RU2379120C1 - Центробежный возвратно-прямоточный сепаратор - Google Patents

Центробежный возвратно-прямоточный сепаратор Download PDF

Info

Publication number
RU2379120C1
RU2379120C1 RU2008148698/15A RU2008148698A RU2379120C1 RU 2379120 C1 RU2379120 C1 RU 2379120C1 RU 2008148698/15 A RU2008148698/15 A RU 2008148698/15A RU 2008148698 A RU2008148698 A RU 2008148698A RU 2379120 C1 RU2379120 C1 RU 2379120C1
Authority
RU
Russia
Prior art keywords
axial
gas
pipe
nozzle
partition
Prior art date
Application number
RU2008148698/15A
Other languages
English (en)
Inventor
Владимир Григорьевич Систер (RU)
Владимир Григорьевич Систер
Юрий Викторович Мартынов (RU)
Юрий Викторович Мартынов
Ольга Анатольевна Елисеева (RU)
Ольга Анатольевна Елисеева
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Московский государственный университет инженерной экологии"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Московский государственный университет инженерной экологии" filed Critical Государственное образовательное учреждение высшего профессионального образования "Московский государственный университет инженерной экологии"
Priority to RU2008148698/15A priority Critical patent/RU2379120C1/ru
Application granted granted Critical
Publication of RU2379120C1 publication Critical patent/RU2379120C1/ru

Links

Images

Abstract

Изобретение относится к конструкциям возвратно-прямоточных центробежных сепараторов, связанных с разделением двухфазных сред, преимущественно, газ-жидкость, и может найти применение во всех технологических процессах в нефтяной, газовой, химической и других смежных отраслях промышленности. Сепаратор содержит корпус с тангенциальным входным патрубком, выхлопным патрубком для отвода газа в его верхней части и патрубком для удаления дисперсной фазы, перегородкой с осевым патрубком, установленной с кольцевым зазором к стенкам корпуса. Осевой патрубок в месте соединения его с перегородкой снабжен завихрительным элементом, выше которого в осевом патрубке выполнены расположенные тангенциально щели, направленные против хода вращения газожидкостного потока. Выхлопной патрубок снабжен в нижней части цилиндрическим отсекателем, размещенным над верхней частью осевого патрубка. Выхлопной и осевой патрубки установлены соосно е зазором, а перегородка выполнена в виде полого усеченного конуса с отверстиями в его стенке, снабженными полыми цилиндрическими вставками с завихрителями, причем цилиндрические вставки закреплены внутри конуса попарно под углом друг к другу и к его поверхности. Технический результат - повышение эффективности сепарации. 3 ил.

