RU2377539C1 - Способ оптической томографии светочувствительных материалов - Google Patents

Способ оптической томографии светочувствительных материалов Download PDF

Info

Publication number
RU2377539C1
RU2377539C1 RU2008128227/28A RU2008128227A RU2377539C1 RU 2377539 C1 RU2377539 C1 RU 2377539C1 RU 2008128227/28 A RU2008128227/28 A RU 2008128227/28A RU 2008128227 A RU2008128227 A RU 2008128227A RU 2377539 C1 RU2377539 C1 RU 2377539C1
Authority
RU
Russia
Prior art keywords
beams
light
scanning
depth
angle
Prior art date
Application number
RU2008128227/28A
Other languages
English (en)
Inventor
Юрий Алексеевич Щепеткин (RU)
Юрий Алексеевич Щепеткин
Original Assignee
Институт автоматики и электрометрии Сибирского отделения Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт автоматики и электрометрии Сибирского отделения Российской академии наук filed Critical Институт автоматики и электрометрии Сибирского отделения Российской академии наук
Priority to RU2008128227/28A priority Critical patent/RU2377539C1/ru
Application granted granted Critical
Publication of RU2377539C1 publication Critical patent/RU2377539C1/ru

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

Изобретение относится к методам исследования свойств материалов, предназначенных преимущественно для объемной голографической записи информации. Объемный светочувствительный материал помещают в зону интерференции двух пересекающихся коллимированных лазерных пучков света. Размер зоны по глубине выбирают больше толщины материала. Каждый из пучков формируют в результате дифракции света на своей бегущей ультразвуковой волне в акустооптическом дефлекторе. Путем стробоскопической подсветки производят запись трехмерной (объемной) голографической решетки. Для послойного измерения параметров записанной решетки-голограммы сканируют по углу оба пучка одновременно. Доплеровский сдвиг частоты света каждого из пучков изменяют линейно во времени, при этом сдвиг частоты света одного пучка по отношению к другому пучку поддерживают постоянным в течение цикла сканирования, формируя сканирующую интерференционную решетку с переменной по глубине материала скоростью движения. Процесс сканирования повторяют при различных углах пересечения пучков. Обеспечивается высокая скорость сканирования, предельное разрешение по глубине и повышение чувствительности измерений. 4 ил.

