RU2369963C1 - Устройство компенсации помех - Google Patents

Устройство компенсации помех Download PDF

Info

Publication number
RU2369963C1
RU2369963C1 RU2008130163/09A RU2008130163A RU2369963C1 RU 2369963 C1 RU2369963 C1 RU 2369963C1 RU 2008130163/09 A RU2008130163/09 A RU 2008130163/09A RU 2008130163 A RU2008130163 A RU 2008130163A RU 2369963 C1 RU2369963 C1 RU 2369963C1
Authority
RU
Russia
Prior art keywords
output
input
unit
signal
multiplication
Prior art date
Application number
RU2008130163/09A
Other languages
English (en)
Inventor
Владимир Алексеевич Золотарев (RU)
Владимир Алексеевич Золотарев
Original Assignee
Открытое акционерное общество "Концерн "Созвездие"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Концерн "Созвездие" filed Critical Открытое акционерное общество "Концерн "Созвездие"
Priority to RU2008130163/09A priority Critical patent/RU2369963C1/ru
Application granted granted Critical
Publication of RU2369963C1 publication Critical patent/RU2369963C1/ru

Links

Images

Landscapes

  • Noise Elimination (AREA)

Abstract

Изобретение относится к радиотехнике и может найти применение в устройствах радиосвязи. Достигаемый технический результат - расширение функциональных возможностей и повышение эффективности работы устройства в условиях помех. Устройство компенсации помех содержит три блока умножения, три амплитудных детектора, блок вычитания, блок сравнения с порогом, четыре полосовых фильтра, формирователь постоянного напряжения, сумматор, генератор гармонических колебаний, фазовращатель и блок управления (17). 3 з.п. ф-лы, 3 ил., 1 табл.

