RU2382593C1 - Пневмографический способ определения компонентов дыхательных движений - Google Patents

Пневмографический способ определения компонентов дыхательных движений Download PDF

Info

Publication number
RU2382593C1
RU2382593C1 RU2008134629/14A RU2008134629A RU2382593C1 RU 2382593 C1 RU2382593 C1 RU 2382593C1 RU 2008134629/14 A RU2008134629/14 A RU 2008134629/14A RU 2008134629 A RU2008134629 A RU 2008134629A RU 2382593 C1 RU2382593 C1 RU 2382593C1
Authority
RU
Russia
Prior art keywords
total
abdominal
respiratory
thoracic
volume
Prior art date
Application number
RU2008134629/14A
Other languages
English (en)
Inventor
Владимир Иванович Миняев (RU)
Владимир Иванович Миняев
Арина Владимировна Миняева (RU)
Арина Владимировна Миняева
Ростислав Михайлович Гречишкин (RU)
Ростислав Михайлович Гречишкин
Original Assignee
Государственное образовательное учреждение Высшего профессионального образования Тверской государственный университет
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение Высшего профессионального образования Тверской государственный университет filed Critical Государственное образовательное учреждение Высшего профессионального образования Тверской государственный университет
Priority to RU2008134629/14A priority Critical patent/RU2382593C1/ru
Application granted granted Critical
Publication of RU2382593C1 publication Critical patent/RU2382593C1/ru

Links

Images

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

Пневмографический способ определения компонентов дыхательных движений относится к области медицинской диагностики. Способ включает: размещение датчиков периметра грудной клетки и подреберья на теле человека, аппаратурную регистрацию электрического сигнала датчиков, построение калибровочного графика зависимости характеристики дыхательных движений от уровня электрического сигнала. При этом при имитации человеком дыхания с неизменным объемом легких записывают абдоминальную, торакальную и суммарную пневмограммы. Затем производят балансировку пневмограмм по принципу определения отношения дыхательных экскурсий грудной клетки и живота при изменении их объемов на равную величину и определяют балансировочные коэффициенты. Калибруют суммарную сбалансированную пневмограмму с помощью спирографа и определяют калибровочные коэффициенты для пневмограмм, представляющие собой изменения объема при изменении суммарного периметра на 1 мм, в мл/мм. Устанавливают как суммарный дыхательный объем, так и его составляющие: абдоминальный и торакальный компоненты. Использование данного способа позволяет исключить высокую погрешность определения, улучшить условия обследования. 6 ил.

