RU2388689C1 - Способ получения карбида вольфрама w2c - Google Patents

Способ получения карбида вольфрама w2c Download PDF

Info

Publication number
RU2388689C1
RU2388689C1 RU2008150289/15A RU2008150289A RU2388689C1 RU 2388689 C1 RU2388689 C1 RU 2388689C1 RU 2008150289/15 A RU2008150289/15 A RU 2008150289/15A RU 2008150289 A RU2008150289 A RU 2008150289A RU 2388689 C1 RU2388689 C1 RU 2388689C1
Authority
RU
Russia
Prior art keywords
carbon
tungsten
mixture
tungsten carbide
tungsten oxide
Prior art date
Application number
RU2008150289/15A
Other languages
English (en)
Inventor
Виктор Викторович Молчанов (RU)
Виктор Викторович Молчанов
Василий Викторович Гойдин (RU)
Василий Викторович Гойдин
Original Assignee
Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук (статус государственного учреждения)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук (статус государственного учреждения) filed Critical Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук (статус государственного учреждения)
Priority to RU2008150289/15A priority Critical patent/RU2388689C1/ru
Application granted granted Critical
Publication of RU2388689C1 publication Critical patent/RU2388689C1/ru

Links

Images

Landscapes

  • Catalysts (AREA)

Abstract

Изобретение относится к области неорганического синтеза и может быть использовано в металлургической промышленности, производстве инструментов, катализе. В барабан планетарной мельницы загружают оксид вольфрама WO3 с углеродным материалом, в качестве которого используют графит, или антрацит, или активированный уголь, или сажу, или углеродные ксерогели, или нановолокнистый углерод, или углеродные волокна из полиакрилонитрила, или их любые смеси. Смесь подвергают механохимической активации в присутствии металлов-восстановителей, в качестве которых используют кальций, или магний, или алюминий, или титан, или цирконий, или марганец, или цинк, или их любую смесь. Для удаления примесей оксидов металлов-восстановителей и металлического железа полученные материалы обрабатывают растворами кислот или щелочей. Проводят рентгенофазовый анализ. Изобретение позволяет получить наноразмерные карбиды вольфрама с низким потреблением энергии и малым временем синтеза. 3 з.п. ф-лы, 2 ил.

