RU2386955C1 - Рентгенооптический эндоскоп - Google Patents

Рентгенооптический эндоскоп Download PDF

Info

Publication number
RU2386955C1
RU2386955C1 RU2008131814/28A RU2008131814A RU2386955C1 RU 2386955 C1 RU2386955 C1 RU 2386955C1 RU 2008131814/28 A RU2008131814/28 A RU 2008131814/28A RU 2008131814 A RU2008131814 A RU 2008131814A RU 2386955 C1 RU2386955 C1 RU 2386955C1
Authority
RU
Russia
Prior art keywords
focon
ray
optical
mirror
axis
Prior art date
Application number
RU2008131814/28A
Other languages
English (en)
Other versions
RU2008131814A (ru
Inventor
Андрей Анатольевич Кеткович (RU)
Андрей Анатольевич Кеткович
Виктор Яковлевич Маклашевский (RU)
Виктор Яковлевич Маклашевский
Original Assignee
Виктор Яковлевич Маклашевский
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Виктор Яковлевич Маклашевский filed Critical Виктор Яковлевич Маклашевский
Priority to RU2008131814/28A priority Critical patent/RU2386955C1/ru
Publication of RU2008131814A publication Critical patent/RU2008131814A/ru
Application granted granted Critical
Publication of RU2386955C1 publication Critical patent/RU2386955C1/ru

Links

Images

Landscapes

  • Lenses (AREA)
  • Endoscopes (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

Использование: для неразрушающего контроля изделий и материалов. Сущность: заключается в том, что рентгенооптический эндоскоп содержит корпус с расположенными в нем рентгеновским и оптическим каналами, при этом в рентгенооптический эндоскоп дополнительно введена вторая цветная ПЗС-матрица, установленная на оси объектива оптического канала в плоскости его изображения, причем видеоинформация с обеих ПЗС-матриц поступает на вход компьютера с цветным дисплеем с возможностью одновременного или последовательного просмотра рентгеновского и оптического изображений объекта, между объектом и зеркалом из оргстекла установлено второе прямоугольное зеркало, располагаемое под уголом β к оси, параллельной продольной оси фокона и находящейся на расстоянии Н от нее, центр второго прямоугольного зеркала находится на расстоянии Δ от плоскости объекта, перед вторым прямоугольным зеркалом на оси, проходящей через его центр и параллельной продольной оси фокона, расположен коллиматор, в точке заднего фокуса коллиматора расположен светодиод, на выходе коллиматора с помощью прямоугольной диафрагмы формируется пучок света прямоугольной формы размером d×D, где d - наименьший размер пучка, D - входной диаметр фокона, который после отражения от второго прямоугольного зеркала направляет на объект пучок света под углом α к его поверхности, позволяющий контролировать дефекты в режиме темного поля. Технический результат: обеспечение возможности согласования существенно различных характеристик рентгеновского и оптического каналов с помощью одной ПЗС-матрицы, а также обеспечение возможности выявления дефектов, обладающих выраженным рельефом. 2 ил.