Description

Изобретение относится к конструкциям возвратно-прямоточных сепараторов, которые применяются в процессах очистки природного газа, разделения двухфазных сред, преимущественно газ-жидкость, и может найти применение во всех технологических процессах в нефтяной, газовой, химической и других смежных отраслях промышленности.
Известно устройство для очистки газа, содержащее последовательно соединенные первую и вторую секции, рабочие и съемные элементы которых встроены в цилиндрический корпус с поперечными перегородками, разделяющими последовательно по потоку очищаемого газа полости первой и второй секций, выход очищенного газа, причем первая секция представляет собой фазовый отделитель инерционно-гравитационного типа, вторая секция - отделитель прямоточно-центробежного типа, состоящий из сепарационных труб с каналом перепуска газа, сообщающим полость второй секции с выходом очищенного газа, при этом канал перепуска выполнен в виде инжектора, у которого вход инжектирующего газа сообщен с верхней частью полости первой секции, а вход инжектируемого газа сообщен с верхней частью полости второй секции (Патент РФ №42157275, МПК B01D 45/00, B04C 3/04, опубл. 10.10.2000 г.). В этом устройстве газ, содержащий примесь в виде твердых и жидких частиц, поступает в первую секцию корпуса через торцевой вход и, попутно ударяясь о конус отражателя, изменяет направление движения. При этом наиболее крупные взвешенные и жидкие частицы падают в нижнюю часть пространства и, накапливаясь внизу корпуса, поступают в вертикальный патрубок. Газ, содержащий преимущественно мелкие частицы, после подъема перед поперечной перегородкой первой секции поступает через открытые концы сепарационных труб и, проходя завихрители, приобретает крутку. В трубах под действием центробежных сил происходит разделение фаз. Большая часть газовой фазы, движущейся в приосевой области труб, выходит из нее через открытые концы на выход корпуса. Взвешенная фаза, движущаяся спиральным потоком по периферии труб, захватывается каналами, выполненными по окружности продольных сквозных тангенциальных каналов с острыми входными кромками заподлицо с внутренним диаметром труб. Незначительная часть газового потока вместе с уловленной примесью попадает в межтрубную полость второй секции перед поперечной перегородкой, где за счет резкого падения скорости под действием сил гравитации происходят отделение примеси и ее удаление в вертикальный патрубок, а оставшаяся часть газа отсасывается инжектором, чем ликвидируется возрастание подпора в полостях второй секции и патрубка.
Недостатками данного устройства являются достаточно большие габариты, сложность конструкции, сложность в изготовлении, эксплуатации и очистке внутренних элементов устройства.
Наиболее близким к заявленному по технической сущности и достигаемому результату является циклон, содержащий корпус с тангенциальным входным патрубком, выхлопным патрубком для отвода газа в его верхней части и патрубком для удаления дисперсной фазы (Патент РФ №2038167, МПК B04C 5/103, опубл. 27.06.1995 г.). В корпусе одна под другой установлены перегородки, образующие кольцевые пылеотводные зазоры со стенками корпуса. Верхняя перегородка имеет осевой патрубок, сообщающий камеру с пространством между перегородками.
Недостатком указанной конструкции циклона является то, что в ней отсутствуют устройства для отделения отсепарированной на стенках корпуса загрязненной фазы от газового потока, движущегося в противоположном направлении, что может привести к увеличению вторичного уноса, от которого зависит эффективность сепарации.
Задачей изобретения является повышение эффективности улавливания из двухфазных потоков мелкодисперсных частиц.
Повышение эффективности процесса сепарации достигается за счет уменьшения количества мелкодисперсных капель, уносимых в выхлопной патрубок для отвода газа за счет их коалесценции в результате столкновения струй газожидкостного потока, выходящего из цилиндрических вставок с завихрителями, закрепленными на перегородке. Выходящие из смежных цилиндрических вставок газожидкостные струи попарно сталкиваются друг с другом, образуя результирующие струи, направленные к центру, где происходит их столкновение. В результате столкновения струй образуются области с высокими энергиями турбулентных пульсаций. При этом в силу малости размеров капель жидкости, находящихся в этих струях, эти капли не разрушаются, а при столкновении образуют капли более крупных размеров.
Эффективное разделение потока также обеспечивается дополнительной закруткой газового потока с мелкодисперсной капельной жидкостью с помощью завихрительного элемента в осевом патрубке и дальнейшим прижатием слоев газа с повышенным содержанием жидких капель к внутренним стенкам осевого патрубка под действием центробежной силы, отводом отсепарированной жидкости через зазор между осевым патрубком и выхлопным патрубком в верхнюю часть корпуса, а также отводом части отсепарированной на внутренней поверхности осевого патрубка жидкости через тангенциальные щели, выполненные в осевом патрубке и направленные против хода вращения газожидкостного потока, на внешнюю поверхность осевого патрубка, по перегородке в зазор и далее в патрубок для удаления дисперсной фазы.
Указанная задача достигается тем, в центробежном возвратно-прямоточном сепараторе для разделения двухфазного потока, преимущественно газожидкостного, содержащем корпус с тангенциальным входным патрубком, выхлопным патрубком для отвода газа в его верхней части и патрубком для удаления дисперсной фазы, а также перегородкой с осевым патрубком, установленной с кольцевым зазором со стенками корпуса, согласно изобретению осевой патрубок в месте соединения его с перегородкой снабжен завихрительным элементом, выше которого в осевом патрубке выполнены расположенные тангенциально щели, направленные против хода вращения газожидкостного потока, выхлопной патрубок снабжен в нижней части цилиндрическим отсекателем, размещенным над верхней частью осевого патрубка, при этом выхлопной и осевой патрубки установлены соосно с зазором, а перегородка выполнена в виде полого усеченного конуса с отверстиями в его стенке, снабженными полыми цилиндрическими вставками с завихрителями, причем цилиндрические вставки закреплены внутри конуса попарно под углом друг к другу и к его поверхности.
