RU2383991C2 - Цифровая система фазовой автоподстройки частоты (варианты) - Google Patents

Цифровая система фазовой автоподстройки частоты (варианты) Download PDF

Info

Publication number
RU2383991C2
RU2383991C2 RU2008112374/09A RU2008112374A RU2383991C2 RU 2383991 C2 RU2383991 C2 RU 2383991C2 RU 2008112374/09 A RU2008112374/09 A RU 2008112374/09A RU 2008112374 A RU2008112374 A RU 2008112374A RU 2383991 C2 RU2383991 C2 RU 2383991C2
Authority
RU
Russia
Prior art keywords
quadrature
discriminator
input
locked loop
output
Prior art date
Application number
RU2008112374/09A
Other languages
English (en)
Other versions
RU2008112374A (ru
Inventor
Николай Михайлович Анцибор (RU)
Николай Михайлович Анцибор
Алексей Александрович Таланов (RU)
Алексей Александрович Таланов
Original Assignee
Открытое акционерное общество "Российская корпорация ракетно-космического приборостроения и информационных систем" (ОАО "Российские космические системы")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Российская корпорация ракетно-космического приборостроения и информационных систем" (ОАО "Российские космические системы") filed Critical Открытое акционерное общество "Российская корпорация ракетно-космического приборостроения и информационных систем" (ОАО "Российские космические системы")
Priority to RU2008112374/09A priority Critical patent/RU2383991C2/ru
Publication of RU2008112374A publication Critical patent/RU2008112374A/ru
Application granted granted Critical
Publication of RU2383991C2 publication Critical patent/RU2383991C2/ru

Links

Images

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

Изобретение относится к технике связи и может быть использовано в устройствах, реализованных на основе систем фазовой автоподстройки частоты (ФАПЧ). Достигаемый технический результат - быстрое вхождение в синхронизм ФАПЧ при приеме коротких сообщений, повышение надежности. Цифровая система ФАПЧ содержит усилитель-ограничитель, два квадратурных канала, дискриминатор в виде функционального преобразователя, формирователь закона управления и синтезатор восстановленной несущей частоты с квадратурными выходами, на выходе каждого из которых формируется соответствующее текущее значение сигнала Аi и Вi, при этом дискриминатор в виде функционального преобразователя реализует дискриминационную характеристику вида
Figure 00000008
или вида
Figure 00000009
2 н.п. ф-лы, 5 ил.

