет технического результата, который заключается в предотвращении образования газообразного оксида серы и сокращения количества пыли в процессе операции термического разложения сульфидов исходных концентратов и снижения остаточного содержания благородных металлов в шлаках при плавке смеси на получение сплава благородных металлов.
Указанный технический результат достигается тем, что в известном способе переработки концентратов, содержащих благородные металлы и сульфиды, включающем термическую обработку исходного концентрата и плавку в смеси с карбонатом натрия, кремнеземсодержащим флюсом и углеродистым восстановителем с получением сплава благородных металлов и шлака, согласно изобретению термическую обработку исходного концентрата проводят в смеси с нитратом и карбонатом натрия в соотношении 1:(0,5÷1,6):(0,1÷0,4) при температуре 400-600°С с получением спека, который выщелачивают в воде с последующим отделением от раствора нерастворимого осадка и его сушкой, плавке с карбонатом натрия, кремнеземсодержащим флюсом и углеродистым восстановителем подвергают высушенный нерастворимый осадок с добавлением буры и оксида кальция.
Отличием предлагаемого технического решения от прототипа является состав смеси на термообработку исходного концентрата, введение новых операций выщелачивания продукта термообработки концентрата в воде, отделение нерастворимого осадка от раствора, сушку нерастворимого осадка и состав смеси на плавку с получением сплава благородных металлов и шлака.
Физико-химическая сущность заявляемого способа основывается на термохимическом разложении сульфидов железа и цветных металлов смесью нитрата и карбоната натрия с переводом металлов в форму оксидов, а серы в сульфат натрия. Разложение сульфидов при термообработке смеси протекает по реакциям типа (I):
Figure 00000001
Продуктами операции являются: спек, на основе сульфата натрия, оксидов железа и цветных металлов и газы, смесь азота с двуокисью углерода. В процессе выщелачивания спека в воде сульфат натрия переходит в раствор, в нерастворимом осадке концентрируются благородные металлы, оксиды железа и цветных металлов. При последующей плавке высушенного нерастворимого осадка с флюсами получают сплав благородных металлов и шлак.
Эффект сокращения потерь благородных металлов с пылью при термическом разложении сульфидных концентратов происходит по причине уменьшения пылеобразования вследствие частичного оплавления реакционной массы. Снижение остаточного содержания благородных металлов в шлаке достигается путем повышения поверхностного натяжения шлакового расплава и понижения температуры плавления шлака за счет введения в состав шихты оксида кальция и легкоплавкой буры в количестве, обеспечивающем содержание в получаемом шлаке СаО на уровне 10÷15% и Na2B4O7 20÷25%.
В заявляемом способе количество компонентов реакционной смеси в указанных пределах берется в зависимости от содержания сульфидов в перерабатываемом концентрате. При относительно низком содержании сульфидов в концентрате (15÷20%) необходимое и достаточное количество расходуемых нитрата и карбоната натрия в смеси составляет, соответственно, 0,5 и 0,1 от массы перерабатываемого материала, а при высоком содержании сульфидов (60÷70%) расход нитрата и карбоната натрия составляет 1,6 и 0,4 от массы исходного концентрата.
Температурный диапазон 400÷600°С, при котором проводится термообработка смеси для разложения сульфидов, выбран по результатам экспериментальных данных. Установлено, что при температуре ниже 400°С степень десульфуризации сульфидов смесью нитрата и карбоната натрия понижается, а обработка смеси при температуре выше 600°С практически не увеличивает степень десульфуризации, но сопровождается более высокими затратами, в частности электроэнергии.