Схематично на фиг.1 изображен центробежный возвратно-прямоточный сепаратор, на фиг.2 и 3 - разрезы по А-А и Б-Б.
Центробежный возвратно-прямоточный сепаратор содержит корпус 1, в верхней части которого размещен тангенциальный входной патрубок для ввода газожидкостного потока 2, выхлопной патрубок в его верхней части для отвода газа 3 и патрубок для удаления дисперсной фазы 4. В корпусе 1 установлена перегородка 5 с осевым патрубком 6, установленная с кольцевым зазором 7 к стенкам корпуса. Осевой патрубок 6 в месте соединения его с перегородкой 5 снабжен завихрительным элементом 8, выше которого в осевом патрубке 6 выполнены расположенные тангенциально щели 9, направленные против хода вращения газожидкостного потока внутри осевого патрубка. Выхлопной патрубок 3 снабжен в нижней части цилиндрическим отсекателем 10, размещенным над верхней частью осевого патрубка. Выхлопной патрубок 3 и осевой патрубок 6 установлены соосно с зазором 11. Перегородка 5 выполнена в виде полого усеченного конуса с отверстиями в его стенке, снабженными полыми цилиндрическими вставками 12 с завихрителями 13. На фиг.1 для большей информативности условно показаны завихрители 13, расположенные внутри цилиндрических вставок 12. Цилиндрические вставки 12 закреплены внутри конуса 5 попарно под углом друг к другу и к его поверхности таким образом, чтобы выходящие из смежных цилиндрических вставок газожидкостные струи попарно сталкивались друг с другом, образуя результирующие струи, направленные к центру, где происходит их столкновение.
Устройство работает следующим образом. Газожидкостный поток поступает в аппарат через тангенциально расположенный к корпусу 1 патрубок 2. Двигаясь вниз вдоль корпуса 1 под действием центробежной силы, крупные капли осаждаются на внутренней поверхности корпуса 1 и стекают вниз через кольцевой зазор 7. Газожидкостный поток проходит через цилиндрические вставки 12, закручивается завихрителями 13 и в виде струй попадает в нижнюю часть корпуса 1. Выходящие из смежных цилиндрических вставок 12 с завихрителями 13 струи попарно сталкиваются друг с другом, образуя результирующие струи, направленные к центру, где происходит их столкновение. В результате столкновения струй образуются области с высокими энергиями турбулентных пульсаций. При этом в силу малости размеров капель жидкости, находящихся в этих струях, эти капли не разрушаются, а при столкновении образуют капли более крупных размеров. Крупные капли выпадают из общего потока и осаждаются на дно корпуса 1, а более мелкие капли с потоком газа устремляются вверх и попадают в осевой патрубок 6 с завихрительным элементом 8, где под действием центробежной силы слои газа с повышенным содержанием жидких капель прижимаются к внутренним стенкам осевого патрубка 6, поднимаются вверх и через зазор 11 между осевым патрубком 6 и выхлопным патрубком 3 удаляются в верхнюю часть корпуса 1. Очищенный газовый поток через выхлопной патрубок 3 удаляется из корпуса 1. Установленный над осевым патрубком 6 цилиндрический отсекатель 10 препятствует газовому потоку, движущемуся между осевым патрубком 6 и корпусом 1, попадать в зазор 11 и, кроме того, создает эжекционный эффект для основного потока, вытягивающий слои газа с повышенным содержанием капель жидкости в верхнюю часть корпуса 1. Отсепарированная жидкость стекает из корпуса 1 через патрубок для удаления дисперсной фазы 4.
Эффективность аппарата дополнительно увеличивается за счет наличия тангенциально расположенных щелей 9 в осевом патрубке 6, направленных против хода вращения газожидкостного потока, которые позволяют отводить часть отсепарированной на внутренней поверхности осевого патрубка 6 жидкости на его внешнюю поверхность, которая затем стекает по перегородке 5 в зазор 7, далее в нижнюю часть корпуса 1 и удаляется через патрубок для удаления дисперсной фазы 4.
Снабжение осевого патрубка 6 завихрительным элементом 8 в месте соединения его с перегородкой 5 создает закрутку газа с повышенным содержанием мелких капель, которые под действием центробежной силы прижимаются к внутренним стенкам осевого патрубка 6, поднимаются вверх и удаляются в верхнюю часть корпуса 1 через зазор 11 между осевым патрубком 6 и выхлопным патрубком 3.
Установка цилиндрического отсекателя 10 препятствует основному газовому потоку, движущемуся между осевым патрубком 6 и корпусом 1, попадать в зазор 11 и создает эжекционный эффект для основного потока, вытягивающий слои газа с повышенным содержанием капель жидкости в верхнюю часть корпуса 1.
Установка цилиндрических вставок 12 с завихрителями 13 позволяет выходящим из смежных цилиндрических вставок газожидкостным струям попарно сталкиваться друг с другом, образуя результирующие струи, направленные к центру, где происходит их столкновение. В результате образуются области с высокими энергиями турбулентных пульсаций. При этом в силу малости размеров капель жидкости, находящихся в этих струях, эти капли не разрушаются, а при столкновении образуют капли более крупных размеров.
Предлагаемая конструкция центробежного возвратно-прямоточного сепаратора позволяет расширить сферу применения центробежных сепараторов, повысить эффективность разделения двухфазных потоков до 95%, она проста в изготовлении и может быть получена при реконструкции известных сепараторов согласно изобретению путем выполнения перегородки в виде полого конуса, с закрепленными на ее внутренней поверхности цилиндрическими вставками с завихрителями, снабжения завихрительным элементом осевого патрубка и выполнения тангенциально расположенных щелей в его стенке, направленных против хода вращения газожидкостного потока внутри осевого патрубка, а также установки цилиндрического отсекателя, позволяющих повысить эффективность разделения двухфазного потока.