Description

Изобретение относится к методам исследования различных свойств материалов и может быть использовано для контроля внутренней структуры оптических материалов, например амплитуды и фазы шумовых, информационных и других локальных неоднородностей толстых оптических сред, предназначенных преимущественно для объемной голографической записи информации.
Известен способ оптической томографии прозрачных материалов [1]. Согласно этому способу оптический материал зондируют встречными пучками с одинаковыми апертурными углами, перемещают точку схождения встречных пучков по объему материала и измеряют уровень проходящего, рассеянного и отраженного от дефектов в материале излучения.
Метод предполагает механическую перестройку положения точки фокусировки пучков, а следовательно, и относительно низкую скорость сканирования. Кроме того, при большой числовой апертуре объективов из-за сферической аберрации размер точки схождения пучков в глубине материале существенно увеличивается, что приводит к снижению разрешающей способности метода.
Известен также способ оптической томографии трехмерных микрообъектов [2], при котором исследуемый образец освещают параллельным предметным световым пучком под различными углами относительно оптической оси системы, формируют отдельный канал опорного пучка, совмещают этот пучок и прошедший через объект предметный пучок, регистрируют в каждом из положений предметного пучка по 4 картины интерференционной структуры при различных фазовых сдвигах опорного пучка и далее путем томографической обработки результатов измерений находят трехмерное пространственное распределение показателя преломления и/или коэффициента поглощения микрообъекта.
Недостаток этого метода - невозможность регистрации на светочувствительном материале в проходящих пучках тестовых голографических решеток, сложность оптической схемы из-за наличия отдельного канала опорного пучка, недостаточное быстродействие из-за механического сканирования предметного и перестройки фазы опорного пучков. Последний недостаток может иметь решающее значение при исследовании материалов, чувствительных на длине волны предметного (считывающего) пучка.
Наиболее близким к предлагаемому является способ тестирования трехмерных фоточувствительных материалов [3], при котором образец материала помещают в зону пересечения двух сходящихся световых пучков, причем размер зоны по глубине выбирают больше толщины материала, экспонируют материал, а затем производят сканирование световым пучком по углу в плоскости схождения пучков записанной в материале дифракционной решетки и измеряют зависимость мощности дифрагированного на решетке пучка от угла сканирования. Основной недостаток способа заключается в том, что по результатам сканирования нельзя получить данные о послойном по глубине материала распределении амплитуды и фазы записанной дифракционной решетки. Другим недостатком способа является низкая скорость сканирования, ограниченная быстродействием электромеханического устройства поворота образца исследуемого материала.
Предложенным изобретением решается задача послойного (по глубине материала) измерения уровня модуляции коэффициентов преломления и поглощения света у тестовой дифракционной решетки, записанной в объеме регистрирующего материала, а также задача уменьшения времени этих измерений.
Для получения такого технического результата в предлагаемом способе оптической томографии светочувствительных материалов, заключающемся в том, что образец материала помещают в зону пересечения двух световых пучков, причем размер зоны по глубине выбирают больше толщины материала, экспонируют материал, а затем производят сканирование световым пучком по углу в плоскости схождения пучков записанной в материале дифракционной решетки и измеряют зависимость мощности дифрагированного на решетке пучка от угла сканировании, при этом согласно предлагаемому изобретению каждый из пучков формируют в результате дифракции на своей бегущей ультразвуковой волне в акустооптическом дефлекторе, сканируют по углу оба пучка одновременно так, чтобы доплеровский сдвиг частоты света каждого из пучков изменялся линейно во времени, а сдвиг частоты света одного пучка по отношению к другому пучку оставался неизменным в течение цикла сканирования, затем изменяют угол схождения пучков и, при каждом значении его, повторяют цикл сканирования, каждый из двух прошедших через объект пучков направляют на свой фотоприемник и по результату гетеродинного детектирования света, рассеянного на образце, определяют послойное распределение амплитуды модуляции показателя преломления и/или коэффициента поглощения материала.
Отличительным признаком предлагаемого способа является то, что каждый из двух пучков света формируют в результате дифракции на своей бегущей ультразвуковой волне в акустооптическом дефлекторе (АОД). Использование АОД позволяет существенно повысить скорость сканирования по сравнению с электромеханическим сканером в прототипе. Наличие доплеровского сдвига частоты света, который приобретают пучки в результате дифракции на бегущей ультразвуковой волне в АОД, является одним из условий реализации режима послойного анализа структуры материала.
Другим отличительным признаком способа является то, что оба пучка света сканируют по углу одновременно так, что доплеровский сдвиг частоты света одного пучка по отношению к другому пучку оставался неизменным в течение цикла сканирования, затем изменяют угол схождения пучков и, при каждом значении его, повторяют цикл сканирования. Такое сканирование позволяет реализовать режим лазерной доплеровской томографии, принцип действия которой основан на частотном разделении сигналов от каждого слоя по глубине материла. Многократное сканирование при различных углах схождения пучков обеспечивает получение информации о характере распределения параметров образца не только по его толщине, но и в направлении вектора записанной дифракционной решетки.
Благодаря тому, что каждый из двух прошедших через объект пучков направляют на свой фотоприемник, а также благодаря гетеродинному детектированию света, рассеянного на образце, удается в каждом слое определить раздельно уровень модуляции коэффициентов как преломления, так и поглощения фоточувствительного материала.
Запись и последующее гетеродинное детектирование записанной структуры в одной и той же оптической системе позволяет снизить влияние фазовых искажений, вызванных несовершенством оптических элементов, поскольку при одинаковых искажениях волновых фронтов полей сигнал на выходе гетеродинного детектора остается без изменений [4].