Description

Изобретение относится к технике связи и может быть использовано в устройствах, реализованных на основе систем фазовой автоподстройки частоты.
В известных реализациях цифровых систем обычно используют квадратурную обработку сигнала несущей частоты, см., например, устройство для улучшения характеристик захвата и синхронизации системы фазовой автоподстройки частоты (ФАПЧ) - патент RU 2255418.
В современной технике связи часто используются сигналы с манипуляцией несущей частоты на 180° последовательностью двоичных символов. Если чередование символов носит случайный характер, то в результате такой манипуляции несущая подавляется. Для восстановления несущей при приеме сигнала используются системы фазовой автоподстройки частоты, нечувствительные к перевороту фазы на 180°. В качестве прототипа предлагаемого изобретения выбрана система фазовой автоподстройки частоты (см. Банкет В.Л., Мельник A.M. Системы восстановления несущей при когерентном приеме дискретных сигналов, Зарубежная радиоэлектроника, 12/83, с.28-49, Москва, Радио и Связь). Пример реализации такой системы приведен на фигуре 1.
На вход цифровой системы ФАПЧ должен приходить оцифрованный сигнал, для чего используется, например, усилитель-ограничитель 1, выполняющий роль двухуровневого квантователя (без квантования по времени).
Система ФАПЧ содержит последовательно включенные квадратурные смесители 2а и 2b, квадратурные накопители сигнала 3а и 3b на интервале 0…Т, дискриминатор в виде функционального преобразователя 4, реализующего аппроксимацию характеристики
Figure 00000001
, формирователь закона регулирования 5, синтезатор частот 6 с двумя квадратурными выходами (со сдвигом на 90°), которые в качестве гетеродинов подключены ко вторым входам смесителей 2а и 2b. Смесители 2а и 2b расположены в двух ортогональных каналах и могут быть выполнены, например, в виде сумматоров по модулю два.
В цифровых системах с бинарным квантованием сигнал и гетеродины представлены в виде двухуровневых процессов, а процессы после смесителей - в виде широтно-импульсной модуляции (ШИМ). На выходе смесителей существуют две компоненты разностного сигнала, первые гармоники которых могут быть записаны:
Figure 00000002
Figure 00000003
где U - текущая амплитуда сигнала.
Накопители 3а и 3b циклически производят первичное когерентное накопление (интегрирование) первого (1) и второго (2) процессов в пределах 0…Т. Время интегрирования Т (цикл регулирования) выбирается, исходя из скорости передачи информации, полосы ФАПЧ и энергетики в канале связи. В результате накопления в каждом i-том цикле на выходе интеграторов формируются отсчеты Ai и Вi:
Figure 00000004
Если пренебречь изменением фазы за время накопления, то текущие отсчеты Аi и Вi представляют собой проекции вектора сигнала на две ортогональные оси системы координат, задаваемой опорным сигналом (гетеродином). Поскольку фаза опорного сигнала подстраивается в петле ФАПЧ, то в процессе подстройки один из отсчетов (Аi) стремится к нулю, а другой (Вi) - к максимуму.
В каждом цикле регулирования определяется необходимая величина и знак воздействия на частоту синтезатора. В прототипе для этой цели введен функциональный преобразователь 4, реализующий аппроксимацию функции
Figure 00000005
, который в идеальном случае должен формировать фазовую характеристику дискриминатора, приведенную на фигуре 3. Функциональный преобразователь 4 через формирователь закона регулирования 5 связан с синтезатором 6.
Если частота принимаемого сигнала неизвестна и выходит за границы полосы захвата, то для вхождения ФАПЧ в синхронизм в общем случае требуется ввод целеуказаний по частоте в формирователь закона управления 5 (см. фигуру 1). Для получения целеуказаний может использоваться, например, панорамный обнаружитель. Точность целеуказаний определяется шириной полосы захвата, которую выгодно иметь максимальной при заданной крутизне регулирования.
Отметим важные достоинства идеализированной системы ФАПЧ с функциональным преобразователем
Figure 00000006
: при смене фазы сигнала на 180° одновременно изменяются знаки компонент Аi и Вi. При этом
Figure 00000006
знака не меняет, что делает такую систему пригодной для слежения за сигналом с манипуляцией на 180° (с подавленной несущей);
поскольку
Figure 00000006
(ошибка рассогласования), то фазовая характеристика дискриминатора линейна на интервале 0°…180° и далее полностью повторяется на интервале 180°…360°;
фазовая характеристика дискриминатора имеет постоянную крутизну, не зависящую от соотношения сигнал/шум. При этом ФАПЧ сохраняет свои параметры при изменении уровня сигнала во всем рабочем диапазоне, вплоть до порогового.
Следует отметить, что приведенные выше достоинства дискриминационной характеристики типа
Figure 00000006
с достаточной точностью можно реализовать, если из продукта преобразования на смесителях 2а и 2b выделить только первую гармонику, корректно произвести первичное накопление и вычислить функцию
Figure 00000006
.
Практически сигнал с выходов смесителей 2а и 2b используется без отделения высших гармоник. В этом случае при наличии расстройки по частоте среднее значение преобразованного сигнала на интервале цикла регулирования будет меняться не по гармоническому закону (формулы 1 и 2), а по треугольному (фигура 2). Корректное вычисление
Figure 00000006
в реальном масштабе времени - задача сложная, поэтому используется приближенная аппроксимация этой функции, например, реализованная в прототипе в виде:
на интервале -90°…-45° - константа -Nmax;
на интервале -45°…+45° - аппроксимация
Figure 00000007
,
на интервале +45°…+90° - константа +Nmax,
где N - текущая реализация выходного числа в цифровом дискриминаторе;
Nmax - максимальное значение числа N.
Форма полученной дискриминационной характеристики по сравнению с
Figure 00000006
для треугольных законов изменения Аi и Вi приведена на фигуре 4.
В режиме слежения системы ФАПЧ (при малых ошибках рассогласования) аппроксимированная форма дискриминационной характеристики практически линейна и имеет ту же крутизну, что и
Figure 00000006
.
Однако при увеличении рассогласования по фазе становится заметной нелинейность аппроксимированной характеристики. При рассогласовании уже на 45° крутизна характеристики увеличивается в 4 раза и далее быстро растет. Параметры системы ФАПЧ, рассчитанной на работу со слабыми сигналами, не допускают такого изменения крутизны, особенно если порядок астатизма системы выше первого. Динамический процесс вхождения ФАПЧ в синхронизм становится колебательным и длится долго. Поэтому практически невозможно использовать аппроксимацию
Figure 00000007
за пределами ±45°. При этом недоиспользуется половина возможной реализации полосы захвата. В автоматических системах быстрого вхождения в связь это, в свою очередь, требует повышения точности целеуказаний по частоте.