Description

Изобретение относится к нехирургическим способам медицинского обследования и может быть использовано для регистрации грудного (торакального) и брюшного (абдоминального) вкладов в суммарный дыхательный объем легких человека.
Наиболее близким к заявляемому является пневмографический способ определения дыхательных движений, предназначенный для измерений частоты дыхания, дыхательного объема и вентиляции легких (ATS/ERS Statement on Respiratory Muscle Testing, 2002, прототип), заключающийся:
- в размещении датчиков периметра грудной клетки на теле человека;
- в аппаратурной регистрации электрического сигнала датчиков;
- в построении калибровочного графика зависимости характеристики дыхательных движений: частоты дыхания, дыхательного объема и вентиляции легких, от уровня регистрируемого электрического сигнала;
- в анализе экстремумов пневмограммы и соотнесении их с калибровочным графиком.
Недостатки известного способа:
- высокая погрешность определения;
- неприменимость способа для определения абдоминального и торакального компонентов дыхательных движений;
- применение маски (надгортанника, мундштука, загубника).
Технический результат предлагаемого способа заключается в том, что с высокой точностью определяются абдоминальный и торакальный компоненты дыхательных движений, улучшаются условия медицинского обследования испытуемого.
Технический результат достигается тем, что в пневмографическом способе исследования дыхательных движений испытуемый, в отсутствие маски, имитирует дыхание с неизменным объемом легких, после чего осуществляется балансировка абдоминальной, торакальной и суммарной пневмограмм, определяются балансировочные коэффициенты, с помощью спирографа калибруется суммарная сбалансированная пневмограмма, устанавливаются калибровочные коэффициенты для абдоминальной и торакальной пневмограмм.
Исследованием уровня техники установлено, что пневмографических безмасочных способов определения абдоминального и торакального компонентов дыхательных движений не обнаруживается.
Сравнение свойств совокупности признаков известного способа определения дыхательных движений и заявляемого показывает, что
- известный способ, в отличие от предлагаемого, не может быть использован для определения абдоминального и торакального компонентов дыхания; он применяется лишь для качественных и грубых количественных измерений характеристик дыхательных движений;
- в известном способе не проводится коррекция пневмограмм, позволяющая устранить высокую погрешность определения; прелагаемый способ включает балансировку пневмограмм, обусловливающую прямую, линейную зависимость между электрическим сигналом датчиков и вкладом абдоминальной и торакальной составляющих в дыхательный объем;
- условия медицинского обследования в известном способе не комфортны для испытуемого, поскольку он предполагает использование надгортанника, мундштука или загубника; заявляемый способ является безмасочным.
Следовательно, заявляемый способ соответствует критерию «существенные отличия».
Изобретение поясняется графическими материалами, Фиг.1-4.
Фиг.1 - схема дыхательных движений ребер.
Фиг.2 - схема дыхательных движений диафрагмы (а) и брюшной стенки (б).
Фиг.3 - влияние невесомости на вклад абдоминального компонента в суммарный дыхательный объем; 1 - параболический полет (5 человек); 2 - параболический полет (5 человек); 3 - полет космической лаборатории D-2 на корабле Space shuttle (США, 3 человека); 4 - полет «Евромир-95» на космической станции «Мир» (Россия, 2 человека); 1G - измерения на Земле перед полетом в положении сидя (5); mG - измерения в невесомости (6).
Фиг.4 - Ab абдоминальная (1), Th торакальная (2) и Tot суммарная (3) пневмограммы.
Фиг.5 - размещение датчиков на теле человека.
Фиг.6 - балансировка пневмограмм: А - несбалансированные пневмограммы при имитации дыхательных движений; Б - сбалансированные пневмограммы.
Сущность изобретения заключается в следующем.
Колебания внутрилегочного давления при вентиляции легких обусловлены ритмичными сокращениями двух основных мышечных групп: диафрагмы и межреберных мышц. Поскольку эти мышечные группы различаются морфологически, функционально и регуляторно, принято выделять два компонента внешнего дыхания: абдоминальный, обеспечиваемый в основном диафрагмой, и торакальный, обеспечиваемый межреберными мышцами. Исследования физиологии дыхания отмечают различное поведение реберного каркаса и диафрагмы брюшной стенки.
На Фиг.1 представлена схема дыхательных движений ребер. Ребра (1) совершают вращательные движения вокруг оси, соединяющей головку (2) и бугорок (3) позвонка. При вращательном движении в разных точках каркаса и в разных направлениях будут совершаться различные линейные перемещения. Дыхательные движения жесткого реберного каркаса (4) описываются одним параметром - углом поворота ребер. Движения менее жесткой брюшной стенки (5) с изменяющейся формой поверхности могут быть более сложными.