Предлагаемый способ поясняется чертежами, на которых изображены:
на фиг.1 - структурно-функциональная схема устройства для осуществления предложенного способа;
на фиг.2 - экспериментально полученное распределение амплитуды дифрагированного света по глубине материала при различной величине расстройки Δν/ν0 между частотами записанной ν0 и считывающей νc решеток;
на фиг.3 - распределение фазы дифрагированного света (цифровые обозначения соответствуют графикам на фиг.2);
на фиг.4 - зависимость амплитуды дифрагированного света от относительной величины расстройки Δν/ν0 для трех слоев по глубине материала (буквенные обозначения соответствуют обозначениям на фиг.2).
На структурно-функциональной схеме (фиг.1) оптическая часть устройства содержит: полупроводниковый лазер 1, коллиматор 3, акустооптический дефлектор (АОД) 4, объектив 5 и микрообъектив 10 конфокальной оптической системы, непрозрачный экран 9, образец исследуемого материала 11, объективы 12 и 13. Электронная часть устройства содержит: фотоприемники (фотодиоды) 14, 15; блок питания 16 полупроводникового лазера 1, управляющий компьютер 17, трехканальный синхронный синтезатор-генератор высокочастотного напряжения 18, сумматор напряжений 19, смесители-перемножители напряжений 20, 21; фильтры нижних частот 22, 23; усилители фототоков 24, 25 и цифровой регистратор 26.
Пучок света 2 полупроводникового лазера 1 формируется коллиматором 3 и подается далее на оптический вход АОД 4. На электрический вход управления АОД от синтезаторов 18 через сумматор 19 подаются два напряжения U1 и U2, имеющих частоты f1 и f2 соответственно. Эти синусоидальные электрические сигналы возбуждают в АОД две бегущие ультразвуковые волны. Световой пучок, освещающий АОД, дифрагирует на этих волнах. Если f2>f1, то напряжению U2 соответствует пучок 8, а напряжению U1 - пучок 7. Пучок 6, который прошел через АОД без дифракции, блокируется экраном 9, а пучки 7 и 8 с помощью конфокальной оптической системы 5, 10 совмещаются в объеме образца материала 11. Апертура пучков выбирается такой, чтобы при максимальном угле схождения их интерференционная решетка перекрывала образец по всей его толщине.
При записи тестовых голограмм-решеток лазер работает в импульсном режиме. Блок питания лазера 16 синхронизируется от синтезатора 18. Частота импульсов света равна f0=f2-f1, длительность импульсов tu<<1/f0, поэтому в зоне пересечения пучков 7 и 8 формируется неподвижная (вследствие стробоскопического эффекта) интерференционная решетка интенсивности света и в среде 11 происходит экспонирование и запись трехмерной голограммы.
Считывание параметров записанной решетки - голограммы производится путем фазочувствительного коллинеарного гетеродинного детектирования дифрагированного на решетке пучка света. Суть процесса такого детектирования состоит в следующем. Лазер переключается в режим непрерывного излучения. Световые пучки 7 и 8 формируются при дифракции в АОД на движущихся решетках, поэтому частота лазерного света fл вследствие эффекта Доплера сдвигается так, что у пучка 7 становится равной fл-f2, a у пучка 8: fл-f2. Пучок 7 дифрагирует на записанной решетке и часть его, обозначенная на фиг.1 пунктиром, будет распространяться коллинеарно с той частью пучка 8, которая прошла образец материала без отклонения. В результате взаимодействия двух коллинеарных пучков с различными частотами света на выходе фотоприемника 14 появляется фототек с разностной частотой f0, несущий информацию о параметрах записанной тестовой решетки. Такое же преобразование происходит и с пучками, попадающими на фотоприемник 15. При детектировании фазовой решетки, суммарная интенсивность всех световых пучков до и после голограммы остается неизменной, поэтому электрические сигналы на выходах фотоприемников 14 и 15 равны по амплитуде и противоположны по фазе. Напротив, движение бегущей решетки интенсивности относительно амплитудной голограммы вызывает синфазную модуляцию света на входах обоих фотоприемников. При обработке результатов сканирования формируют два сигнала, которые пропорциональны сумме и разности токов фотоприемников. При этом разностный и суммарный сигналы раздельно несут информацию соответственно о коэффициентах преломления и поглощения у записанной решетки [5].
Режим послойного (томографического) сканирования осуществляется следующим образом. Частота напряжения U1, также как и частота напряжения U2 изменяется по пилообразному (линейному) закону, причем так, что разность частот f2-f1 остается постоянной в течение цикла сканирования. Вследствие этого и доплеровский сдвиг частоты света пучка 8 по отношению к частоте света пучка 7 также остается неизменным в течение цикла сканирования. Положим, что f1 и f2 увеличиваются. На фиг.1 показано, что при этом в задней фокальной плоскости А объектива 5 изображения G1 и G2 перемещаются в направлениях, указанных стрелками. При таком перемещении вектор сканирующей интерференционной решетки в задней фокальной плоскости объектива 10 поворачивается с угловой скоростью Ω, и скорость движения этой решетки относительной записанной структуры приобретает две составляющие: одна из них (Vs) образуется в результате поступательного движения со скоростью Vs=V/Q, другая (VΩ) - возникает вследствие вращения пучков вокруг «оси» (начала системы координат XYZ): VΩz, где V - скорость звука в АОД; Q=F1/F2>>1 (см. фиг.1) - коэффициент уменьшения конфокальной системы; z - расстояние (по координате Z) слоя от «оси» вращения. В результате сложения поступательного и вращательного движений результирующая скорость изменяется по глубине z образца, поэтому изменяется и доплеровский сдвиг частоты, т.е. каждому слою по глубине материала соответствует своя доплеровская частота. На фиг.1 видно, что при z<0 (отрицательная координата) скорости Vs и VΩ суммируются, поэтому в этой зоне материала доплеровская частота fд>f0. Соответственно, в области z>0 имеем fд<f0, а при z=0 выполняется условие fд=f0. Это приращение частоты выделяется фотоприемниками 14 и 15 путем описанного выше коллинеарного гетеродинного детектирования.
Для того чтобы при сканировании уменьшить влияние неравномерности чувствительности фотодиода по его поверхности, на каждый из фотоприемников помощью объективов 12 и 13 переносится неподвижное изображение зоны сканирования образца 11.
