RU2383876C2 - Способ определения коэффициента полезного действия зубчатой передачи - Google Patents

Способ определения коэффициента полезного действия зубчатой передачи Download PDF

Info

Publication number
RU2383876C2
RU2383876C2 RU2008118673/28A RU2008118673A RU2383876C2 RU 2383876 C2 RU2383876 C2 RU 2383876C2 RU 2008118673/28 A RU2008118673/28 A RU 2008118673/28A RU 2008118673 A RU2008118673 A RU 2008118673A RU 2383876 C2 RU2383876 C2 RU 2383876C2
Authority
RU
Russia
Prior art keywords
physical pendulum
slider
gear set
pendulum
gear
Prior art date
Application number
RU2008118673/28A
Other languages
English (en)
Other versions
RU2008118673A (ru
Inventor
Евгений Иванович Кистанов (RU)
Евгений Иванович Кистанов
Александр Николаевич Важенин (RU)
Александр Николаевич Важенин
Борис Александрович Арютов (RU)
Борис Александрович Арютов
Наталья Николаевна Малыгина (RU)
Наталья Николаевна Малыгина
Александр Васильевич Козлов (RU)
Александр Васильевич Козлов
Александр Валентинович Пасин (RU)
Александр Валентинович Пасин
Original Assignee
ФГОУ ВПО "Нижегородская государственная сельскохозяйственная академия" (НГСХА)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ФГОУ ВПО "Нижегородская государственная сельскохозяйственная академия" (НГСХА) filed Critical ФГОУ ВПО "Нижегородская государственная сельскохозяйственная академия" (НГСХА)
Priority to RU2008118673/28A priority Critical patent/RU2383876C2/ru
Publication of RU2008118673A publication Critical patent/RU2008118673A/ru
Application granted granted Critical
Publication of RU2383876C2 publication Critical patent/RU2383876C2/ru

Links

Images

Abstract

Изобретение относится к машиностроению и может быть использовано при экспериментальном исследовании зубчатых передач. Способ определения коэффициента полезного действия (КПД) зубчатой передачи заключается в том, что используют устройство, которое содержит физический маятник, ползун и измерительную линейку. При этом по вертикальному положению физического маятника устанавливают ползун в начальное положение, физический маятник отклоняют на фиксированный угол и приводят его в движение под действием силы тяжести с обеспечением удара физического маятника по ползуну, перемещение ползуна фиксируют на измерительной линейке, обеспечивая тарировку шкалы измерений, затем физический маятник присоединяют в валу ведущего колеса испытуемой зубчатой передачи, ползун устанавливают в начальное положение, физический маятник отклоняют на тот же угол, что и на этапе тарировки шкалы измерений, проворачивают вал ведущего колеса испытуемой зубчатой передачи за счет силы тяжести физического маятника с обеспечением удара физического маятника по ползуну, измеряют перемещение ползуна, после чего по результатам указанных измерений определяют значение КПД испытуемой зубчатой передачи. Техническим результатом является упрощение оборудования для проведения испытаний. 2 ил.