Description

Изобретение относится к радиотехнике и может найти применение в устройствах радиосвязи.
Известны устройства подавления узкополосных помех, описанные в а.с. №1688416 Н04В 1/10, а также в патентах РФ №2034403 Н04В 1/10, №2204203 Н04В 1/10, мультипликативное устройство защиты от узкополосных помех, описанное в патенте №2287899 Н04В 1/10, а также устройства подавления широкополосных помех, описанные в патентах РФ 2115234, РФ 2143783, РФ 2190297, недостатком которых является невысокая степень подавления помех.
Наиболее близким по технической сущности к предлагаемому является двухбалансный преобразователь с компенсацией помех, описанный в книге Максимова М.В., Бобнева М.П., Кривицкого Б.Х. и др. «Защита от радиопомех», изд. «Сов. радио», 1976 г., стр.254-258, принятый за прототип.
Структурная схема устройства-прототипа приведена на фиг.1, где обозначено:
1 - полосовой фильтр;
3 - сумматор;
11 - первый фазовращатель;
13 - генератор гармонических колебаний;
18 - первый балансный смеситель;
19 - второй балансный смеситель;
20 - второй фазовращатель.
Устройство-прототип содержит последовательно соединенные первый балансный смеситель 18, сумматор 3, полосовой фильтр 1, а также последовательно соединенные генератор гармонических колебаний 13, первый фазовращатель 11, второй балансный смеситель 19, второй фазовращатель 20, выход которого соединен со вторым входом сумматора 3, второй вход первого балансного смесителя 18 соединен с выходом генератора гармонических колебаний 13, первые входы первого балансного смесителя 18 и второго балансного смесителя 19 объединены и являются входом устройства, выход полосового фильтра 1 является выходом устройства.
Устройство-прототип работает следующим образом.
Принцип компенсации помех двухбалансным преобразователем рассмотрим на примере РЛС, излучающей монохроматический сигнал, который отражается от цели, приближающейся к РЛС.
Поступающая с выхода усилителя промежуточной частоты (УПЧ) приемника аддитивная смесь сигнала и помехи разделяется на две одинаковые суммы сигнала и помехи и подается на первые входы первого балансного смесителя 18 и второго балансного смесителя 19 соответственно:
Figure 00000001
где UC, ωПР - амплитуда и частота сигнала соответственно;
φ - фаза сигнала;
ωД - доплеровская частота;
UП(t) - помеха.
На вторые входы первого балансного смесителя 18 и второго балансного смесителя 19 подается опорное напряжение:
Figure 00000002
где UОП - амплитуда опорного напряжения.
Мгновенное значение напряжения UП(t) запишем в следующем виде:
Figure 00000003
n=fУП/δ,
где fУП - полоса пропускания УПЧ;
δ - частотный интервал между соседними гармоническими составляющими напряжения UП(t);
UП - амплитуда гармонической составляющей напряжения UП(t),
ψi, φi - начальные фазы.
Первый 18 и второй 19 балансные смесители осуществляют операцию умножения входных сигналов и формируют напряжение, фаза которого равна разности фаз сомножителей. Вследствие этого на выходе первого балансного смесителя 18 с коэффициентом передачи Кб1 будем иметь:
Figure 00000004
С помощью первого фазовращателя 11, который как и второй фазовращатель 20 считается идеальным, создается напряжение:
Figure 00000005
Поэтому для напряжения U2(t), вырабатываемого вторым балансным смесителем 19 с коэффициентом передачи
Kб2=Kб1,
получим:
Figure 00000006
Следовательно, выходное напряжение U3(t) на выходе второго фазовращателя 20 будет равно:
Figure 00000007
На выходе сумматора 3 получается сигнал:
Figure 00000008
То есть составляющие помехи с частотами ωПР-iδ компенсируются двухбалансным преобразователем.
Таким образом, за счет компенсации половины спектральных составляющих помехи, помехоустойчивость двухбалансного преобразователя по критерию отношения мощности полезного сигнала к мощности помехи возрастает вдвое, по сравнению с однобалансным преобразователем.
Недостатком устройства-прототипа является низкая эффективность работы устройства, а также ограниченная область применения, а именно применение возможно только для случаев использования непрерывных монохроматических сигналов (доплеровская радиолокация) и частотно-модулированных сигналов.
Для устранения указанных недостатков в устройство компенсации помех, содержащее первый полосовой фильтр, сумматор, последовательно соединенные генератор гармонических колебаний и фазовращатель, согласно изобретению введены первый блок умножения, выход которого соединен с первым входом сумматора, последовательно соединенные первый амплитудный детектор, блок вычитания и блок сравнения с порогом, второй выход которого является входом для порогового напряжения, а выход - выходом устройства, последовательно соединенные второй полосовой фильтр, второй блок умножения и третий полосовой фильтр, выход которого соединен со вторым входом сумматора, последовательно соединенные третий блок умножения, четвертый полосовой фильтр и третий амплитудный детектор, выход которого подсоединен ко второму входу блока вычитания, а также формирователь постоянного напряжения, выход которого соединен со вторым входом первого блока умножения, выход которого через второй амплитудный детектор соединен со вторым входом блока вычитания, выход которого через блок управления соединен со вторым входом фазовращателя, выход которого соединен со вторым входом второго блока умножения, вход которого соединен с первым входом третьего блока умножения, второй вход которого подсоединен к выходу генератора гармонических колебаний, кроме того, входы первого и второго полосовых фильтров объединены и являются входом устройства, выход первого полосового фильтра соединен с входом первого блока умножения, выход сумматора соединен с входом первого амплитудного детектора.
Структурная схема заявляемого устройства приведена на фиг.2, где обозначено:
1, 7, 9, 15 - первый, второй, третий и четвертый полосовые фильтры (ПФ);
2, 8, 14 - первый, второй и третий блоки умножения;
3 - сумматор;
4, 12, 16 - первый, второй и третий амплитудные детекторы (АД);
5 - блок вычитания;
6 - блок сравнения с порогом;
10 - формирователь постоянного напряжения (ФПН);
11 - фазовращатель;
13 - генератор гармонических колебаний (ГГК);
17 - блок управления.
Предлагаемое устройство содержит последовательно соединенные первый полосовой фильтр 1, первый блок умножения 2, сумматор 3, первый АД 4, блок вычитания 5, блок сравнения с порогом 6, выход которого является выходом устройства, причем второй вход блока сравнения с порогом 6 является входом для порогового напряжения. Кроме того, последовательно соединенные второй полосовой фильтр 7, второй блок умножения 8 и третий полосовой фильтр 9, выход которого соединен со вторым входом сумматора 3, а также формирователь постоянного напряжения 10, выход которого соединен со вторым входом первого блока умножения 2, последовательно соединенные третий блок умножения 14, четвертый ПФ 15 и третий АД 16, выход которого соединен со вторым входом блока вычитания 5. Выход генератора гармонических колебаний 13 соединен со вторым входом третьего блока умножения 14 и через фазовращатель 11 - со вторым входом второго блока умножения 8. При этом выход первого блока умножения 2 через второй АД 12 соединен со вторым входом блока вычитания 5, выход которого через блок управления 17 подсоединен ко второму входу фазовращателя 11. Входы первого 1 и второго 7 ПФ объединены и являются входом устройства.
Блок управления 17 может быть выполнен, например, следующим образом.
Структурная схема варианта блока управления 17 приведена на фиг.3, где обозначено:
17.1 - аналогово-цифровой преобразователь (АЦП);
17.2 - вычислительный блок;
17.3 - цифроаналоговый преобразователь (ЦАП).
Блок управления 17 содержит последовательно соединенные аналогово-цифровой преобразователь 17.1, вычислительный блок 17.2, цифроаналоговый преобразователь 17.3, вход аналогово-цифрового преобразователя 17.1 является входом блока управления 17, выход цифроаналогового преобразователя 17.3 является выходом блока управления 17.
Предлагаемое устройство работает следующим образом.
В передатчике кроме сигнала
UCcos(ωCt+φС),
где UC, ωС, φС - амплитуда, частота и фаза сигнала соответственно, формируется сигнал
UC cos((ωС+2fC)t+φС),
где fC - частота, равная половине ширины полосы сигнала,
и излучаются оба сигнала.
В приемном устройстве принимается аддитивная смесь сигнала и помехи:
Figure 00000009
где UCi, UPi, ωCi, ωPi, φCi, φPi - амплитуда, частота и фаза частотных составляющих сигнала и частотных составляющих помехи соответственно;
N - число частотных составляющих сигнала;
К - число частотных составляющих помехи.
Для УКВ-диапазона смещение второго сигнала по частоте составляет сотые доли процента (например, для несущей - 50 МГц и полосы сигнала 25 кГц величина смещения в процентном выражении составляет 5%). Для такого небольшого отличия двух сигналов по частоте можно допустить, что условия их распространения одинаковы, поэтому амплитуды принимаемых сигналов (UC1, UC2) можно считать приблизительно одинаковыми:
UC=UC1=UC2.
Принятая аддитивная смесь сигнала и помехи поступает на первый 1 и второй 7 полосовые фильтры.
Верхняя частота полосы пропускания первого полосового фильтра 1 выбирается равной
Fвф1C+fC.
Нижняя частота полосы пропускания первого полосового фильтра 1 выбирается равной
Fнф1C-fC.
Соответственно полоса пропускания первого полосового фильтра 1 равна
2fC,
т.е. ширине полосы сигнала.
Верхняя частота полосы пропускания второго полосового фильтра 7 выбирается равной
Fвф2C+3fC.
Нижняя частота полосы пропускания второго полосового фильтра 7 выбирается равной
Fнф2C+fC.
Соответственно полоса пропускания второго полосового фильтра 7 также равна
2fC,
т.е. ширине полосы сигнала.
Дальнейшие преобразования сигнала и помехи рассмотрим для упрощения выкладок для одной из частотных составляющих помехи и сигналов.
Аддитивная смесь сигнала и помехи на выходе первого полосового фильтра 1 может быть записана следующим образом:
Figure 00000010
где UC, ωC, φC1, UП1, ωП1, φП1 - амплитуда, частота и фаза сигнала и помехи соответственно, которые поступают на выход первого полосового фильтра 1.
Аддитивная смесь сигнала и помехи умножается в первом блоке умножения 2 на постоянное напряжение, поступающее на второй вход первого блока умножения 2 с формирователя постоянного напряжения 10, амплитуда которого равна UПН.
Сигнал и помеха, поступающие на первый вход сумматора 3, записываются в следующем виде:
Figure 00000011
Сигнал и помеха с выхода второго полосового фильтра 7 поступает на первый вход второго блока умножения 8
Figure 00000012
где UC, ωC, φC2, UП2, ωП2, φП2 - амплитуда, частота и фаза сигнала и помехи соответственно, которые поступают на выход второго полосового фильтра 7.
На второй вход второго блока умножения 8 поступает гармоническое колебание, с генератора гармонических колебаний 13, амплитуда которого равна
Figure 00000013
Частота колебаний генератора гармонических колебаний 13 устанавливается равной 2fc.
Таким образом, на второй вход второго блока умножения 8 поступает гармоническое колебание
Figure 00000014
где φФ - фазовый сдвиг, вносимый фазовращателем 11.
При условии, что амплитудно-частотные характеристики (АЧХ) первого 1, второго 7 и третьего 9 полосовых фильтров достаточно близки (данное условие выполнимо, поскольку может быть обеспечена идентичность частотных характеристик фильтров, работающих в одной и той же полосе частот), на выходе третьего полосового фильтра 9 формируется напряжение (разностная составляющая произведения)
Figure 00000015
Величина фазового сдвига, вносимого фазовращателем 11, устанавливается таким образом, чтобы сигналы, поступающие на сумматор 3, были противофазны, т.е.