Description

Изобретение относится к области неорганического синтеза, а именно к получению карбидов вольфрама, и может найти применение в металлургической промышленности, производстве инструментов, катализе.
Карбид вольфрама WC находит широкое применение для легирования сталей и изготовления покрытий для режущих инструментов. Известно также о применении карбидов в качестве катализаторов реакций дегидрирования циклогексана в бензол [Газиев Г.А. // ДАН СССР, 1961, т.140, в.4, с.863], гидрирования моноксида углерода [Patterson P.M., Das Т.К., Davis В.Н. // Appl. Catal.: General, 2003, v.251, p.449-455]. В последнее время много исследований посвящено применению карбидов вольфрама в качестве катализаторов электрокаталитических процессов, например, окисления водорода в топливных элементах [Наrа Y., Minami N., Itagaki Н. // Appl. Catal.: General, 2007, v.323, p.86-93; McIntyre D.R., Burshtein G.T., Vossen A. // J.Power Source, 2002, v.107, p.67-73] или восстановления нитрометана [Zheng H., Ma Ch., Wang W., Huang J. // Electrochem. Comm., 2006, v.8, p.977-981]. Преимуществами карбидов вольфрама в этих процессах перед платиновыми катализаторами являются их низкая стоимость, химическая инертность и высокая устойчивость к отравлению моноксидом углерода, который, как правило, присутствует в водороде в количествах до нескольких сотен ppm.
Карбид вольфрама (WC), используемый для легирования сталей, производят тремя методами [Косолапова Т.Я. Карбиды. М., 1968]:
- Взаимодействием вольфрама с углеродом в среде водорода при температурах 1430-1630°C.
- Взаимодействием триоксида вольфрама, вольфрамовой кислоты или паравольфрамата аммония с водородом и метаном при температурах 900-1000°C.
- Разложением карбонила вольфрама W(CO)6 при температуре 1030°C.
Еще более жесткие условия требуются для получения карбида вольфрама W2C: взаимодействие вольфрама с углеродом в среде водорода при температурах 3000-3200°C [Косолапова Т.Я. Карбиды. М., 1968].
Во всех случаях образуется грубодисперсный карбид вольфрама, малопригодный для использования в производстве инструментов и в качестве катализаторов. В работах [Patterson P.M., Das T.K., Davis В.Н. // Appl. Catal.: General, 2003, v.251, p.449-455; Hara Y., Minami N., Itagaki H. // Appl. Catal.: General, 2007, v.323, p.86-93] описаны методы получения карбидов вольфрама карбонизацией нитрида и сульфида вольфрама в среде углеродсодержащих газов (углеводороды, CO) и водорода. При таких методах, как правило, получается смесь нескольких карбидов вольфрама.
Наиболее близким к предлагаемому изобретению является способ получения композитов, содержащих карбид вольфрама, методом механохимической активации (МХА) смеси порошка вольфрама с углеродом и медью [Baikalova Yu.V., Lomovsky O.I. // Journal of Alloys and Compounds, 2000, v.297, p.87-91] или кобальтом [РФ 2120840, B22F 9/054, 27.101998]. Содержание карбидов вольфрама в получаемых композитах не более 5 мас.%.
В качестве прототипа выбран способ приготовления шихты для твердых сплавов на основе карбида вольфрама, включающий механическую обработку порошков компонентов шихты, механической обработке подвергают порошки вольфрама, углерода и кобальта в механохимическом реакторе при ускорении 40-60 g в течение 10-30 мин. [РФ 2120840, B22F 9/054, 27.101998]. Содержание карбидов вольфрама в получаемом композите не более 5 мас.%.
Недостатками известных методов приготовления являются: большой расход энергии, необходимость применения высоких температур, большое время синтеза, низкая производительность в случае применения МХА.
Задачей данного изобретения является разработка способа получения наноразмерных карбидов вольфрама с низким потреблением энергии и малым временем синтеза.
Задача получения карбида вольфрама W2C решается механохимической активацией смесей оксида вольфрама (WO3) с углеродным материалом и металлом-восстановителем. В качестве источника углерода используют графит или антрацит, или активированный уголь, или сажу, или углеродные ксерогели, или нановолокнистый углерод, или углеродные волокна из полиакрилонитрила, или их любые смеси. В качестве металлов-восстановителей используют металлы с окислительно-восстановительным потенциалом перехода металл-оксид более отрицательным, чем у вольфрама, например кальций, магний, алюминий, титан, цирконий, марганец, цинк или их любые смеси.
Соотношение оксида вольфрама WO3 и металлов-восстановителей соответствует необходимому по стехиометрии восстановления оксида вольфрама WO3 до металла W. Соотношение оксида вольфрама WO3 и углеродных материалов превышает необходимое для образования карбида вольфрама W2C на 10-50%.
Для удаления примесей оксидов металлов-восстановителей и металлического железа, образующегося при абразивном износе барабанов мельниц и мелющих тел, полученные материалы обрабатывают растворами азотной или соляной кислоты или растворами гидроксидов натрия и калия.
Технический результат : получен чистый карбид вольфрама W2C с размерами кристаллитов 13-25 нм. Высокая дисперсность позволяет повысить эффективность использования материала в качестве катализатора и изготавливать абразивные инструменты, позволяющие повысить класс обработки.
Сущность изобретения иллюстрируется следующими примерами и иллюстрациями. Пример 1.
В барабан планетарной мельницы загружают 3,8 г WO3, 1,2 г Mg, 0,5 г C (углеродный ксерогель). Смесь подвергают механохимической активации в планетарной мельнице АГО-2 при частоте вращения барабанов 10 с-1 в течение 30 мин. По данным рентгенофазового анализа в активированной смеси содержатся карбид вольфрама W2C и оксид магния (Фиг.1).
Пример 2.
В барабан планетарной мельницы загружают 4,2 г WO3, 0,8 г Al, 0,5 г C (активированный уголь БАУ). Смесь подвергают механохимической активации в планетарной мельнице АГО-2 при частоте вращения барабанов 17 с-1 в течение 10 мин. По данным рентгенофазового анализа в активированной смеси содержатся карбид вольфрама W2C и оксид алюминия (Фиг.2).
Пример 3.
В барабан планетарной мельницы загружают 4,2 г WO3, 0,66 г Mg, 0,65 г Ti 0,5 г C (активированный уголь БАУ). Смесь подвергают механохимической активации в планетарной мельнице АГО-2 при частоте вращения барабанов 17 с-1 в течение 10 мин. По данным рентгенофазового анализа в активированной смеси содержатся карбид вольфрама W2C, диоксид титана и оксид магния.
Пример 4.
Аналогичен примеру 1, в качестве металла-восстановителя используют кальций. Пример 5.
Аналогичен примеру 1, в качестве углеродного материала используют смесь активированного угля БАУ и сажи П-245, а в качестве металла-восстановителя цирконий.
Пример 6.
Образцы по примерам 1, 3 обрабатывают разбавленной азотной кислотой для удаления примесей оксидов металлов-восстановителей. Полученные продукты содержат 100% карбида вольфрама W2C.
Пример 7.
Образцы по примерам 4-5 обрабатывают соляной кислотой для удаления примесей оксидов металлов-восстановителей. Полученные продукты содержат 100% карбида вольфрама W2C.
Пример 8.
Образец по примеру 2 обрабатывают раствором гидроксида натрия для удаления примеси оксида алюминия. Полученный продукт содержит 100% карбида вольфрама W2C.
Пример 9.
Образец по примеру 2 обрабатывают раствором гидроксида калия для удаления примеси оксида алюминия. Полученный продукт содержит 100% карбида вольфрама W2C.
Пример 10.
Аналогичен примеру 1, в качестве углеродного материала используют графит, а в качестве металла-восстановителя марганец.
Пример 11.
Аналогичен примеру 1, в качестве углеродного материала используют антрацит, а в качестве металла-восстановителя цинк.
Пример 12.
Аналогичен примеру 1, в качестве углеродного материала используют нановолокнистый углерод.
Пример 13.
Аналогичен примеру 1, в качестве углеродного материала используют углеродные волокна из полиакрилонитрила.
Пример 14.
Аналогичен примеру 1, в качестве углеродного материала используют смесь активированного угля БАУ и нановолокнистого углерода, а в качестве металла-восстановителя смесь цинка и алюминия.
Пример 15.
Аналогичен примеру 1, в качестве углеродного материала используют смесь активированного угля БАУ и углеродных ксерогелей.
Пример 16.
Аналогичен примеру 1, в качестве углеродного материала используют смесь активированного угля БАУ и графита.
Пример 17.
Аналогичен примеру 1, в качестве углеродного материала используют смесь активированного угля БАУ и графита, а в качестве металла-восстановителя смесь алюминия и кальция.
Как видно из приведенных примеров и дифрактограмм, заявляемый способ позволяет получать карбид вольфрама состава W2C либо его смеси с другими компонентами, которые могут применяться для легирования сталей, изготовления абразивных инструментов, катализаторов и топливных элементов.