Description

Изобретение относится к области неразрушающего контроля материалов и изделий, а более конкретно - к устройствам рентгеновской и/или изотопной дефектоскопии объектов, находящихся в труднодоступных полостях.
Известен рентгенооптический эндоскоп, который состоит из двух расположенных в едином корпусе и конструктивно объединенных каналов - рентгеновского и оптического. Устройство позволяет формировать, передавать и воспроизводить одновременно или последовательно рентгеновское и оптическое изображения объекта с помощью единой телевизионной системы.
Недостаток данного устройства - сложность согласования существенно различных спектральных, масштабных, яркостных, резкостных и других характеристик рентгеновского и оптического каналов с помощью одной ПЗС-матрицы.
Кроме того, освещение объекта только по методу светлого поля от световода, расположенного непосредственно у объектива, затрудняет выявление дефектов, обладающих выраженным рельефом (вмятины, забоины, вздутия и т.п.). Для этой цели целесообразно применять освещение объекта по методу темного поля, т.е. над малыми углами к его поверхности, в сочетании со светлопольным освещением.
Цель изобретения - устранение этих недостатков.
Для этого в устройство для комплексного рентгеновского и оптического контроля объектов, находящихся в труднодоступных полостях, содержащее корпус с расположенными в нем рентгеновским и оптическим каналами, рентгеновский канал содержит источник рентгеновского излучения, фокон с расположенным на его торце рентгенолюминофором, высокочувствительную черно-белую ПЗС-матрицу размером А×А и два объектива, оптические оси которых совпадают с осью фокона, а фокальные плоскости совмещены соответственно с выходным торцом фокона и плоскостью черно-белой ПЗС-матрицы, причем фокусные расстояния этих объективов F1 и F2 находятся в соотношении F1/F2=d/A, где d - выходной диаметр фокона, а между объективами существует телецентрический ход лучей, оптический канал содержит зеркало из оргстекла, установленное на оси фокона между объектом и входным торцом фокона, третий объектив с фокусным расстоянием f0, осветительный световод с блоком питания и оптическим аттенюатором, дополнительно введена вторая цветная ПЗС-матрица размером В×В, установленная на оси объектива оптического канала в плоскости его изображения, фокусное расстояние этого объектива f0 выбирается с учетом соотношения f0=L×B/D, где L - минимальное расстояние от входного торца фокона до объекта, D - диаметр этого торца, а угол излучения осветителя оптического канала выбирается из условия W≥2arctg(B/2f0), причем видеоинформация с обеих ПЗС-матриц поступает на вход компьютера с цветным дисплеем с возможностью одновременного или последовательного просмотра рентгеновского и оптического изображений объекта в различных режимах их цифровой обработки и совмещения на экране дисплея, между объектом и полупрозрачным зеркалом из оргстекла установлено второе прямоугольное зеркало, установленное под углом β к оси, параллельной продольной оси фокона и находящейся на расстоянии Н от нее, центр второго прямоугольного зеркала находится на расстоянии Δ от плоскости объекта, перед вторым прямоугольным зеркалом на оси, проходящей через его центр и параллельной продольной оси фокона, расположен коллиматор с фокусным расстоянием f′K, в точке заднего фокуса коллиматора расположен светодиод, на выходе коллиматора с помощью прямоугольной диафрагмы размером d×H формируется параллельный пучок света прямоугольной формы размером d×D, где d - наименьший размер пучка, D - входной диаметр фокона, который после отражения от второго прямоугольного зеркала направляет на объект пучок света под углом α к его поверхности, позволяющий контролировать дефекты в режиме темного поля, а между основными параметрами коллиматорной оптической системы боковой подсветки объекта существуют соотношения β=α/2 и α=arcsin(d×H/D×Δ).
Схема эндоскопа поясняется чертежом (фиг.1), на котором изображены источник рентгеновского излучения 1, исследуемый объект 2 и элементы рентгеновского и оптического каналов.