Figure 00000016
Поскольку
Cos(x+π)=-Cos(x)
сигнал и помеха на выходе третьего полосового фильтра 9 могут быть записаны следующим образом:
Figure 00000017
Поскольку частотные составляющие сигнала, поступающие на входы сумматора 3, имеют практически одинаковые по значению и противоположные по знаку амплитуды и имеют достаточно близкие фазы (степень близости фаз определяется точностью работы блока управления 17), то они взаимно уничтожаются.
В общем случае выражение для напряжения помехи на выходе первого амплитудного детектора 4 может быть записано следующим образом:
Figure 00000018
где Кд1 - коэффициент преобразования первого амплитудного детектора 4.
В наихудшем случае, когда амплитуды помех на выходах первого 1 и второго 7 полосовых фильтров примерно одинаковы
UП1=UП2=UП,
выражение для амплитуды помехи на выходе первого амплитудного детектора 4 может быть записано в виде:
Figure 00000019
После усреднения по фазе значение амплитуды помехи на выходе первого амплитудного детектора 4 может быть записано следующим образом:
Figure 00000020
где КУС- коэффициент усреднения.
Для случая, когда законы распределения амплитуд и фаз составляющих помехи независимы и фазы распределены по равномерному закону распределения, и амплитуды помех на выходах первого 1 и второго 7 полосовых фильтров примерно одинаковы
Figure 00000021
Поскольку значение КУС изменяется от 0,64 до 1 (1 - когда помеха на выходе одного из полосовых фильтров первого 1 или второго 7 отсутствует), то в среднем значение Кус составляет 0,82.
Напряжение на выходе второго амплитудного детектора 12 будет следующим
Figure 00000022
где Кд2 - коэффициент преобразования второго амплитудного детектора 12.
На первый вход третьего блока умножения 14 поступает такое же напряжение, как и напряжение, поступающее на первый вход второго блока умножения 8.
На второй вход третьего блока умножения 14 поступает сигнал генератора гармонических колебаний 13.
Четвертый полосовой фильтр 15 пропускает разностные комбинационные составляющие помехи и сигнала и сигнала генератора гармонических колебаний 13, поступающие с третьего блока умножения 14.
С учетом того, что АЧХ четвертого полосового фильтра 15 формируется идентичной АЧХ первого полосового фильтра 1, выражение для напряжения сигнала и помехи на выходе четвертого полосового фильтра 15 может быть записано следующим образом
Figure 00000023
Выражение для амплитуды сигнала и помехи на выходе третьего амплитудного детектора 15 записывается в виде
Figure 00000024
где Кд3 - коэффициент преобразования третьего амплитудного детектора 16.
На первый вход блока вычитания 5 с выхода первого амплитудного детектора 4 поступает напряжение (20)
Figure 00000025
На второй вход блока вычитания 5 с выходов второго 12 и третьего 16 амплитудных детекторов поступает напряжение:
Figure 00000026
В блоке вычитания 5 помеха компенсируется до некоторого уровня.
Для случая, когда значения коэффициентов преобразования первого 4, второго 12 и третьего 16 амплитудных детекторов практически одинаковы и амплитуды помех практически одинаковы (наихудший случай), на выход блока вычитания 5 поступает некомпенсированная помеха:
Figure 00000027
Данное условие выполнимо, поскольку первый 4, второй 12 и третий 16 амплитудные детекторы работают в одной и той же полосе частот.
Таким образом, на вход блока сравнения с порогом 6 поступает напряжение, пропорциональное только амплитуде сигнала и некомпенсированной помехи. Уровень компенсации помех определяется степенью неидентичности АЧХ первого 1, второго 7, третьего 9 и четвертого 15 полосовых фильтров и первого 4, второго 12 и третьего 16 амплитудных детекторов.
Эффективность заявляемого устройства зависит также от степени компенсации сигнала в сумматоре 3, поскольку некомпенсированный сигнал вычитается в устройстве вычитания 5 из полезного сигнала. Степень компенсации сигнала в сумматоре 3 определяется точностью установки фазового сдвига, осуществляемого фазовращателем 11.
Установка оптимального фазового сдвига осуществляется на начальном этапе (этап установления связи) с использованием методов поиска оптимальных значений параметров (численных методов оптимизации).
На втором этапе - этапе слежения за фазой (фазовая автоподстройка) используются известные методы автоподстройки фазы.
Данные методы реализуются в зависимости от реализации вычислительного блока 17.2. Вычислительный блок 17.2 может быть реализован в виде цифрового вычислительного блока (ЦВБ) или в виде аналогового вычислительного блока.
Рассмотрим пример работы предлагаемого устройства для случая реализации вычислительного блока 17.2 в виде цифрового вычислительного блока, выполненного на программируемой логической интегральной схеме (ПЛИС) или на микропроцессорном устройстве. В этом случае оптимизационные методы и методы слежения реализуются в виде соответствующих программ ПЛИС (микропроцессорного устройства) 17.2.
Для поиска оптимального значения фазового сдвига могут применяться любые известные методы численной оптимизации, например, такие как метод деления пополам, метод золотого сечения и т.д.
Рассмотрим в качестве примера работу двух радиостанций, в которых реализовано заявляемое устройство компенсации помех.
Заявляемое устройство при реализации в качестве оптимизационного метода - метода деления пополам работает следующим образом.
Радиостанция, передающая информацию, на этапе установления связи передает служебную информацию - несколько специальных сигналов, например кодовых, или одинаковых кодовых групп, число которых, в зависимости от используемых оптимизационных методов, изменяется от нескольких десятков до нескольких сотен (определяется расчетным или опытным путем). Число сигналов в кодовых группах также определяется расчетным или опытным путем.