При дыхательных движениях ребра вращаются вокруг оси, соединяющей позвонки (6) и головки ребер. Во время вдоха происходит сокращение наружных межреберных мышц (7). Момент сил, направленных вверх, больше, чем момент сил, направленных вниз. Поэтому ребра приподнимаются, а грудная клетка увеличивается в поперечном и продольном направлениях. Во время выдоха, при сокращении внутренних межреберных мышц (8), происходят обратные процессы.
Фиг.2 иллюстрирует перемещения диафрагмы (1) и брюшной стенки (2). Перемещение диафрагмы вниз на вдохе является активным (3), а перемещение вверх на выдохе - пассивным (4); перемещение брюшной стенки вперед является пассивным, а перемещение назад при усиленном вдохе частично осуществляется за счет сокращения мышц брюшной стенки.
За последние 50 лет измерение абдоминального и торакального компонентов дыхательных движений стало распространенным методом исследования механики дыхания. Разработаны теоретические принципы выделения компонентов, различные способы измерения и калибровки приборов, установлены характерные величины вклада компонентов в суммарный дыхательный объем. Установлено, что при вертикальном положении тела человека в дыхательном объеме преобладает вклад торакального компонента, а при горизонтальном положении - абдоминального, выявлены различные реакции компонентов на функциональные нагрузки. Постепенно расширяются возможности клинического применения анализа картины дыхательных перемещений для диагностики заболеваний опорно-двигательного аппарата.
По соотношению абдоминального и торакального компонентов дыхательных движений можно судить о состоянии дыхательного аппарата и, следовательно, прогнозировать возможные дисфункции дыхательного процесса у человека, находящегося в нестандартной среде с лабильными параметрами, например в Космосе.
Влияние невесомости на вклад абдоминального и торакального компонентов в суммарный дыхательный объем представлено на Фиг.3 (M.Wantier et al. Chest wall mechanics in sustained microgravity. J. Appl. Physiol., 84, 1998). Видно, что пребывание человека в состоянии невесомости характеризуется значительным возрастанием вклада абдоминальной компоненты в суммарный дыхательный объем в сравнении с состоянием дыхательного процесса у человека в обычных условиях на Земле.
Существует несколько различных способов определения характеристик дыхательных движений.
Способ прямого контактного измерения перемещений (Konno, Mead, 1967) крайне трудоемок и в настоящее время не имеет практического применения.
Способ измерения с помощью магнетометров - индукционных катушек-датчиков, которые прикрепляются к передней и задней поверхности тела на уровне груди и живота (Mead et al., 1967), не позволяет добиться линейности сигнала датчиков в зависимости от характеристик дыхательных движений.
Наиболее перспективна оптоэлектронная плетизмография (ОЭП) (Dellaca, 2004). ОЭП характеризуется большой точностью определения пространственной картины перемещения участков поверхности тела человека в процессе дыхания. Однако ОЭП дорога и сложна в эксплуатации, поэтому применяется лишь для проведения исследовательских работ, а не в медицинской практике.
Пневмографический способ определения характеристик дыхательных движений (ATS/ERS Statement on Respiratory Muscle Testing, 2002, прототип) реализуется с помощью нескольких вариантов датчиков периметра грудной стенки. В первых вариантах использовали трубки, заполненные углем или ртутью. Их сопротивление изменялось при изменении длины трубки, что обусловливало, в свою очередь, изменение электрического сигнала, улавливаемого регистрирующей аппаратурой. В настоящее время используются различные материалы типа металлизированной резины, электрические свойства которых меняются при деформации. Существующие пневмографы в основном предназначены для качественных измерений, например, частоты дыхания. Они дают большую ошибку в измерении дыхательного объема и вентиляции, если человек совершает нестандартные дыхательные движения. Способ пневмографии использовался для грубого неколичественного контроля дыхательных движений. Еще во время космического полета Юрия Гагарина по каналам телеметрии на Землю передавали сигнал его пневмограммы.
Точность измерения характеристик дыхательных движений определяется линейностью сигнала датчика периметра в зависимости от измеряемой величины.