Напряжения с выходов усилителей фототока 24 и 25 поступает на два канала преобразования частоты. Каждый из каналов содержит перемножитель (20, 21) и фильтр нижних частот (ФНЧ) (22, 23). В результате перемножения сигналов фотоприемников и напряжения генератора-синтезатора 3 на выходах ФНЧ появляется напряжение разностной частоты fp, величина которой выбирается больше максимальной частотной девиации сигналов фотоприемников. Такой режим преобразования частоты позволяет не менее чем на порядок уменьшить количество отсчетов при цифровой регистрации результатов и одновременно исключить неопределенность знака приращения частоты сигналов фотоприемников.
Результаты эксперимента фиксируются цифровым регистратором 26 и далее путем томографической обработки находятся распределение параметров в каждом слое исследуемой среды.
Восстановление томограммы производится по алгоритму Фурье-синтеза [6].
В результате теоретического анализа найдена функциональная зависимость доплеровского сдвига частоты от положения слоя по глубине материала fд=mzz, mz=dfд/dz=Q2λf0 γ/nV2, где λ - длина волны излучения лазера, γ=df1/dt=df2/dt - скорость изменения частот, n - показатель преломления материала.
Величина mz определялась также экспериментально. На место образца 11 (фиг.1) помещалась тонкая дифракционная решетка. Период штрихов у решетки - 2,3 мкм. Решетка перемещалась по оси Z шагами по 50 мкм на расстояние ±300 мкм от плоскости XY, после каждого перемещения производилось сканирование и определялась частота fд максимума отклика. Время одного сканирования 0,96 мс. Зависимость fд от перемещения оказалась линейной, а коэффициент пропорциональности mz=141,4 Гц /мкм. По известным параметрам устройства: Q=32; λ=0,65 мкм; V=0,72 км/с и режиму сканирования: f0=9,8 МГц; γ=10,417 кГц/мкс, n=1 определялось расчетное значение mz=Q2λf0γ/n V2=133,1 Гц/мкм. Разница между расчетным и экспериментальным значениями mz, составила 5,9%.
Важнейшим параметром томографии является разрешающая способность по глубине. Основным фактором здесь является апертурное ограничение угла сканирования. Ясно, что чем больше углы между осью Z и направлениями распространения световых пучков 7 и 8 (фиг.1), тем более мелкие структуры по глубине материала могут быть обнаружены. Максимальное значение этих углов ограничено числовой апертурой Na микрообъектива 10 (см. фиг.1). Кроме того, если значение Na определено, то для достижения предельного разрешения необходимо выбрать Q=2 NaV/λf0max где f0max - диапазон рабочих частот АОД. При этом обеспечивается сканирование во всем диапазоне углов, ограниченных числовой апертурой микрообъектива.
Проведенный теоретический анализ позволил также сформулировать оптимальные условия записи и послойного детектирования. Например, если исходными являются следующие параметры АОД, лазера и микрообъектива: диапазон рабочих частот АОД f0max = 45 МГц; апертурное время АОД ta=10 мкс; V=0,72 км/с; λ=0,65 мкм; числовая апертура микрообъектива 10 (см. фиг.1) Na=0,65; то: оптимальный коэффициент уменьшения оптической системы Q=2 NaV/λf0max=32; оптимальный период тестовой решетки dopt=λ/Nа=1 мкм; минимальная толщина детектируемого слоя (при n=1,5) ΔНmin=2nλ/Na2=4,6 мкм; максимальное количество слоев Mmах=95, максимальная толщина материала Нmах=ΔHmin Мmах=437 мкм. Здесь АН определена как толщина элементарного слоя, равного расстоянию между двумя нулями аппаратной функции J(z), т.е. равного величине двойного разрешения по критерию Рэлея.
Экспериментальная проверка способа проводилась на примере тестирования усадки вдоль поверхности у фотополимерного материала. Толщина светочувствительной среды 130 мкм. Она нанесена на стеклянную подложку толщиной 1,2 мм и покрыта пленкой из ацетата толщиной 120 мкм.
Размер голограммы в направлении вектора решетки 260 мкм, в поперечном направлении - 68 мкм. Запись производилась по симметричной схеме, когда углы схождения опорного и предметного пучков одинаковы относительно оси Z, поэтому у вектора решетки отсутствует Z - составляющая. Пространственный период решетки d0=2,3 мкм. Экспонирование образца выполнялось импульсами света, имеющих длительность 5 нс и частоту повторения 9,8 МГц. Суммарная мощность обоих пучков на поверхности образца 0,12 мВт, время экспонирования 20 с.
В соответствии с критерием Рэлея разрешающая способность метода по глубине материала составляет δz=nd02/λ=11,7 мкм. Детектирование проводилось при различных расстройках пространственных частот ν0 и νc записывающей и считывающей решеток соответственно. Время одного сканирования 0,96 мс. Контраст сигнала с выхода фотоприемника при νc=v0 был равен 0,7.
Результаты эксперимента приведены на фиг.2. График 1 соответствует случаю, когда νc0, т.е. частоты записанной и считывающей решеток совпадают. На графиках 2, 3 νc=1,004 ν0 и νc=0,996 ν0 (расстройка Δν/ν0=(νc0)/ν0=±0,41%) соответственно. Результаты расстройки на ±0,82% показаны на графиках 4 и 5 соответственно. Расстройке на ±1,43% соответствуют кривые 6 и 7 соответственно.
Графики отклонения фазы от линейной зависимости приведены на фиг.3. Видно, что для гармоник со значительной амплитудой, т.е. составляющих большую часть мощности дифрагированного пучка отклонения фазы Δφ по толщине материала минимальны. На границах среды с подложкой и защитным слоем происходит скачок фазы.
На фиг.4 показаны зависимости амплитуды дифрагированного света от величины расстройки по частоте между записывающей и считывающей решетками. Каждая кривая построена по 13 значениям величины расстройки. Графики приведены для трех слоев по глубине материала: В - на расстоянии 25 мкм от защитного покрытия, С - в середине по толщине материала и D - на расстоянии 28 мкм от подложки. Положение этих слоев показано также на фиг.2. На фиг.4 видно, что наибольшее смещение максимума характеристики относительно значения Δν/ν0=0 происходит у слоя С, т.е. продольная усадка в середине больше, чем вблизи поверхностей светочувствительной среды. Сказывается стабилизирующее свойство защитного слоя и подложки. Решетка оказывается как бы «приклеенной» к их поверхностям.
Усадка максимальна у поверхности фотополимера и имеет минимальное значение вблизи подложки. Возможная причина - различный по глубине материала уровень экспонирования, обусловленный поглощением света.
Источники информации
1. Патент Российской Федерации №2088904, кл. G01N 21/85, опубл. 1997.08.27.
2. Патент Российской Федерации №2145109, кл. G02B 21/00, G01B 9/04, опубл. 2000.01.27.
3. Бабин С.А., Васильев Е.В., Ковалевский В.И., Пен Е.Ф., Плеханов А.И., Шелковников В.В. Методы и устройства тестирования голографических фотополимерных материалов. // Автометрия. 2003. 39. №2. С.57.
4. Протопопов В.В., Устинов Н.Д. Лазерное гетеродинирование. М.: Наука. 1985. С.15.
5. Bader Т.R. Hologram gratings: amplitude and phase components. // Appl.Opt. 1975. 14, №12. P.2818.
6. Левин Г.Г., Вишняков Г.Н. Оптическая томография. М.: Радио и связь, 1989.