На первом шаге вхождения в связь радиостанции, принимающей информацию (заявляемое устройство), на второй - управляющий - вход фазовращателя 11 с блока управления 17 поступает напряжение UH, устанавливающее начальное значение фазового сдвига.
Для случая использования кодовых групп сигналов первая группа кодового сигнала с выхода АЦП 17.1 поступает в ЦВУ 17.2, где сравнивается с копией кодового сигнала. Если результат сравнения (коэффициент совпадения) превышает пороговое значение коэффициента совпадения, определяемое расчетным путем, то цифровое значение управляющего напряжения, вырабатываемого в ЦВУ 17.2, не изменяется и начальный процесс подстройки фазы останавливается. В противном случае в ЦВУ 17.2 рассчитывается цифровое значение напряжения, равное среднему значению первого и второго промежуточных значений управляющего напряжения:
Figure 00000028
Здесь UT - текущее значение порогового напряжения,
UПР1 - первое промежуточное значение порогового напряжения,
UПР2 - второе промежуточное значение порогового напряжения.
На первом шаге работы алгоритма, реализующего метод деления пополам, первое промежуточное значение управляющего напряжения UПР1 и второе промежуточное значение управляющего напряжения UПР2 выбираются равными напряжениям, устанавливающим максимальное и минимальное начальные значения фазового сдвига соответственно.
Полученное значение напряжения фиксируется как текущее значение управляющего напряжения.
На последующих шагах расчет значений управляющего напряжения осуществляется следующим образом.
При обработке очередной группы кодового сигнала кодовый сигнал и помеха в цифровом виде с выхода АЦП 17.1 поступает в ЦВУ 17.2, где сравнивается с копией кодового сигнала. Если результат сравнения - коэффициент совпадения превышает пороговое значение, то цифровое значение управляющего напряжения, вырабатываемое в ЦВУ 17.2, не изменяется, процесс поиска оптимального значения управляющего напряжения останавливается.
Если значение коэффициента совпадения не превышает пороговое значение и превышает коэффициент совпадения, полученный на предыдущем шаге, то в качестве первого промежуточного значения запоминается текущее значение напряжения, полученное на предыдущем шаге:
UПР1=UT(n-1),
где UT(n-1) - текущее значение напряжения, полученное на предыдущем шаге,
n - номер шага процесса.
Если значение коэффициента совпадения не превышает порог совпадения и не превышает значения коэффициента совпадения, полученного на предыдущем шаге, то в качестве второго промежуточного значения запоминается текущее значение напряжения, полученное на предыдущем шаге:
UПР2=UT(n-1).
Текущее значение порогового напряжения рассчитывается по формуле (27).
Процесс продолжается до тех пор, пока значение коэффициента совпадения не станет равным или не превысит пороговое значение коэффициента совпадения или пока не будут исчерпаны все кодовые группы служебного сообщения.
После чего осуществляется прием информации, причем в приемном устройстве радиостанции, принимающей информацию (заявляемое устройство), используется оптимальное значение управляющего напряжения и соответственно оптимальное значение фазового сдвига.
Поиск оптимального значения фазового сдвига осуществляется для каждого интервала монотонного убывания или возрастания функции cos х.
При скорости передачи информации 1200 бит/с служебное сообщение, содержащее 12 кодовых групп по 10 импульсов, составляет 10% от объема передаваемой информации, если темп адаптации равен 1 циклу в секунду.
При этом потенциальная точность определения фазового сдвига составляет 0,1%, для случая реализации алгоритма деления пополам.
На этапе слежения за фазой (фазовая автоподстройка) используются известные методы автоподстройки фазы (см., например, Линдсей В. Системы синхронизации в связи и управлении: Пер. с англ. / Под ред. Ю.Н.Бакаева и М.В.Капранова. - М.: Сов. Радио, 1978).
В случае реализации систем автоподстройки в виде цифровых систем, в качестве такого метода может использоваться любой из известных методов автоматического регулирования, реализованного в цифровом виде.
В этом случае значение управляющего напряжения на текущем (n-ом) шаге определяется в общем случае с использованием соотношения
Figure 00000029
где UC(n), UP(n), UC(n-1), UP(n-1) - сигнал и помеха на n-ом и (n-1)-ом шагах соответственно,
f - функция, определяющая зависимость сигнала управления от величины сигнала и помехи на n-ом и (n-1)-ом шагах.
ЦВУ 17.2 может быть реализовано, например:
в виде микропроцессорных устройств (или в виде единого микропроцессорного устройства) с соответствующим программным обеспечением, например процессора серии TMS320VC5416 фирмы Texas Instruments;
в виде программируемой логической интегральной схемы (ПЛИС), с соответствующим программным обеспечением, например ПЛИС XCV400 фирмы Xilinx.
Эффективность предлагаемого устройства по критерию отношения мощности полезного сигнала к мощности помехи на выходе устройства может быть оценена следующим образом
Figure 00000030
Эффективность предлагаемого устройства для различных значений коэффициента компенсации сигнала (Ккс) и помех (Ккп) и коэффициента усреднения (Кус) приведена в таблице 1.
Таблица 1
Значение исходного отношения сигнал/помеха Ккс, % Ккп, % Кус Значение отношения сигнал/помеха на выходе устройства
1/1 80 90 0,82 3/1
1/1 90 90 0,82 3,4/1
1/1 80 90 0,64 1,9/1
1/1 90 90 0,64 2,1/1
Таким образом, по сравнению с прототипом, предлагаемое устройство, в случае использования амплитудно-модулированных сигналов, широтно-импульсной модуляции, кодово-импульсной модуляции, обеспечивает значительное повышение отношения амплитуды сигнала к амплитуде помехи, т.е. обеспечивает нормальную работу приемника (в пределах динамического диапазона приемника) в случаях, когда работа устройства прототипа невозможна.

