RU2367725C1 - Электрод сравнения длительного действия - Google Patents

Электрод сравнения длительного действия Download PDF

Info

Publication number
RU2367725C1
RU2367725C1 RU2008107446/02A RU2008107446A RU2367725C1 RU 2367725 C1 RU2367725 C1 RU 2367725C1 RU 2008107446/02 A RU2008107446/02 A RU 2008107446/02A RU 2008107446 A RU2008107446 A RU 2008107446A RU 2367725 C1 RU2367725 C1 RU 2367725C1
Authority
RU
Russia
Prior art keywords
electrode
membrane
esn
ion
housing
Prior art date
Application number
RU2008107446/02A
Other languages
English (en)
Inventor
Анатолий Леонидович Синявин (RU)
Анатолий Леонидович Синявин
Original Assignee
Федеральное Государственное Образовательное Учреждение Высшего Профессионального Образования "Южный Федеральный Университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное Государственное Образовательное Учреждение Высшего Профессионального Образования "Южный Федеральный Университет" filed Critical Федеральное Государственное Образовательное Учреждение Высшего Профессионального Образования "Южный Федеральный Университет"
Priority to RU2008107446/02A priority Critical patent/RU2367725C1/ru
Application granted granted Critical
Publication of RU2367725C1 publication Critical patent/RU2367725C1/ru

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Изобретение относится к области защиты металлов от коррозии и может быть использовано для определения опасности электрохимической коррозии и эффективности действия катодной защиты подземных магистральных стальных трубопроводов. Электрод содержит диэлектрический корпус, заполненный раствором медносульфатного электролита, в который погружен медный электрод в форме спирали, на дне корпуса герметично установлена мембрана для обеспечения электрохимического контакта электрода с грунтом, на боковой стенке корпуса закреплен датчик потенциала, а выходные проводники медного электрода и датчика потенциала соединены с клеммами для подключения к измерительному прибору, при этом в качестве мембраны использована гетерогенная ионопроводящая мембрана, выполненная из спрессованной смеси равномерно распределенных частиц гидрофильного материала в гидрофобном связующем, причем в качестве гидрофильного материала использован перлит, а в качестве гидрофобного связующего - фторопласт при следующем соотношении компонентов, мас.%: перлит 5-15; фторопласт 90-95. Электрод стабилен в течение 10 лет. 1 з.п. ф-лы, 2 табл., 3 ил.