Сопоставительный анализ заявляемого способа с прототипом показывает, что заявляемый способ отличается от известного составом смеси на термообработку исходного концентрата, введением новых операций выщелачивания продукта термообработки концентрата в воде, отделения нерастворимого осадка от раствора, сушки нерастворимого осадка и составом смеси на плавку с получением сплава благородных металлов и шлака.
Для доказательства соответствия заявляемого изобретения критерию «изобретательский уровень» проводилось сравнение с другими техническими решениями, известными из источников, включенных в уровень техники.
Заявляемый способ переработки концентратов, содержащих благородные металлы и сульфиды, соответствует требованию «изобретательского уровня», так как обеспечивает снижение затрат на переработку концентратов и повышение извлечения благородных металлов в целевой сплав, что не следует явным образом из известного уровня техники.
Примеры использования заявляемого способа
Для экспериментальной проверки заявляемого способа использовали гравитационные концентраты - «золотые головки» (А, Б, В), полученные при обогащении золотосодержащих руд, флюсы и реагенты, измельченные до крупности менее 0,5 мм. Составы концентратов приведены в таблице 1.
Figure 00000002
Термообработку концентратов проводили на установке, включающей муфельную камерную печь сопротивления с автоматическим регулятором температуры и вытяжную газоотводящую систему с кассетным пылеулавливающим устройством на основе тканевого фильтра.
Компоненты смеси - гравитационный концентрат, нитрат и карбонат натрия взвешивали на лабораторных весах и усредняли, готовую смесь помещали в противень нержавеющей стали слоем 3÷4 см. Противень со смесью загружали в камеру печи и выдерживали при заданной температуре в течение 60 минут. По окончании выдержки кассету тканевого фильтра извлекали и определяли количество уловленной пыли, противень со спеком выгружали из печи и охлаждали до комнатной температуры. Спек взвешивали, измельчали до крупности менее 0,5 мм и выщелачивали в воде в лабораторном реакторе при условиях: Т:Ж=1:5; температура ~60°С; продолжительность - 30 минут. Полученную пульпу фильтровали, нерастворимый осадок сушили и взвешивали. Высушенный нерастворимый осадок смешивали с флюсами и коксиком, шихту помещали в шамотовый тигель. Тигель с шихтой загружали в шахтную печь сопротивления с карбидокремниевыми электронагревателями и выдерживали при температуре 1200°С в течение 30 минут. По окончании плавки тигель извлекали из печи и охлаждали. Продукты плавки - шлак и сплав благородных металлов выбивали из тигля и взвешивали. Промежуточные и конечные продукты опытов анализировали на содержание элементов пробирным и химическим методами анализа.
Данные по результатам опытов переработки гравитационных концентратов заявляемым способом приведены в таблицах 2 и 3.