Claims (4)

1. Способ получения карбида вольфрама W2C механохимической активацией смесей соединений вольфрама с углеродным материалом в присутствии металлов-восстановителей, отличающийся тем, что в качестве соединения вольфрама используют оксид вольфрама WO3, в качестве углеродного материала используют графит, или антрацит, или активированный уголь, или сажу, или углеродные ксерогели, или нановолокнистый углерод, или углеродные волокна из полиакрилонитрила, или их любые смеси, а в качестве металлов-восстановителей используют кальций, или магний, или алюминий, или титан, или цирконий, или марганец, или цинк, или их любую смесь.
2. Способ по п.1, отличающийся тем, что соотношение оксида вольфрама WO3 и металлов-восстановителей соответствует необходимому по стехиометрии восстановления оксида вольфрама WO3 до металла W.
3. Способ по п.1, отличающийся тем, что соотношение оксида вольфрама WO3 и углеродных материалов превышает необходимое для образования карбида вольфрама W2C на 10-50%.
4. Способ по п.1, отличающийся тем, что для удаления примесей оксидов металлов-восстановителей и металлического железа полученные материалы обрабатывают растворами азотной или соляной кислоты, или растворами гидроксидов натрия и/или калия.
RU2008150289/15A 2008-12-18 2008-12-18 Способ получения карбида вольфрама w2c RU2388689C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2008150289/15A RU2388689C1 (ru) 2008-12-18 2008-12-18 Способ получения карбида вольфрама w2c