В выделении абдоминального и торакального компонентов дыхательных движений понятие степеней свободы и линейности системы дыхания имеют большое значение. Объем легких является функцией двух независимых переменных. В качестве этих переменных избирают линейные размеры (передне-задний диаметр или периметр) или какие-либо другие измеряемые физические параметры, связанные с объемами абдоминального и торакального участков грудной стенки. Таким параметром может быть импеданс проволочки, зигзагообразно расположенной в поясах и сегментах костюма, охватывающих, соответственно, абдоминальный и торакальный участки грудной стенки. Система определения характеристик дыхания является линейной, если изменение объема каждого компонента пропорционально изменению измеряемого физического параметра.
Если система открыта, то она имеет две степени свободы, а если закрыта - одну. Закрытая система дыхания (дыхательные пути перекрыты надгортанником, мундштуком, загубником) имеет одну степень свободы. При этом объем воздуха в легких остается постоянным, и изменение объема одного компонента по величине равно, а по знаку противоположно изменению объема другого компонента. Однако при усиленных или нестандартных дыхательных движениях изменяются форма поперечного сечения грудной клетки и перемещения верхнего и нижнего участков реберного каркаса. В этом случае у системы дыхания появляется третья степень свободы, и функция сигнала датчиков в зависимости от характеристик дыхательных движений приобретает сложный вид, отличный от простой линейной зависимости. Для компенсации действия причин, вызывающих нелинейность исследуемой системы дыхания, в заявляемом способе предложена балансировка абдоминальной, торакальной и суммарной пневмограмм (Фиг.4).
Принцип балансировки основан на определении отношения дыхательных экскурсий грудной клетки и живота при изменении их объемов на равную величину. Для того чтобы при балансировке объемы грудной клетки и живота изменялись одинаково, человек, подвергаемый медицинскому обследованию, задерживает дыхание и при неизменном объеме легких имитирует вдохи грудным компонентом, перекачивая воздух, вследствие чего абдоминальный компонент совершает пассивные движения противоположной направленности (Фиг.6, А). При анализе сигналов, поступающих с датчиков периметра грудной клетки и подреберья во время имитации дыхательных движений, вычисляются балансировочные коэффициенты, в результате применения которых сигналы становятся пропорциональными торакальному и абдоминальному вкладам в дыхательный объем (Фиг.6, Б).
Сбалансированные сигналы с датчиков периметра грудной клетки и подреберья суммируются. Суммарная пневмограмма калибруется посредством стандартного спирографа. Калибровочный коэффициент суммарной пневмограммы применяется для калибровки сбалансированных сигналов датчиков периметра грудной клетки и подреберья. Таким образом, пневмограф позволяет регистрировать величины дыхательных объемов и их торакальных и абдоминальных составляющих в единицах объема.
Способ осуществляется следующим образом.
На теле человека, подвергаемого медицинскому обследованию, на уровне середины грудины и в области подреберья размещают датчики периметра грудной клетки и подреберья (Фиг.5). Включают пневмограф. Обследуемый выполняет имитацию дыхания с неизменным объемом легких. Определяются параметры вариабельности сигналов датчиков, и рассчитывается коэффициент вариабельности.
Коэффициент вариабельности CV рассчитывается как отношение среднеквадратичного значения отклонения сигнала (σ) к среднему значению измеряемого параметра (x):
CV=σ/x (%).
По соотношению двух коэффициентов вариабельности рассчитываются балансировочные коэффициенты для абдоминальной и торакальной пневмограмм: kt и ka соответственно.
При умножении амплитуды сигнала на соответствующий балансировочный коэффициент сигнал становится пропорциональным вкладу абдоминальной или торакальной составляющей в дыхательный объем.
Затем с помощью спирографа производятся калибровка суммарной сбалансированной пневмограммы и определение калибровочного коэффициента: объемной стоимости (изменения объема при изменении суммарного периметра на 1 мм, в мл/мм). Зная суммарную объемную стоимость и сбалансированное изменение периметра грудной клетки и подреберья, умножением первой величины на вторую можно получить значения абдоминального и торакального компонентов в единицах объема.
Пример выполнения способа
Обследуется мужчина в возрасте 19 лет. Рост - 176 см, вес - 70 кг. Значения kt и ka 1,33 и 0,67, соответственно. После построения калибровочного графика получаем объемную стоимость: 14 мл/мм. Регистрируем изменение периметра грудной клетки и подреберья и получаем значения абдоминального и торакального компонентов дыхательного движения: 663 мл и 296 мл.
Пневмографический безмасочный способ регистрации абдоминальных и торакальных дыхательных движений может быть использован для медицинского обследования системы дыхания человека, находящегося в нестандартных условиях, например в Космосе, и для диагностики заболеваний дыхательного аппарата.