Рентгеновский канал состоит из фокона 6 с расположенным на его торце рентгенолюминофором 5, защищенным фольгой 4, коллиматорного объектива 7 с фокусным расстоянием f1, фокальная плоскость которого совпадает с выходным торцом фокона 6, второго объектива 8 с фокусным расстоянием f2 и высокочувствительной черно-белой ПЗС-матрицы 9 размером А×А, установленной в фокальной плоскости объектива 8.
Оптический канал состоит из объектива 10 с фокусным расстоянием f0, в плоскости изображения которого расположена цветная ПЗС-матрица 11 размером В×В, блока осветителя 16 с лампой 17, оптическим аттенюатором 15 и световодом 14. Совмещение и обработка изображений оптического и рентгеновского каналов осуществляется с помощью компьютера 12 с дисплеем 13.
Зеркало 3 расположено на оси фокона 6 между ним и объектом под углом 45° к этой оси.
Рядом с фоконом 6 на оси, параллельной его продольной оси и находящейся от нее на расстоянии Н, расположен объектив коллиматора 19 со светодиодом 20 в точке заднего фокуса объектива. Фокусное расстояние объектива 19 выбирается с учетом получения малого угла расходимости пучка лучей на его выходе: ω=аrсsin(а/fK)≤L×30, где а - диаметр излучающей площадки светодиода 20. Перед объективом 19 установлены диафрагмы 21 с прямоугольным вырезом d×D, формирующие параллельный пучок света соответствующего размера. На оси объектива 19 под углом β к ней установлено второе зеркало 18, направляющее на объект 2 параллельный пучок света под углом α к ней, выбираемого в диапазоне 5÷10° для получения нужного контраста дефектов при освещении по методу темного поля.
На фиг.2 приведена расчетная схема для установления связи между отдельными параметрами оптической схемы оптического канала и размерами падающего на объект пучка света (d×D), углом его падения на объект α, углом β наклона зеркала 18 к оси объектива 19, расстоянием Δ от объекта до центра зеркала 18 и оси фокона до этого центра H.
Из прямоугольного ΔОВС имеем
Figure 00000001
.
Между размером пучка d и его проекцией на поверхность объекта D существует очевидная зависимость
Figure 00000002
.
Раскрывая уравнения (1) и (2) и приравнивая общие члены, находим
cosα=d/D и cosα=Δ×sinα/H
и
Figure 00000003
Угол
Figure 00000004
как углы при параллельных прямых.
Сумма прилегающих к прямой ВС углов
Figure 00000005
и
Figure 00000006
где φ - углы падения и отражения лучей от зеркала 18, равна 180°, откуда 2φ=180°-α и φ=90°-α/2, окончательно, т.к. угол
Figure 00000007
(CR - нормаль к зеркалу 18), то β=90°-φ=α/2.
Рентгенооптический эндоскоп работает следующим образом. При включенном источнике рентгеновского излучения на рентгенолюминофоре 5 возникает изображение внутренней структуры объекта 2, которое с помощью фокона 6, объективов 7 и 8 поступает на ПЗС-матрицу 9, видеосигнал с которой поступает в компьютер 12 и, после обработки, визуализируется на дисплее 13.
Фокусные расстояния объективов 7 и 8 выбраны такими, чтобы изображение выходного торца фокона диаметром d полностью вписывалось в растр ПЗС-матрицы 9, то есть имеет место соотношение f1/f2=d/A, справедливое для телецентрического хода лучей между объективами 7 и 8.
При визуальном контроле объект 2 освещается по методу светлого поля с помощью зеркала 3, светодиода 14 от блока осветителя 17. Изображение объекта 2 с помощью зеркала 3 и объектива 10 формируется на ПЗС-матрице 11, поступает в компьютер 12 и наблюдается на дисплее 13.
Расстояние L от объекта 2 до объектива 10 выбирается с учетом минимального расстояния от входного торца фокона до внутренней поверхности объекта 2, которое определяется из конструктивных соображений, с учетом формы объекта и др. факторов.
Размер зоны контроля рентгеновского канала, очевидно, равен диаметру входного торца фокона. Фокусное расстояние объектива 10 выбирается таким, чтобы изображение этой зоны полностью вписалось в растр ПЗС-матрицы 11 размером В. Следовательно, увеличение объектива должно быть равно М=-В/D.
С другой стороны, это увеличение можно записать как М'≈L/f0 или f0≤B×L/D, что справедливо для практически наиболее часто встречающихся случаев L≥D и f0<<L. Если размер матрицы 11 В << D и необходимо проектирование объекта на ПЗС-матрицу с уменьшением, т.е. М<0,1х÷0,2х.
Угол излучения светодиода 14 выбирается W≥γ, где γ=2arctg (B/f0) - угол поля зрения объектива 10.
Литература
1. Патент РФ 2168166.
2. Апенко М.И. и др. Задачник по прикладной оптике. М.: Высшая школа, 2003 г., 591 стр.