Предлагаемое техническое решение позволяет упростить реализацию в системе ФАПЧ формы дискриминационной характеристики, аналогичной
Figure 00000006
.
Технический результатом заявленного изобретения является быстрое вхождение в синхронизм ФАПЧ при приеме коротких сообщений со слабой энергетикой с неопределенностью времени прихода сообщения, повышение надежности приема сообщений.
Технический результат достигается тем, что цифровая система фазовой автоподстройки частоты для приема фазоманипулированных сигналов с подавленной несущей содержит усилитель-ограничитель, вход которого является входом цифровой системы фазовой автоподстройки частоты, два квадратурных канала, на выходе каждого из которых формируется соответствующее текущее значение сигнала Аi и Вi, последовательно соединенные дискриминатор в виде функционального преобразователя, формирователь закона управления, на другой вход которого подаются целеуказания по частоте, и синтезатор восстановленной несущей частоты с квадратурными выходами, при этом каждый из квадратурных каналов содержит последовательно соединенные квадратурный смеситель и накопитель сигнала, выход которого подключен к одному из входов дискриминатора в виде функционального преобразователя, выход усилителя-ограничителя соединен с входом каждого из квадратурных смесителей, вторые входы которых соединены с соответствующим из квадратурных выходов синтезатора восстановленной несущей частоты с квадратурными выходами, при этом дискриминатор в виде функционального преобразователя реализует дискриминационную характеристику вида
Figure 00000008
или
Figure 00000009
.
Предлагаемое техническое решение поясняется фигурой 5, на которой приведена структурная схема предлагаемого устройства.
Как и в прототипе, для оцифровки сигнала используется, например, усилитель-ограничитель 1, выполняющий роль двухуровневого квантователя. Выходы усилителя-ограничителя 1 соединены с входами квадратурных смесителей 2а и 2b. Квадратурные смесители могут быть выполнены в виде сумматоров по модулю два. Выходы квадратурных смесителей 2а и 2b соединены с входами накопителей сигнала 3а и 3b. Выходы накопителей сигнала 3а и 3b соединены с дискриминатором 4. Усилитель-ограничитель 1, смесители 2а и 2b, а также накопители сигнала 3а и 3b образуют два квадратурных канала накопления сигнала, на выходе которых формируются текущие значения Аi и Bi.
Функциональный преобразователь реализует дискриминационную характеристику
Figure 00000008
или
Figure 00000009
которая с учетом дискретности максимально соответствует идеальной
Figure 00000001
.
Выход дискриминатора 4 соединен с входом формирователя закона управления 5, на другой вход которого подаются целеуказания по частоте. Выход формирователя закона управления 5 соединен с синтезатором частот 6. Два квадратурных выхода синтезатора частот 6 в качестве гетеродинов подключены к смесителям 2а и 2b.
В предлагаемой цифровой системе ФАПЧ упрощается реализация дискриминационной характеристики, приближающейся к идеальной
Figure 00000001
.
Дискриминатор 4 реализует функцию (по модулю):
Figure 00000010
В самом деле,
Figure 00000011
, но справедливо также
Figure 00000012
Выражение
Figure 00000013
- это полная длина вектора (|Nmax|). Для треугольных процессов (фигура 2) полная длина вектора вычисляется просто:
Figure 00000014
Равенство (5) для arcsin справедливо в пределах Δφ=0°…180°. На интервале 180°…360° характеристика arcsin, в отличие от arctg, имеет обратный знак. Для приема сигналов с манипуляцией на 180° знак управления должен быть произведением знаков Аi и Вi:
Figure 00000015
Правило знаков по формуле (7) практически легко реализуется на логическом элементе «исключающее ИЛИ» (XOR).
Таким образом, в качестве дискриминатора 4 используется функциональный преобразователь, реализующий управляющую функцию Nвых типа
Figure 00000016
При слабом (зашумленном) сигнале могут встретиться (редко) реализации, когда одновременно |Ai| = 0 и |Bi| = 0. В этом случае возникает операция «деление ноль на ноль», которая в некоторых вариантах реализации операции деления может привести к аномально большому значению Nвых. Как следствие, даже после единичного такого случая ФАПЧ может выбиться из синхронизма. Правильным решением в этом случае является Nвых=0. Для устранения недостатка в знаменатель нужно добавить небольшую константу, например единицу, т.е.
Figure 00000017
Преимущества предлагаемого технического решения наиболее полно проявляется при приеме коротких сообщений со слабой энергетикой, время прихода которых непредсказуемо. Чтобы в этих условиях сообщение не было потеряно, требуется быстрое вхождения ФАПЧ в синхронизм. Лимитирующими факторами времени синхронизации является:
а) Энергетический потенциал сигнала. Поскольку ожидаемый потенциал неизвестен, система должна быть рассчитана на минимальный. Это определяет требование к крутизне характеристики дискриминатора, по крайней мере, в области малых расстроек.
б) Быстрое определение целеуказаний по частоте. Решение этой проблемы не входит в задачу предлагаемого изобретения. Важно отметить, что требование к повышению точности целеуказаний в n раз при последовательном анализе увеличивает время их получения в n2 раз. Поэтому при заданной крутизне дискриминационной характеристики необходимо стремиться реализовать максимальную полосу захвата.
в) После получения целеуказаний и установки частоты синтезатора в область полосы захвата процесс синхронизации определяется динамикой процесса отработки ФАПЧ ошибки по частоте. Для минимизации времени отработки ошибки характеристика дискриминатора должна быть максимально линейной на возможно большем участке рассогласования по фазе.
Описанная выше цифровая система фазовой автоподстройки частоты для приема фазоманипулированных сигналов с подавленной несущей практически реализована в системе со следующими параметрами:
сигнал приходит в случайное время;
принимаемое сообщение длится 1,5…3 секунды;
минимальный энергетический потенциал в радиолинии (отношение мощности сигнала к спектральной плотности шума) - 2000 Гц;
несущая частота манипулирована на 180° сигналом со скоростью 100 Бод;
неопределенность сигнала по частоте ±12,5 кГц;
допустимое время на вхождение ФАПЧ в синхронизм - 0,28 секунды (в сигнале имеется преамбула);
ФАПЧ обладает астатизмом второго порядка. Для получения целеуказаний по частоте имеется панорамный обнаружитель сигнала, выдающий 13 раз в секунду целеуказания с точностью ±40 Гц (312 полос в области неопределенности частоты). Такую же величину имеет и полоса захвата ФАПЧ, при этом вхождение ФАПЧ в синхронизм в заданное время осуществляется без проблем.
Таким образом, предлагаемое техническое решение удовлетворяет этим требованиям, так как реализует характеристику дискриминатора, совпадающую с идеальной -
Figure 00000001
.