Claims (1)

  1. Способ оптической томографии светочувствительных материалов, заключающийся в том, что образец материала помещают в зону пересечения двух световых пучков, причем размер зоны по глубине выбирают больше толщины материала, экспонируют материал, а затем производят сканирование световым пучком по углу в плоскости схождения пучков записанной в материале дифракционной решетки и измеряют зависимость мощности дифрагированного на решетке пучка от угла сканирования, отличающийся тем, что каждый из пучков формируют в результате дифракции на своей бегущей ультразвуковой волне в акустооптическом дефлекторе, сканируют по углу оба пучка одновременно так, что доплеровский сдвиг частоты света каждого из пучков изменялся линейно во времени, а сдвиг частоты света одного пучка по отношению к другому пучку оставался неизменным в течение цикла сканирования, затем изменяют угол схождения пучков и, при каждом значении его, повторяют цикл сканирования, каждый из двух прошедших через объект пучков направляют на свой фотоприемник и по результату гетеродинного детектирования света, рассеянного на образце, определяют послойное распределение амплитуды модуляции показателя преломления и/или коэффициента поглощения материала.
RU2008128227/28A 2008-07-09 2008-07-09 Способ оптической томографии светочувствительных материалов RU2377539C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2008128227/28A RU2377539C1 (ru) 2008-07-09 2008-07-09 Способ оптической томографии светочувствительных материалов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008128227/28A RU2377539C1 (ru) 2008-07-09 2008-07-09 Способ оптической томографии светочувствительных материалов