Claims (4)

1. Устройство компенсации помех, содержащее первый полосовой фильтр, сумматор, последовательно соединенные генератор гармонических колебаний и фазовращатель, отличающееся тем, что введены первый блок умножения, выход которого соединен с первым входом сумматора, последовательно соединенные первый амплитудный детектор, блок вычитания и блок сравнения с порогом, второй выход которого является входом для порогового напряжения, а выход - выходом устройства, последовательно соединенные второй полосовой фильтр, второй блок умножения и третий полосовой фильтр, выход которого соединен со вторым входом сумматора, последовательно соединенные третий блок умножения, четвертый полосовой фильтр и третий амплитудный детектор, выход которого подсоединен ко второму входу блока вычитания, а также формирователь постоянного напряжения, выход которого соединен со вторым входом первого блока умножения, выход которого через второй амплитудный детектор соединен со вторым входом блока вычитания, выход которого через блок управления соединен со вторым входом фазовращателя, выход которого соединен со вторым входом второго блока умножения, вход которого соединен с первым входом третьего блока умножения, второй вход которого подсоединен к выходу генератора гармонических колебаний, кроме того, входы первого и второго полосовых фильтров объединены и являются входом устройства, выход первого полосового фильтра соединен с входом первого блока умножения, выход сумматора соединен с входом первого амплитудного детектора.
2. Устройство по п.1, отличающееся тем, что блок управления содержит последовательно соединенные аналого-цифровой преобразователь (АЦП), вычислительный блок и цифроаналоговый преобразователь, при этом вход АЦП является входом блока управления, а его выходом - выход ЦАП.
3. Устройство по п.2, отличающееся тем, что в качестве вычислительного блока использована программируемая логическая интегральная схема.
4. Устройство по п.2, отличающееся тем, что в качестве вычислительного блока использован микропроцессор.
RU2008130163/09A 2008-07-21 2008-07-21 Устройство компенсации помех RU2369963C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2008130163/09A RU2369963C1 (ru) 2008-07-21 2008-07-21 Устройство компенсации помех