Claims (2)

1. Цифровая система фазовой автоподстройки частоты для приема фазоманипулированных сигналов с подавленной несущей, содержащая усилитель-ограничитель, вход которого является входом цифровой системы фазовой автоподстройки частоты, два квадратурных канала, на выходе каждого из которых формируется соответствующее текущее значение сигнала Аi и Вi, последовательно соединенные дискриминатор в виде функционального преобразователя, формирователь закона управления, на другой вход которого подаются целеуказания по частоте, и синтезатор восстановленной несущей частоты с квадратурными выходами, при этом каждый из квадратурных каналов содержит последовательно соединенные квадратурный смеситель и накопитель сигнала, выход которого подключен к одному из входов дискриминатора в виде функционального преобразователя, выход усилителя-ограничителя соединен с входом каждого из квадратурных смесителей, вторые входы которых соединены с соответствующими из квадратурных выходов синтезатора восстановленной несущей частоты с квадратурными выходами, отличающаяся тем, что дискриминатор в виде функционального преобразователя реализует дискриминационную характеристику вида
Figure 00000018
2. Цифровая система фазовой автоподстройки частоты для приема фазоманипулированных сигналов с подавленной несущей, содержащая усилитель-ограничитель, вход которого является входом цифровой системы фазовой автоподстройки частоты, два квадратурных канала, на выходе каждого из которых формируется соответствующее текущее значение сигнала Аi и Вi, последовательно соединенные дискриминатор в виде функционального преобразователя, формирователь закона управления, на другой вход которого подаются целеуказания по частоте, и синтезатор восстановленной несущей частоты с квадратурными выходами, при этом каждый из квадратурных каналов содержит последовательно соединенные квадратурный смеситель и накопитель сигнала, выход которого подключен к одному из входов дискриминатора в виде функционального преобразователя, выход усилителя-ограничителя соединен с входом каждого из квадратурных смесителей, вторые входы которых соединены с соответствующими из квадратурных выходов синтезатора восстановленной несущей частоты с квадратурными выходами, отличающаяся тем, что дискриминатор в виде функционального преобразователя реализует дискриминационную характеристику вида
Figure 00000019
RU2008112374/09A 2008-03-31 2008-03-31 Цифровая система фазовой автоподстройки частоты (варианты) RU2383991C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2008112374/09A RU2383991C2 (ru) 2008-03-31 2008-03-31 Цифровая система фазовой автоподстройки частоты (варианты)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008112374/09A RU2383991C2 (ru) 2008-03-31 2008-03-31 Цифровая система фазовой автоподстройки частоты (варианты)