Description

Изобретение относится к приборам коррозионных измерений на подземных металлических сооружениях и может быть использовано для определения опасности электрохимической коррозии и эффективности действия электрохимической защиты магистральных стальных нефтегазопроводов для работы с автоматическим преобразователем катодной защиты в режиме поддержания заданной разности потенциалов труба-земля.
Для электрохимической защиты подземных сооружений-нефтехранилищ, кабелей и др. используют биметаллические электроды (RU 2219290, 7 МПК C23F 13/16, 27.05.2003) [1], (SU 1421000 A1, 15.03.1994) [2], (US 4957612, 18.09.1990) [3], (GB 1603629, 25.11.1981) [4], GB 2125827 A, 14.03.1984) [5]. При помещении биметаллического электрода в грунт повышенной влажности или в грунтовые воды электрохимическая коррозия ускоряет расход металлов электрода, что требует его частой замены. Вследствие этого в системах электрохимической защиты протяженных магистральных стальных нефтегазопроводов используют электроды сравнения неполяризующиеся медно-сульфатные ЭСН-МС1 (МС2) (Руководство по эксплуатации: АИКС.421254.002 РЭ, «Концерн энергомера», ОАО «ЭТЗ «Энергомера», ОКП 42 1811, 12.2004 г.) [6]. Этот электрод сравнения состоит из пластмассового корпуса 1, в верхнюю часть которого установлен стационарно медный стержень (электрод), осуществляющий электрический контакт с электролитом. К внешнему выводу медного стержня припаян соединительный провод для присоединения электрода к измерительному устройству. В нижней части корпуса установлена гомогенная ионообменная мембрана (одна в ЭСН-МС1 или две в ЭСН-МС2), которая герметично прижата к корпусу гайкой через уплотнительную прокладку. Гайка имеет перфорированное основание, выполненное в виде решетки, для предотвращения повреждения ионообменной мембраны (или мембран) при установке электрода в грунт. Корпус электрода сравнения заполнен электролитом, состоящим из насыщенного раствора сульфата меди в дистиллированной воде и этиленгликоля. На корпусе электрода установлен датчик потенциала с соединительным проводом для подсоединения к измерительному устройству. Соединительные провода оканчиваются наконечниками, к которым присоединена экранированная оплетка жил кабеля. Датчик потенциала выполнен из стальной пластины размером 25x25 мм, установленной стационарно в специальное посадочное место на внешней поверхности корпуса электрода. Известный электрод сравнения неполяризующийся стационарный был рекомендован для использования при электрохимической защите подземных трубопроводов (Сборник нормативных документов для работников строительных и эксплуатационных организаций газового хозяйства РСФСР. Защита подземных трубопроводов от коррозии - Л.: Недра, 1991, с.11, 14-16) [7].
Описанная выше конструкции электрода сравнения длительного действия с одной гомогенной ионообменной мембраной, как в электроде сравнения ЭСН-МС1 [6], заявленная в изобретении (SU 1601199, 5 МПК C23F 13/00, 23.10.1990, Бюл. №39) [8], содержит диэлектрический корпус с пористым дном, заполненный электролитом, расположенный в корпусе медный стержень и смонтированный на корпусе датчик потенциала. С целью повышения срока службы электрода и точности измерений потенциала подземных металлических сооружений за счет повышения стабильности потенциала электрода сравнения, обеспечения транспортабельности и сохранности электродов при температурах до -50°С, а также исключения загустителя, он снабжен гомогенной ионообменной мембраной, смонтированной на пористом дне корпуса, а электролит содержит насыщенный раствор сульфата меди в смеси воды и этиленгликоля в соотношении 3:2-2:1. Гомогенная ионообменная мембрана толщиной 30-60 мкм изготовлена радиационной привитой сополимеризацией акриловой или метакриловой кислоты в количестве 100-170% на двуосно-ориентированную полипропиленовую пленку. При проведении измерений значения потенциалов электродов составили 120±10 мВ относительно хлоридсеребряного электрода. Согласно описанию электрод проверялся на влагопроницаемость погружением в дистиллированную воду, не содержащую солей и, следовательно, при отсутствии обмена солей раствора электролита на катионы солей, содержащиеся в грунтовых водах, при котором происходит осмотическое проникновение солесодержащей воды внутрь электрода.
С целью увеличения срока службы в электродах сравнения (RU 2122047, 6 МПК C23F 13/00, 1998.11.20) [9] устанавливают, по крайней мере, две гомогенные ионообменные мембраны, а дно муфты снабжают перфорацией для защиты мембран от механических повреждений при установке и эксплуатации электрода сравнения, что было использовано в электроде ЭСН-МС2 [6]. Использование нескольких гомогенных ионообменных мембран позволяет, как это приведено в описании патента, увеличить срок службы электрода сравнения за счет снижения осмотического переноса влаги в корпус электрода сравнения после проникновения влаги в межмембранный зазор, приводящего к падению осмотического давления на внешнюю мембрану. Однако при этом сопротивление мембраны электрода возрастает до 100 кОм, что существенно затрудняет измерение потенциала. На практике для проверки электролитического контакта электрода с грунтом проводят измерения электрического сопротивления:
- между электродом (контактным стержнем) и сооружением (трубопроводом, кабелем и т.п.);
- между датчиком потенциала и сооружением.
Электрическое сопротивление между указанными объектами должно быть в пределах (0,1-15) кОм согласно техническим требованиям к электроду сравнения [6, стр.14].
Недостатком электрода сравнения с одной или двумя гомогенными ионообменными мембранами [6], [8], [9] является высокая скорость осмотического проникновения грунтовых вод, обусловленная разностью концентраций солей в растворе электролита и грунтовых водах, что приводит к разрушению мембраны за счет увеличения внутреннего давления. Под действием осмотического давления ускоряется процесс диффузии раствора электролита через мембрану в среду, что приводит к быстрому снижению концентрации электролита и, как следствие, к падению потенциала и снижению точности измерения потенциала подземных металлических сооружений.