Claims (1)

  1. Устройство для комплексного рентгеновского и оптического контроля объектов, находящихся в труднодоступных полостях, содержащее корпус с расположенными в нем рентгеновским и оптическим каналами, рентгеновский канал содержит источник рентгеновского излучения, фокон с расположенным на его торце рентгенолюминофором, высокочувствительную черно-белую ПЗС-матрицу размером А×А, и два объектива, оптические оси которых совпадают с осью фокона, а фокальные плоскости совмещены соответственно с выходным торцом фокона и плоскостью черно-белой ПЗС-матрицы, причем фокусные расстояния этих объективов f1 и f2 находятся в соотношении f1/f2=d/A, где d - выходной диаметр фокона, а между объективами существует телецентрический ход лучей, оптический канал содержит зеркало из оргстекла, установленное на оси фокона между объектом и входным торцом фокона, и третий объектив с фокусным расстоянием f0, осветительный световод с блоком питания и оптическим аттенюатором, отличающееся тем, что в него дополнительно введена вторая цветная ПЗС-матрица размером В×В, установленная на оси объектива оптического канала в плоскости его изображения, фокусное расстояние этого объектива f0 выбирается с учетом соотношения f0=L·B/D, где L - минимальное расстояние от входного торца фокона до объекта, D - диаметр этого торца, а угол излучения осветителя оптического канала выбирается из условия W=arctg(B/2f0), причем видеоинформация с обеих ПЗС-матриц поступает на вход компьютера с цветным дисплеем, с возможностью одновременного или последовательного просмотра рентгеновского и оптического изображений объекта в различных режимах их цифровой обработки и совмещения на экране дисплея, между объектом и зеркалом из оргстекла установлено второе прямоугольное зеркало, располагаемое под уголом β к оси, параллельной продольной оси фокона, и находящейся на расстоянии Н от нее, центр второго прямоугольного зеркала находится на расстоянии Δ от плоскости объекта, перед вторым прямоугольным зеркалом на оси, проходящей через его центр и параллельной продольной оси фокона, расположен коллиматор с фокусным расстоянием f'K, в точке заднего фокуса коллиматора расположен светодиод, на выходе коллиматора с помощью прямоугольной диафрагмы размером d×D формируется параллельный пучок света прямоугольной формы размером d×D, где d - наименьший размер пучка, D - входной диаметр фокона, который после отражения от второго прямоугольного зеркала направляет на объект пучок света под углом α к его поверхности, позволяющий контролировать дефекты в режиме темного поля, а между основными параметрами коллиматорной оптической системы боковой подсветки объекта существуют соотношения β=α/2 и α=arcsin(d·H/D·Δ).
RU2008131814/28A 2008-08-04 2008-08-04 Рентгенооптический эндоскоп RU2386955C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2008131814/28A RU2386955C1 (ru) 2008-08-04 2008-08-04 Рентгенооптический эндоскоп

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008131814/28A RU2386955C1 (ru) 2008-08-04 2008-08-04 Рентгенооптический эндоскоп

Publications (2)

Publication Number Publication Date
RU2008131814A RU2008131814A (ru) 2010-02-10
RU2386955C1 true RU2386955C1 (ru) 2010-04-20

Family

ID=42123448

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008131814/28A RU2386955C1 (ru) 2008-08-04 2008-08-04 Рентгенооптический эндоскоп

Country Status (1)

Country Link
RU (1) RU2386955C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2622032C1 (ru) * 2016-02-24 2017-06-08 Евгений Вениаминович Купсин Видеоэндоскоп

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2622032C1 (ru) * 2016-02-24 2017-06-08 Евгений Вениаминович Купсин Видеоэндоскоп

Also Published As

Publication number Publication date
RU2008131814A (ru) 2010-02-10

Similar Documents

Publication Publication Date Title
CN110869839B (zh) 通过光导光学元件的硅基液晶照明器
US6768123B2 (en) Apparatus for examining documents
US9385150B2 (en) Image sensor device
US7957636B2 (en) Illumination apparatus and appearance inspection apparatus including the same
JP3226946B2 (ja) 光学検査装置
US20050264672A1 (en) Image pickup apparatus for capturing spectral images of an object and observation system including the same
TW389833B (en) Illumination for inspecting surfaces of articles
JP5911865B2 (ja) 照明システム
US11415510B2 (en) Optical inspection apparatus
CN102379676A (zh) 内窥镜光导和具有该内窥镜光导的内窥镜
JP6326572B2 (ja) 検査装置
RU2386955C1 (ru) Рентгенооптический эндоскоп
CN110140071A (zh) 光源装置、光源控制方法及图像采集系统
JP2008004284A (ja) 照明装置及びそれを用いた物体表面検査装置
RU2386956C1 (ru) Рентгенооптический эндоскоп
US11953426B2 (en) Measurement light source and measuring arrangement for detecting a reflection spectrum
JP2003107006A (ja) 照明方法及び照明装置
US6737637B1 (en) Illuminator for illuminating multiple targets
RU2387979C2 (ru) Рентгенооптический эндоскоп
RU2405138C1 (ru) Рентгенооптический эндоскоп
WO2024047946A1 (ja) 光照射装置、測定装置、観察装置、及び膜厚測定装置
JP2000295639A (ja) 固体撮像素子検査用照明装置及びそれに用いる調整工具
RU2239179C1 (ru) Рентгенооптический эндоскоп
WO2024047945A1 (ja) 光照射装置、測定装置、観察装置、及び膜厚測定装置
RU2405137C1 (ru) Рентгенооптический эндоскоп

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20110805