Publications (1)

Publication Number Publication Date
RU2377539C1 true RU2377539C1 (ru) 2009-12-27

Family

ID=41643110

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008128227/28A RU2377539C1 (ru) 2008-07-09 2008-07-09 Способ оптической томографии светочувствительных материалов

Country Status (1)

Country Link
RU (1) RU2377539C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2453946C1 (ru) * 2010-12-27 2012-06-20 Глеб Сергеевич Жданов Способ томографического анализа образца в растровом электронном микроскопе
CN110031430A (zh) * 2019-05-15 2019-07-19 中国工程物理研究院流体物理研究所 双探测器时分复用体全息材料灵敏度实时测试装置及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
БАБИН С.А. и др. Методы и устройства тестирования голографических полимерных материалов. Автометрия, 2003, т.39, №2, с.57. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2453946C1 (ru) * 2010-12-27 2012-06-20 Глеб Сергеевич Жданов Способ томографического анализа образца в растровом электронном микроскопе
CN110031430A (zh) * 2019-05-15 2019-07-19 中国工程物理研究院流体物理研究所 双探测器时分复用体全息材料灵敏度实时测试装置及方法
CN110031430B (zh) * 2019-05-15 2024-03-12 中国工程物理研究院流体物理研究所 双探测器时分复用体全息材料灵敏度实时测试装置及方法

Similar Documents

Publication Publication Date Title
US5666197A (en) Apparatus and methods employing phase control and analysis of evanescent illumination for imaging and metrology of subwavelength lateral surface topography
Pedrini et al. High-speed digital holographic interferometry for vibration measurement
EP1287337B1 (en) Method and apparatus for surface plasmon microscopy
JP3264469B2 (ja) 光散乱媒体の屈折率分布情報の計測装置
US8610897B2 (en) High-resolution surface plasmon microscope with heterodyne interferometry in radial polarization mode
US20230063843A1 (en) Method and apparatus for high performance wide field photothermal imaging and spectroscopy
US5774221A (en) Apparatus and methods for providing phase controlled evanescent illumination
CN111045070B (zh) 一种基于差分干涉仪测量被捕获冷原子的系统及方法
CN1225720A (zh) 光学测量
JP6975913B2 (ja) 撮像装置
JPS5862507A (ja) 表面の形状を光の干渉により決定する方法
CN115096857A (zh) 一种基于艾里光片线扫描的oct成像方法和装置
RU2377539C1 (ru) Способ оптической томографии светочувствительных материалов
CN109883350A (zh) 一种异形曲面结构内部形貌的高精度测量系统和测量方法
CN111289479B (zh) 基于非线性热像反演的相位缺陷检测装置和方法
JP7313460B2 (ja) 高コントラスト撮像のための装置、装置の使用、及び方法
US8982355B2 (en) Smart optical material characterization system and method
Almoro et al. Object wave reconstruction by speckle illumination and phase retrieval
JPH03128411A (ja) 光学的形状測定装置
US20070171433A1 (en) Systems and processes for providing endogenous molecular imaging with mid-infrared light
Kosinskii et al. Heterodyne laser interferometric techniques based on Fresnel diffraction
Toker et al. In-line optical surface roughness determination by laser scanning
Tverdokhleb et al. A laser Doppler tomography method for investigating volume recording media
He et al. Spatial filtering velocimeter using frequency shifting by the method of rotating kernel
WO2012172524A1 (en) Method and photothermal apparatus for contactless determination of thermal and optical properties of material

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180710