Claims (1)

  1. Центробежный возвратно-прямоточный сепаратор для разделения двухфазного потока, преимущественно газожидкостного, содержащий корпус с тангенциальным входным патрубком, выхлопным патрубком для отвода газа в его верхней части и патрубком для удаления дисперсной фазы, а также перегородкой с осевым патрубком, установленной с кольцевым зазором со стенками корпуса, отличающийся тем, что осевой патрубок в месте соединения его с перегородкой снабжен завихрительным элементом, выше которого в осевом патрубке выполнены расположенные тангенциально щели, направленные против хода вращения газожидкостного потока, выхлопной патрубок снабжен в нижней части цилиндрическим отсекателем, размещенным над верхней частью осевого патрубка, при этом выхлопной и осевой патрубки установлены соосно с зазором, а перегородка выполнена в виде полого усеченного конуса с отверстиями в его стенке, снабженными полыми цилиндрическими вставками с завихрителями, причем цилиндрические вставки закреплены внутри конуса попарно под углом друг к другу и к его поверхности.
RU2008148698/15A 2008-12-10 2008-12-10 Центробежный возвратно-прямоточный сепаратор RU2379120C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2008148698/15A RU2379120C1 (ru) 2008-12-10 2008-12-10 Центробежный возвратно-прямоточный сепаратор

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008148698/15A RU2379120C1 (ru) 2008-12-10 2008-12-10 Центробежный возвратно-прямоточный сепаратор

Publications (1)

Publication Number Publication Date
RU2379120C1 true RU2379120C1 (ru) 2010-01-20

Family

ID=42120651

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008148698/15A RU2379120C1 (ru) 2008-12-10 2008-12-10 Центробежный возвратно-прямоточный сепаратор

Country Status (1)

Country Link
RU (1) RU2379120C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2565286C1 (ru) * 2014-05-19 2015-10-20 Общество с ограниченной ответственностью "Нефтяные и Газовые Измерительные Технологии" Способ измерения показателей качества скважинного флюида
RU2618708C1 (ru) * 2016-07-01 2017-05-11 Игорь Анатольевич Мнушкин Циклон для очистки газового потока от капель жидкой фазы
RU2787814C2 (ru) * 2018-09-05 2023-01-12 Яра Интернэшнл Aсa Способ контроля потока в центробежном сепараторе

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2565286C1 (ru) * 2014-05-19 2015-10-20 Общество с ограниченной ответственностью "Нефтяные и Газовые Измерительные Технологии" Способ измерения показателей качества скважинного флюида
RU2618708C1 (ru) * 2016-07-01 2017-05-11 Игорь Анатольевич Мнушкин Циклон для очистки газового потока от капель жидкой фазы
RU2787814C2 (ru) * 2018-09-05 2023-01-12 Яра Интернэшнл Aсa Способ контроля потока в центробежном сепараторе

Similar Documents

Publication Publication Date Title
WO2009070058A2 (fr) Séparateur centrifuge servant à séparer des particules de liquide d'un flux gazeux
RU2379120C1 (ru) Центробежный возвратно-прямоточный сепаратор
KR101459053B1 (ko) 백필터 싸이클론 집진기
RU2379121C1 (ru) Вихревой центробежный сепаратор
RU2379119C1 (ru) Центробежный сепаратор
CN112156597A (zh) 一种多级气水分离净化装置
RU191607U1 (ru) Центробежная камера очистки технологического аэрогидропотока
RU2372146C1 (ru) Центробежный сепаратор для разделения двухфазного потока
RU48277U1 (ru) Сепаратор
RU2596754C1 (ru) Трубное устройство предварительной сепарации
GB2618798A (en) Separator
EP4271501A1 (en) Compact disc stack cyclone separator
RU2056135C1 (ru) Многоступенчатый сепаратор
CN102872668B (zh) 一种凝聚式旋风分离器
RU2299757C2 (ru) Фильтр-сепаратор
RU2006291C1 (ru) Циклон
CN206500270U (zh) 一种旋风分离器
RU2766568C1 (ru) Газожидкостный сепаратор
RU2804971C1 (ru) Выхлопная труба устройства центробежной очистки аэрогидропотока
RU2760671C1 (ru) Прямоточно-центробежный вихревой сепаратор для разделения газожидкостных потоков
RU211920U1 (ru) Сепаратор
RU2808143C1 (ru) Устройство центробежной очистки аэрогидропотока
CN219149656U (zh) 一种二级天然气气液分离装置
RU49459U1 (ru) Центробежный газожидкостный сепараторный фильтр
RU2217216C1 (ru) Устройство для очистки газа

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20121211