Claims (1)

  1. Пневмографический способ определения компонентов дыхательных движений, содержащий размещение датчиков периметра грудной клетки и подреберья на теле человека, аппаратурную регистрацию электрического сигнала датчиков, построение калибровочного графика зависимости характеристики дыхательных движений от уровня электрического сигнала, отличающийся тем, что при имитации человеком дыхания с неизменным объемом легких записывают абдоминальную, торакальную и суммарную пневмограммы, затем производят балансировку пневмограмм по принципу определения отношения дыхательных экскурсий грудной клетки и живота при изменении их объемов на равную величину и определяют балансировочные коэффициенты, калибруют суммарную сбалансированную пневмограмму с помощью спирографа и определяют калибровочные коэффициенты для пневмограмм, представляющие собой изменения объема при изменении суммарного периметра на 1 мм, в мл/мм; после чего устанавливают как суммарный дыхательный объем, так и его составляющие: абдоминальный и торакальный компоненты.
RU2008134629/14A 2008-08-27 2008-08-27 Пневмографический способ определения компонентов дыхательных движений RU2382593C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2008134629/14A RU2382593C1 (ru) 2008-08-27 2008-08-27 Пневмографический способ определения компонентов дыхательных движений

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008134629/14A RU2382593C1 (ru) 2008-08-27 2008-08-27 Пневмографический способ определения компонентов дыхательных движений

Publications (1)

Publication Number Publication Date
RU2382593C1 true RU2382593C1 (ru) 2010-02-27

Family

ID=42127728

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008134629/14A RU2382593C1 (ru) 2008-08-27 2008-08-27 Пневмографический способ определения компонентов дыхательных движений

Country Status (1)

Country Link
RU (1) RU2382593C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016178599A1 (ru) * 2015-05-06 2016-11-10 Ирина Алексеевна ГОТЛИБ Способ проведения малоинвазивного хирургического вмешательства и установка "рх-1" для его осуществления

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ATS/ERS Statement on Respiratory Muscle Testing, 2002 (pdf). *
СААКЯН С.А. Поведение торакального и абдоминального компонентов системы дыхания при дыхании с заданной глубиной с использованием и без использования внешней обратной связи. Вестник ТвГУ, 2005, с.29-35. COSSETTE I. et al. Chest wall dynamics and muscle recruitment during professional flute playing. Respir Physiol Neurobiol. 2008 Feb 1; 160(2): 187-95. Epub 2007 Sep 21 (Abstract). *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016178599A1 (ru) * 2015-05-06 2016-11-10 Ирина Алексеевна ГОТЛИБ Способ проведения малоинвазивного хирургического вмешательства и установка "рх-1" для его осуществления
US10849602B2 (en) 2015-05-06 2020-12-01 Dmitrii Viktorovich ALENKIN Method of conducting a minimally invasive surgical procedure and rkh-i apparatus for the implementation thereof

Similar Documents

Publication Publication Date Title
Smith et al. Chest wall dynamics during voluntary and induced cough in healthy volunteers
Gibson Clinical Tests of Respiratory Function 3rd Edition
Aliverti et al. Compartmental analysis of breathing in the supine and prone positions by optoelectronic plethysmography
JP6321548B2 (ja) 被験者の個人的胸部パラメータの導出
CN103153180B (zh) 用于电阻抗断层成像的传感器装置、电阻抗断层成像装置和电阻抗断层成像方法
Roussos et al. The respiratory muscles.
Dominelli et al. Experimental approaches to the study of the mechanics of breathing during exercise
US20190246949A1 (en) Systems and methods to determine a patient's responsiveness to an alveolar recruitment maneuver
Peslin et al. Frequency response of the chest: modeling and parameter estimation
Dikshit et al. Lung functions with spirometry: An Indian perspective-I. Peak expiratory flow rates
US20170055878A1 (en) Method and system for respiratory monitoring
WO2013155556A1 (en) Method and system for imaging
de Mir Messa et al. Body plethysmography (i): Standardisation and quality criteria
Layton et al. Exercise ventilatory kinematics in endurance trained and untrained men and women
Schlegelmilch et al. Pulmonary function testing
Liu et al. Reliability of an analysis method for measuring diaphragm excursion by means of direct visualization with videofluoroscopy
RU2382593C1 (ru) Пневмографический способ определения компонентов дыхательных движений
Ripka et al. Application of a photogrammetric kinematic model for prediction of lung volumes in adolescents: a pilot study
Lay-Ekuakille et al. Spirometric measurement postprocessing: expiration data recovery
Savadatti et al. Effect of forward shoulder posture on forced vital capacity-A co-relational study
Wang et al. Contribution of diaphragmatic-abdominal displacement to ventilation in supine man.
Patil et al. Respiratory muscle strength in children in age group 7-12 years: a cross-sectional observational pilot study
Cogswell et al. Lung function in childhood: 2. Thoracic gas volumes and helium functional residual capacity measurements in healthy children
NO324802B1 (no) System og framgangsmate for validering av CPR-utstyr
Parwata et al. Correlation between the mobility of the above cage and the below thorax cage toward the elderly lung vital capacity

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170828