Description

Изобретение относится к машиностроению и может быть использовано при экспериментальном исследовании зубчатых передач. Заявленный способ может быть также применен при исследовании фрикционных, рычажных и других передач.
Известен способ определения КПД передаточных механизмов, заключающийся в том, что приводят во вращение входной вал испытуемого передаточного механизма и измеряют на нем крутящий момент при различной нагрузке. Далее по измеренным величинам рассчитывают значение КПД [Авт. свид. СССР №354300, кл. G01L 3/26. 1970 г.].
Недостатком данного способа является то, что он требует сложного оборудования.
Наиболее близким по технической сущности является способ определения КПД передаточных механизмов, заключающий в том, что приводят во вращение входной вал испытуемого передаточного механизма и измеряют на нем крутящий момент сначала на холостом ходу, а затем с подключенным к выходному валу испытуемого передаточного механизма выходным валом однотипного передаточного механизма, к входному валу которого приложен известный нагрузочный момент, при втором измерении последовательно устанавливают два различных значения известного нагрузочного момента, а КПД определяют из функциональной зависимости [Авт. свид. СССР №1165902, кл. G01L 3/26. 1985 г.].
Недостатком данного способа является то, что для реализации данного метода необходимо применение сложного оборудования.
Задачей настоящего изобретения является упрощение необходимого для проведения эксперимента оборудования.
Технический результат: упрощение требуемого для проведения испытаний оборудования.
Указанный результат достигается тем, что устанавливают эмпирическую зависимость между КПД зубчатой передачи и величиной перемещения ползуна, для этого предварительно измеряют перемещение ползуна под действием силы удара физического маятника, затем при тех же условиях перемещение ползуна под действием силы удара физического маятника, присоединенного к испытуемой зубчатой передаче, и по результатам измерений определяют значение КПД зубчатой передачи.
Способ осуществляют следующим образом. Момент движущих сил определяется динамическими свойствами физического маятника:
М=mмglSsinφ,
где mм - масса физического маятника;
g - ускорение свободного падения;
ls - расстояние от центра масс физического маятника до его мгновенного центра скоростей;
φ - угол отклонения физического маятника.
Потенциальная энергия массы физического маятника в идеальной передаче расходуется на работу сил трения ползуна на горизонтальной поверхности.
В испытуемой зубчатой передаче потенциальная энергия массы физического маятника расходуется на работу сил трения скольжения и качения зубчатой передачи, сил трения в подшипниках валов и сил трения ползуна на горизонтальной поверхности.
КПД испытуемой зубчатой передачи:
Figure 00000001
где А - работа движущих сил;
А - работа сил трения.
Figure 00000002
где h=l-lcosφ - превышение центра масс физического маятника в начале его движения над центром удара по ползуну;
m - масса ползуна;
f - коэффициент трения скольжения ползуна;
Figure 00000003
- перемещение ползуна под действием силы удара физического маятника, характеризующее А.
Figure 00000004
где Sn - перемещение ползуна под действием силы удара физического маятника, характеризующее (А).
После подстановки формул (2), (3) в (1):
Figure 00000005
.
Таким образом, ползун может использоваться в качестве индикатора величины КПД испытуемой зубчатой передачи, где шкалой измерения является измерительная линейка.
Практическая реализация заявленного способа предполагает построение одномассной динамической модели идеальной передачи. При этом уравнение движения идеальной передачи, включающей в себя физический маятник, заменяют уравнением движения одной точки. В качестве точки приведения принимают центр масс физического маятника. Для того чтобы уравнение движения идеальной передачи, включающей в себя физический маятник, и уравнение движения одномассной динамической модели идеальной передачи были тождественными необходимо и достаточно, чтобы выполнялись условия:
Figure 00000006
Figure 00000007