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008130163/09A RU2369963C1 (ru) 2008-07-21 2008-07-21 Устройство компенсации помех

Publications (1)

Publication Number Publication Date
RU2369963C1 true RU2369963C1 (ru) 2009-10-10

Family

ID=41261058

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008130163/09A RU2369963C1 (ru) 2008-07-21 2008-07-21 Устройство компенсации помех

Country Status (1)

Country Link
RU (1) RU2369963C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2758499C1 (ru) * 2021-04-12 2021-10-29 Акционерное общество "Концерн "Созвездие" Радиостанция, обеспечивающая противодействие системам извлечения информации

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
МАКСИМОВ М.В., БОБНЕВ М.П, КРИВИЦКИЙ Б.Х. и др. Защита от радиопомех. - М.: Советское радио, 1976, с.254-258. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2758499C1 (ru) * 2021-04-12 2021-10-29 Акционерное общество "Концерн "Созвездие" Радиостанция, обеспечивающая противодействие системам извлечения информации

Similar Documents

Publication Publication Date Title
KR101045984B1 (ko) 수신 시각 계측 장치 및 이 수신 시각 계측 장치를 사용한거리 계측 장치
US4761795A (en) Receiver for bandspread signals
US3154782A (en) System for lengthening the effective range of radar
RU2369963C1 (ru) Устройство компенсации помех
RU132588U1 (ru) Устройство корреляционно-фильтровой обработки многочастотного линейно-частотно-модулированного фазо-кодо-манипулированного сигнала с одночастотным гетеродинированием
US2735001A (en) Witters
RU2700580C1 (ru) Способ энергетического обнаружения сигнала с компенсацией комбинационных составляющих сигнала и помех в основном и компенсационном каналах
US4293825A (en) Frequency-shifting systems for frequency modulated signals
RU2405249C1 (ru) Устройство компенсации помех
RU2178952C1 (ru) Система передачи и приема модулированных сигналов по сети электропитания
US6950478B1 (en) Transmitter and method having a low sampling frequency for digital to analog conversion
US3991372A (en) Circuit for reversing doppler signal modifying a carrier
US2731600A (en) Communication system
RU2804059C1 (ru) Способ помехозащищенной передачи дискретных сигналов на основе однополосной модуляции
RU2749996C1 (ru) Устройство формирования сложных сигналов
RU2801874C1 (ru) Передающая система повышенной скрытности настройки с автоматическим устройством согласования, использующим широкополосный сигнал
US2858369A (en) Means for modulating a single carrier with dissimilar signals for televsion transmission and the like
RU2504903C2 (ru) Региональная информационная система связи
GB2317280A (en) Bandwidth adjustment in phase locked loops
RU2631668C1 (ru) Устройство для измерения разности фаз радиосигналов
UA126759C2 (uk) Синтезатор частот с-діапазону
RU2079971C1 (ru) Радиоприемное устройство амплитудно-модулированных сигналов с компенсацией гармонических помех
RU2216872C1 (ru) Приемное устройство сигналов с линейной частотной модуляцией от движущегося передатчика
SU1601758A1 (ru) Система дл передачи и приема сигналов с одновременной амплитудой и частотной модул цией
SU1363488A2 (ru) Устройство компенсации помех

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200722