Publications (2)

Publication Number Publication Date
RU2008112374A RU2008112374A (ru) 2009-10-10
RU2383991C2 true RU2383991C2 (ru) 2010-03-10

Family

ID=41260312

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008112374/09A RU2383991C2 (ru) 2008-03-31 2008-03-31 Цифровая система фазовой автоподстройки частоты (варианты)

Country Status (1)

Country Link
RU (1) RU2383991C2 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2582878C1 (ru) * 2015-06-05 2016-04-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Рязанский государственный радиотехнический университет" Способ увеличения полосы захвата системы фазовой автоподстройки частоты с знаковым логическим фазовым дискриминатором и устройство для его реализации
RU2760977C1 (ru) * 2021-05-04 2021-12-02 Открытое акционерное общество "ВНИИР-Прогресс" Многочастотная система фазовой автоподстройки
RU2794168C1 (ru) * 2021-11-02 2023-04-12 Акционерное общество "ВНИИР-Прогресс" Многосигнальная система фазовой автоподстройки

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
БАНКЕТ В.Л., МЕЛЬНИК A.M. Системы восстановления несущей при когерентном приеме дискретных сигналов. Зарубежная радиоэлектроника. - М.: Радио и связь, 1983, № 12, с.28-38. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2582878C1 (ru) * 2015-06-05 2016-04-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Рязанский государственный радиотехнический университет" Способ увеличения полосы захвата системы фазовой автоподстройки частоты с знаковым логическим фазовым дискриминатором и устройство для его реализации
RU2760977C1 (ru) * 2021-05-04 2021-12-02 Открытое акционерное общество "ВНИИР-Прогресс" Многочастотная система фазовой автоподстройки
RU2794168C1 (ru) * 2021-11-02 2023-04-12 Акционерное общество "ВНИИР-Прогресс" Многосигнальная система фазовой автоподстройки

Also Published As

Publication number Publication date
RU2008112374A (ru) 2009-10-10

Similar Documents

Publication Publication Date Title
US4545061A (en) Synchronizing system
US4669089A (en) Suppressed clock pulse-duration modulator for direct sequence spread spectrum transmission systems
US8552775B2 (en) Digital phase-locked loop apparatus using frequency shift keying and method of controlling the same
US20120069884A1 (en) Digital phase detector and digital phase-locked loop
JPS61296843A (ja) コ−ド化デイジタル・デ−タ用信号対雑音比指数生成装置および方法
RU2383991C2 (ru) Цифровая система фазовой автоподстройки частоты (варианты)
RU2374776C2 (ru) Корреляционный приемник шумоподобных сигналов с минимальной частотной манипуляцией
JP3072509B2 (ja) Pam方式通信装置のタイミング制御回路
US3646446A (en) Binary information receiver for detecting a phase modulated carrier signal
JPH08504315A (ja) 周波数変調信号を復元する方法
RU2307474C1 (ru) Способ приема шумоподобных сигналов с минимальной частотной манипуляцией
EP1943743B1 (en) A method and apparatus adapted to demodulate a data signal
US6448909B1 (en) Analog continuous wavelet transform circuit
RU2357359C2 (ru) Устройство синхронизации приемника шумоподобных сигналов с минимальной частотной манипуляцией
RU92272U1 (ru) Система передачи цифровых сигналов
RU2384941C2 (ru) Устройство для определения захвата системы фазовой автоподстройки частоты
RU2323536C1 (ru) Способ приема шумоподобных частотно-манипулированных сигналов с непрерывной фазой
RU2168267C2 (ru) Способ автоподстройки частоты и устройство для его реализации (варианты)
RU2423798C1 (ru) Устройство тактовой синхронизации
US20080205488A1 (en) Differential Phase Coding in Wireless Communication System
RU2548010C1 (ru) Корреляционный приемник шумоподобных сигналов с минимальной частотной модуляцией
US3502989A (en) Receiver employing correlation techniques
RU77732U1 (ru) Фазовый манипулятор на 180°c, минимизирующий ширину спектра сигнала на своем выходе
US8634445B2 (en) Pulse modulation and demodulation in a multiband UWB communication system
RU2747566C1 (ru) Устройство для обработки навигационных сигналов глобальных навигационных спутниковых систем