Результаты примеров №№1 и 3 (таблица 2) показывают, что использование заявляемого способа позволяет разлагать сульфиды гравитационных концентратов со степенью десульфуризации на уровне 93,2÷96,3%, переводить металлы в форму оксидов и эффективно выводить серу в водный раствор в виде сульфата натрия. При содержании нитрата и карбоната натрия в смеси и температуре термообработки смеси ниже заявляемых пределов (примеры №№4 и 6) степень десульфуризации понижается, а при содержании нитрата и карбоната натрия и температуры термообработки смеси выше заявляемых пределов степень десульфуризации изменяется незначительно, но существенно возрастают расходы реагентов и электроэнергии на термообработку концентратов (примеры №№5 и 7). Количество пыли в примерах №№1 и 3 составляет 0,17÷0,35% от массы концентратов. Содержание благородных металлов в пыли составляет менее 1,0 г/т, по данным рентгеноструктурного анализа основным компонентом пыли является карбонат натрия.
Плавка нерастворимых осадков гравитационных концентратов в смеси с флюсами позволяет получать сплавы благородных металлов с суммарным содержанием золота и серебра 85,37÷94,72% (таблица 3).
Figure 00000003
Figure 00000004
Пример использования способа-прототипа
Для сравнения показателей заявляемого способа и способа-прототипа провели опыт переработки концентрата «Б» по технологии способа-прототипа. Концентрат «Б» массой 100,0 г поместили в противень нержавеющей стали слоем 10 мм, загрузили в муфельную камерную печь сопротивления и при периодическом перемешивании обжигали с доступом воздуха в камеру печи по 1,5 часа при температуре 500 и 700°С. По завершении обжига противень выгрузили из печи, огарок охладили и взвесили. Масса огарка концентрата составила 81,9 г. Огарок содержал 22,53% золота, 4,50% серебра, 1,38% серы. Масса пыли составила 3,8 г. Пыль содержала 1,29% золота, 0,43% серебра, 1,75% серы. Огарок смешали со 120,0 г карбоната натрия, 40,9 г кварцевого песка и 4,0 г коксика. Плавку, разделение и анализ продуктов провели по методике, изложенной в примерах переработки концентратов заявляемым способом.
В результате плавки получили 26,2 г сплава благородных металлов и 175,0 г шлака. Сплав БМ содержал: 69,83% золота; 13,61% серебра; 10,1% меди; 5,8% свинца. В шлаке содержалось: 0,089% золота; 0,067% серебра; 0,82% меди; 0,22% свинца.
Сравнение достигнутых показателей от использования заявляемого и известного способов переработки концентрата «Б» представлено в таблице 4.
Таблица 4
Сравнительные данные переработки концентрата «Б»
Показатель Достигнутая величина при использовании способа
Прототипа Заявленного
Степень извлечения благородных металлов в целевой сплав (Ag/Au), % 96,37/98,89 98,39/99,34
Общие затраты на переработку концентрата, % 100 85÷90
Данные, приведенные в таблице 4, показывают, что использование заявляемого способа позволяет повысить извлечение в целевой сплав благородных металлов золота на 0.45% и серебра на 2,02% вследствие устранения потерь благородных металлов с пылью и снижения их остаточного содержания в шлаках. За счет предотвращения выделения оксида серы в газовую фазу и соответствующих затрат на улавливание сернистого ангидрида в специальных устройствах общие затраты на переработку концентрата снижаются примерно на 10÷15%.
Для доказательства критерия «промышленное применение» заявленный способ планируется к опытному испытанию в ОАО «Иргиредмет».
Источники информации
1. Патент РФ №2156820, МКИ С22B 11/02. Способ переработки концентратов гравитационного обогащения, содержащих благородные металлы / С.Г.Рыбкин, А.Ф.Панченко, Г.М.Панченко, Н.Н.Кулинич (Россия) - опубл. 27.09.2000 г.
2. Патент РФ №1649815, МКИ С22В 11/02. Способ извлечения благородных металлов из гравитационных концентратов / С.В.Баликов, Н.А.Дубинин, А.П.Манохин (Россия) - №4749419/02; Заявл. 11.10.1989. (Авторское свидетельство СССР переоформлено на патент РФ и зарегистрировано в Государственном реестре изобретений 13 апреля 1993 года) - прототип.