где mn - приведенная масса;
νS8 - линейная скорость центра масс физического маятника;
Ti - кинетическая энергия звена i исследуемой зубчатой передачи, включающей в себя физический маятник;
Fn - приведенная сила;
S - перемещение точки приведения под действием приведенной силы;
Аk - работа k-й силы.
Из уравнения (4) следует:
Figure 00000008
где I04 - центральный момент инерции входного вала;
I05 - центральный момент инерции выходного вала;
I06 - центральный момент инерции ведущего зубчатого колеса;
I07 - центральный момент инерции ведомого зубчатого колеса;
Iм - центральный момент инерции физического маятника;
U76 - передаточное отношение от выходного звена к входному.
Из уравнения (6) следует, что в данном случае приведенная масса мn остается величиной постоянной при любом значении обобщенной координаты несмотря на то, что в общем случае эта величина переменная.
Таким образом, практическая реализация одномассной динамической модели идеальной передачи, включающей в себя физический маятник, возможна посредством физического маятника массой mn, длина которого и угол отклонения определяются из уравнения (5). Принимая угол отклонения физического маятника равным углу отклонения физического маятника массой mn и работу внешних сил равной потенциальной энергии массы физического маятника согласно закону сохранения энергии:
Figure 00000009
где l - расстояние от точки приведения до точки подвеса физического маятника массой mn.
Способ может быть проиллюстрирован следующим образом. На фиг.1 - модель идеальной передачи с измерительным устройством, на фиг.2 - испытуемая зубчатая передача с измерительным устройством.
Модель идеальной передачи представляет собой физический маятник 1. Измерительное устройство включает в себя ползун 2 и измерительную линейку 3. Испытуемая зубчатая передача состоит из входного вала 4, выходного вала 5, ведущего зубчатого колеса 6 и ведомого зубчатого колеса 7, физического маятника 8.
Реализация заявленного способа состоит из 3-х этапов:
1) проведение подготовительных операций;
2) проведение тарировки шкалы измерений КПД;
3) проведение испытаний и определение КПД испытуемой зубчатой передачи.
Подготовительные операции заключаются в следующем. Для каждой детали испытуемой зубчатой передачи, а также для физического маятника определяют центральные моменты инерции известными способами [Юденич В.В. Лабораторные работы по теории механизмов и машин. - М.: Высшая школа, 1962]. По формулам (6) и (7) определяют массу груза mn и расстояние l от точки приведения до точки подвеса физического маятника 1.
Тарировка шкалы измерений КПД зубчатой передачи заключается в следующем (Фиг.1). По вертикальному положению физического маятника 1 ползун 2 устанавливают в начальное положение. Физический маятник 1 отклоняют на фиксированный угол φ и под действием силы тяжести приводят его в движение. Под действием силы удара физического маятника 1 по ползуну 2 последний перемещается на величину
Figure 00000010
. Это перемещение отмечают на измерительной линейке 3 единицей и адаптируют цену деления миллиметровой шкалы к измеряемой величине КПД зубчатой передачи:
Figure 00000011
,
где Ц - цена деления шкалы измерений при непосредственном измерении КПД зубчатой передачи.
Перед проведением испытаний устанавливают входной вал 4, выходной вал 5, ведущее колесо 6 и ведомое колесо 7. На входной вал 6 устанавливают физический маятник 8. При начальном положении ползуна 2 и при отклонении физического маятника 8 на тот же угол φ, что и при тарировке, под действием силы тяжести физического маятника 8 проворачивают входной вал 4 испытуемой зубчатой передачи. В зависимости от перемещения Sn ползуна 2 под действием силы удара физического маятника 8 определяют КПД испытуемой зубчатой передачи (Фиг.2).
Требуемая точность измерений при практической реализации заявленного способа достигается изменением динамических свойств физического маятника и ползуна.
Заявленный способ определения коэффициента полезного действия зубчатой передачи в отличие от прототипа не требует сложного оборудования, необходимого для проведения эксперимента.