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008150289/15A RU2388689C1 (ru) 2008-12-18 2008-12-18 Способ получения карбида вольфрама w2c

Publications (1)

Publication Number Publication Date
RU2388689C1 true RU2388689C1 (ru) 2010-05-10

Family

ID=42673882

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008150289/15A RU2388689C1 (ru) 2008-12-18 2008-12-18 Способ получения карбида вольфрама w2c

Country Status (1)

Country Link
RU (1) RU2388689C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2452784C1 (ru) * 2011-04-18 2012-06-10 Государственное образовательное учреждение высшего профессионального образования "Тихоокеанский государственный университет" Способ получения тонкодисперсного порошка карбида вольфрама
RU2599757C2 (ru) * 2014-05-08 2016-10-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Новосибирский государственный технический университет" Способ получения карбида ванадия

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2452784C1 (ru) * 2011-04-18 2012-06-10 Государственное образовательное учреждение высшего профессионального образования "Тихоокеанский государственный университет" Способ получения тонкодисперсного порошка карбида вольфрама
RU2599757C2 (ru) * 2014-05-08 2016-10-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Новосибирский государственный технический университет" Способ получения карбида ванадия

Similar Documents

Publication Publication Date Title
Li et al. Efficient defect engineering in Co-Mn binary oxides for low-temperature propane oxidation
Pudukudy et al. Catalytic decomposition of methane over rare earth metal (Ce and La) oxides supported iron catalysts
Chen et al. Supported indium oxide as novel efficient catalysts for dehydrogenation of propane with carbon dioxide
Takenaka et al. Ni/SiO2 catalyst effective for methane decomposition into hydrogen and carbon nanofiber
Zhang et al. The nature of cobalt species in carbon nanotubes and their catalytic performance in Fischer–Tropsch reaction
Zhang et al. Low-temperature CO oxidation over CeO 2 and CeO 2@ Co 3 O 4 core–shell microspheres
Tran et al. La-doped cobalt supported on mesoporous alumina catalysts for improved methane dry reforming and coke mitigation
JP6449251B2 (ja) 酸化炭素を含まない水素およびバンブー構造カーボンナノチューブを製造するための低級炭化水素の触媒分解
Pudukudy et al. Methane decomposition over unsupported mesoporous nickel ferrites: effect of reaction temperature on the catalytic activity and properties of the produced nanocarbon
Cao et al. Hydrothermal synthesis and catalytic properties of α-and β-MnO2 nanorods
Fattahi et al. Vanadium pentoxide catalyst over carbon-based nanomaterials for the oxidative dehydrogenation of propane
Li et al. Nanostructured molybdenum carbide on biochar for CO2 reforming of CH4
Chesnokov et al. Morphology of carbon from methane on nickel-containing catalysts
Salipira et al. Carbon produced by the catalytic decomposition of methane on nickel: carbon yields and carbon structure as a function of catalyst properties
Pudukudy et al. Production of COx free hydrogen and nanocarbon via methane decomposition over unsupported porous nickel and iron catalysts
Ochirkhuyag et al. One-pot mechanochemical ball milling synthesis of the MnO x nanostructures as efficient catalysts for CO 2 hydrogenation reactions
Adeniran et al. Phase-structural and morphological features, dehydrogenation/re-hydrogenation performance and hydrolysis of nanocomposites prepared by ball milling of MgH2 with germanium
RU2388689C1 (ru) Способ получения карбида вольфрама w2c
Cancino-Trejo et al. Active Ni and Fe species on catalysts Ni/Al2O3 and NiFe/Al2O3 for the oxidative dehydrogenation (ODH) of ethane to ethylene assisted by CO2
Godinho et al. Gadolinium-doped cerium oxide nanorods: novel active catalysts for ethanol reforming
Mehrabi-Kalajahi et al. Preparasion of layered V4AlC3 MAX phase for highly selective and efficient solvent-free aerobic oxidation of toluene to benzaldehyde
Variava et al. Carbon-supported gas-cleaning catalysts enable syn gas methanation at atmospheric pressure
He et al. Elucidating the layer-number impact of MoS2 on the adsorption and hydrogenation of CO
RU2394761C1 (ru) Способ получения карбида вольфрама wc
Dien et al. Facile synthesis of Co3O4@ SiO2/carbon nanocomposite catalysts from rice husk for low-temperature CO Oxidation

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20131219