Claims (1)

  1. Способ переработки концентратов, содержащих благородные металлы и сульфиды, включающий термическую обработку исходного концентрата и плавку в смеси с карбонатом натрия, кремнеземсодержащим флюсом и углеродистым восстановителем с получением сплава благородных металлов и шлака, отличающийся тем, что термическую обработку исходного концентрата проводят в смеси с нитратом и карбонатом натрия в соотношении 1:(0,5÷1,6):(0,1÷0,4) при температуре 400÷600°С с получением спека, который выщелачивают в воде с последующим отделением от раствора нерастворимого осадка и его сушкой, плавке с карбонатом натрия, кремнеземсодержащим флюсом и углеродистым восстановителем подвергают высушенный нерастворимый осадок с добавлением буры и оксида кальция.
RU2008145568/02A 2008-11-18 2008-11-18 Способ переработки концентратов, содержащих благородные металлы и сульфиды RU2395598C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2008145568/02A RU2395598C1 (ru) 2008-11-18 2008-11-18 Способ переработки концентратов, содержащих благородные металлы и сульфиды

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008145568/02A RU2395598C1 (ru) 2008-11-18 2008-11-18 Способ переработки концентратов, содержащих благородные металлы и сульфиды

Publications (2)

Publication Number Publication Date
RU2008145568A RU2008145568A (ru) 2010-05-27
RU2395598C1 true RU2395598C1 (ru) 2010-07-27

Family

ID=42679939

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008145568/02A RU2395598C1 (ru) 2008-11-18 2008-11-18 Способ переработки концентратов, содержащих благородные металлы и сульфиды

Country Status (1)

Country Link
RU (1) RU2395598C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2457263C1 (ru) * 2011-04-01 2012-07-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Иркутский государственный технический университет" (ФГБОУ ВПО "ИрГТУ") Способ переработки сульфидных концентратов, содержащих благородные металлы
RU2654407C1 (ru) * 2017-09-01 2018-05-17 Акционерное общество "Полюс Красноярск" Способ переработки сульфидных концентратов, содержащих благородные металлы

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114672661A (zh) * 2022-03-04 2022-06-28 金川集团股份有限公司 一种判断卡尔多炉贵金属冶炼吹炼终点的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2457263C1 (ru) * 2011-04-01 2012-07-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Иркутский государственный технический университет" (ФГБОУ ВПО "ИрГТУ") Способ переработки сульфидных концентратов, содержащих благородные металлы
RU2654407C1 (ru) * 2017-09-01 2018-05-17 Акционерное общество "Полюс Красноярск" Способ переработки сульфидных концентратов, содержащих благородные металлы

Also Published As

Publication number Publication date
RU2008145568A (ru) 2010-05-27

Similar Documents

Publication Publication Date Title
AU2008257833B2 (en) Method for the valorisation of zinc- and sulphate-rich residue
KR101084927B1 (ko) 아연 잔류물로부터 비철 금속을 회수하는 방법
RU2692135C1 (ru) Способ переработки золотосодержащего сурьмяного концентрата и линия для его осуществления
Gang et al. Selective reduction process of zinc ferrite and its application in treatment of zinc leaching residues
Min et al. Reaction mechanisms of low-grade molybdenum concentrate during calcification roasting process
CA1279198C (en) Zinc smelting process using oxidation zone and reduction zone
RU2395598C1 (ru) Способ переработки концентратов, содержащих благородные металлы и сульфиды
Khasanov et al. Technology for the Reduction of Iron Oxides in Fluidized Bed Furnaces
US4135912A (en) Electric smelting of lead sulphate residues
RU2494160C1 (ru) Способ определения содержания золота и серебра в сульфидных рудах и продуктах их переработки
Wang et al. Tin recovery from a low-grade tin middling with high Si content and low Fe content by reduction—sulfurization roasting with anthracite coal
US3932170A (en) Use of scavenger in recovery of metal values
RU2308495C1 (ru) Способ переработки концентратов, содержащих благородные металлы и сульфиды
AU2022316599A1 (en) Treatment of zinc leach residue
RU2156820C1 (ru) Способ переработки концентратов гравитационного обогащения, содержащих благородные металлы
RU2553117C2 (ru) Способ переработки катализаторов, содержащих металлы платиновой группы на носителях из оксида алюминия
Virčíková et al. Recovery of copper from dump slag by a segregation process
RU2365644C1 (ru) Способ определения благородных металлов в сульфидных рудах и продуктах их переработки
RU2687613C2 (ru) Способ переработки сульфидных концентратов, содержащих драгоценные металлы
WO2009052580A1 (en) Production of nickel
RU2434063C1 (ru) Способ определения золота в рудах и концентратах
RU2255126C1 (ru) Термогидрометаллургический способ комплексной переработки медного концентрата колчеданных руд с извлечением цветных и благородных металлов
RU2457263C1 (ru) Способ переработки сульфидных концентратов, содержащих благородные металлы
RU2559600C2 (ru) Пирометаллургический способ
RU2506329C1 (ru) Способ переработки сульфидных концентратов, содержащих благородные металлы

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20171119