Claims (1)

  1. Способ определения коэффициента полезного действия (КПД) зубчатой передачи, заключающийся в том, что используют устройство, содержащее физический маятник, ползун и измерительную линейку, при этом по вертикальному положению физического маятника устанавливают ползун в начальное положение, физический маятник отклоняют на фиксированный угол и приводят его в движение под действием силы тяжести с обеспечением удара физического маятника по ползуну, перемещение ползуна фиксируют на измерительной линейке, обеспечивая тарировку шкалы измерений, затем физический маятник присоединяют в валу ведущего колеса испытуемой зубчатой передачи, ползун устанавливают в начальное положение, физический маятник отклоняют на тот же угол, что и на этапе тарировки шкалы измерений, проворачивают вал ведущего колеса испытуемой зубчатой передачи за счет силы тяжести физического маятника с обеспечением удара физического маятника по ползуну, измеряют перемещение ползуна, после чего по результатам указанных измерений определяют значение КПД испытуемой зубчатой передачи.
RU2008118673/28A 2008-05-12 2008-05-12 Способ определения коэффициента полезного действия зубчатой передачи RU2383876C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2008118673/28A RU2383876C2 (ru) 2008-05-12 2008-05-12 Способ определения коэффициента полезного действия зубчатой передачи

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008118673/28A RU2383876C2 (ru) 2008-05-12 2008-05-12 Способ определения коэффициента полезного действия зубчатой передачи

Publications (2)

Publication Number Publication Date
RU2008118673A RU2008118673A (ru) 2009-11-20
RU2383876C2 true RU2383876C2 (ru) 2010-03-10

Family

ID=41477519

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008118673/28A RU2383876C2 (ru) 2008-05-12 2008-05-12 Способ определения коэффициента полезного действия зубчатой передачи

Country Status (1)

Country Link
RU (1) RU2383876C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108981974A (zh) * 2018-07-10 2018-12-11 南京航空航天大学 一种基于重力复摆的超高精度微力测量装置及测量方法
RU2768199C1 (ru) * 2021-04-15 2022-03-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "Нижегородская государственная сельскохозяйственная академия" (ФГБОУ ВО Нижегородская ГСХА) Способ определения коэффициента полезного действия зубчатой передачи

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108981974A (zh) * 2018-07-10 2018-12-11 南京航空航天大学 一种基于重力复摆的超高精度微力测量装置及测量方法
CN108981974B (zh) * 2018-07-10 2020-08-07 南京航空航天大学 一种基于重力复摆的超高精度微力测量装置及测量方法
RU2768199C1 (ru) * 2021-04-15 2022-03-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "Нижегородская государственная сельскохозяйственная академия" (ФГБОУ ВО Нижегородская ГСХА) Способ определения коэффициента полезного действия зубчатой передачи

Also Published As

Publication number Publication date
RU2008118673A (ru) 2009-11-20

Similar Documents

Publication Publication Date Title
CN110646223B (zh) 车辆驱动轮瞬时输出功率的测量系统
CN103528741B (zh) 一种轴承实际工况下摩擦力矩的测试装置及方法
CN101532900B (zh) 一种立式轮毂动平衡机
CN105928833B (zh) 一种同轴圆筒流变仪流变测试数据的修正方法
CN101581613A (zh) 汽车底盘测功机及其测量控制方法
CN105628976A (zh) Mems加速度传感器性能参数标定方法、处理器及系统
CN104236795A (zh) 一种在线测量回转体转动惯量的方法及装置
CN101923033A (zh) 低粘度液体粘度的测量方法及流变仪
CN110646224B (zh) 车辆驱动轮瞬间输出功率的测量方法
RU2383876C2 (ru) Способ определения коэффициента полезного действия зубчатой передачи
CN102901596A (zh) 等直径转轴的光电反射式动态扭矩测试方法
CN206399573U (zh) 用于无人机电机动态拉力与扭力的测试装置
CN105547554A (zh) 一种用于测量小型螺旋翼升力和扭矩的装置及方法
CN105092155A (zh) 一种回转体质心标定方法
CN106124196A (zh) 一种风机齿轮箱传动链效率实验测试方法
CN104776959A (zh) 一种回转体赤道转动惯量测量方法
RU2535645C1 (ru) Способ определения характеристик изгибной жесткости протяженных объектов с помощью кривизномера
CN106813816A (zh) 载荷平衡测量
CN102507055B (zh) 一种小试样插销试验机裂纹试验断裂功的测量方法
KR100684953B1 (ko) 질량 측정 시스템 및 그 방법
CN207717565U (zh) 一种基于响应行为重构的路面动态弯沉校准装置
CN202836871U (zh) 杠杆式加载机零点平衡装置
Macek et al. Energy-saving mechatronic system for fatigue tests of materials under variable-amplitude proportional bending and torsion
CN101832782B (zh) 一种微惯性测量组合现场快速标定方法
CN104483067A (zh) 一种风扇动不平衡量的测试方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20110513