Для повышения надежности, увеличения срока службы и унификации по используемым электролитам и по типу ионообменной мембраны электрод сравнения длительного действия (RU 2172943 С2, 7 МПК G01N 17/02, C23F 13/00, 2001.08.27.) [10], принимаемый за прототип настоящего изобретения, содержит диэлектрический корпус, заполненный электролитом, дно корпуса состоит из пористой керамической диафрагмы и гомогенной ионообменной мембраны, поджатых решетчатой втулкой. В случае использования гетерогенной мембраны толщиной 200-900 мкм диафрагма не устанавливается. В установочной нише корпуса закреплен датчик потенциала с одним из проводников. Другой проводник пропущен через изолирующий участок корпуса и выполнен в виде спирали, погруженной в электролит, что позволяет снизить переходное сопротивление за счет исключения соединения медного стержня (измерительного электрода) с проводником.
Следует отметить, что гетерогенные мембраны не могут быть использованы, так как имеют высокое электрическое сопротивление, поскольку их толщина составляет 200-900 мкм. Гомогенная ионобменная мембрана имеет малую толщину, порядка 30 мкм, поэтому в ней присутствуют сквозные поры, через которые происходит интенсивное замещение ионов меди на ионы натрия и калия, содержащиеся в грунтовых водах, что сопровождается осмотическим проникновением воды в электролит. При этом ускоряется и процесс диффузии электролита из электрода сравнения во влажный грунт или грунтовые воды. Так как скорость диффузии сульфата меди из электрода сравнения при нахождении его в грунтовых водах, согласно экспериментальным данным, полученным автором настоящего изобретения, составляет 3-5 г сульфата меди в месяц, а его содержание в электроде - 58 г, то через 6-10 месяцев концентрация сульфата меди в растворе электролита уменьшится в два раза, что приведет к снижению потенциала и выходу электрода из строя.
Приведенные выводы подтверждены документально (ОАО «Газпром», Протокол технического совещания по применению электродов сравнения длительного действия на установках катодной защиты №106 от 18.12.2006 г., Москва) [9], в котором отмечено, что 30-40% электродов сравнения длительного действия ЭСН-МС1, ЭСН-МС2 с гомогенной ионообменной мембраной имеют срок службы 1-2 года вместо указанных в паспорте сроков эксплуатации - 10 лет. При этом более 20% электродов выходят из строя в первые два месяца работы. Поэтому было решено приостановить закупку и установку электродов сравнения длительного действия с ионообменной мембраной. При длительном хранении на складе электрода сравнения ЭСН-МС1 гомогенная ионообменная мембрана прогибается внутрь электрода за счет выхода раствора электролита и прокалывается медным стержнем-электродом.
Задачей, решаемой настоящим изобретением, является увеличение срока службы электрода сравнения длительного действия, не менее чем до 10 лет, при контакте электрода с грунтовыми водами, за счет снижения скорости диффузии сульфата меди из раствора электролита через мембрану в грунт, и скорости осмотического проникновения грунтовых вод через мембрану в раствор электролита.
Поставленная задача решена в заявляемом электроде сравнения длительного действия, который содержит диэлектрический корпус, заполненный раствором медносульфатного электролита, в который погружен медный электрод в форме спирали, на дне корпуса герметично установлена мембрана для электрохимического контакта электрода с грунтом, на боковой стенке корпуса закреплен датчик потенциала, а выходные проводники медного электрода и датчика потенциала соединены с клеммами для подключения к измерительному прибору.
Согласно изобретению в качестве мембраны использована гетерогенная ионопроводящая мембрана, выполненная из спрессованной смеси равномерно распределенных частиц гидрофильного материала в гидрофобном связующем, причем в качестве гидрофильного материала использован перлит, а в качестве гидрофобного связующего - фторопласт, при следующем соотношении исходных компонентов, вес %:
перлит 5-15
фторопласт 90-95
В частном случае выполнения гетерогенная ионопроводящая мембрана имеет толщину 3-4 мм.
Такое соотношение перлита и фторопласта в материале гетерогенной ионопроводящей мембраны обеспечивает ионную проводимость, уменьшает скорость осмотического проникновения в электрод грунтовых вод и скорость диффузии электролита в грунт. Это обусловлено сочетанием следующих свойств структуры новой мембраны: гидрофильными свойствами перлита, отсутствием прямых сквозных пор за счет исключения пленочной технологии и гидрофобными свойствами фторопласта, который не меняет своего объема при контакте с грунтовыми водами, что замедляет осмотическое проникновение воды в раствор электролита, обусловленное разностью концентраций солей в растворе электролита и грунтовых водах, и снижает скорость диффузии электролита в грунтовые воды.
При толщине гетерогенной ионопроводящей мембраны 3-4 мм отсутствуют прямые сквозные поры, как это имеет место в тонкой (30-60 мкм) гомогенной ионообменной мембране [6]. Наличие гидрофобного связующего - фторопласта также обеспечивает необходимую прочность и эластичность ионообменной мембраны.
Заявляемый электрод сравнения, в котором в отличие от известных электродов типа ЭСН-МС1, ЭСН-МС2 вместо гомогенной использована гетерогенная ионопроводящая мембрана из композиционного материала, содержащего фторопласт с добавкой перлита, далее обозначен как «ЭСН-Ф».
Изобретение поясняется фигурами и таблицами.
На фиг.1 приведен схематический чертеж электрода сравнения длительного действия, общий вид.
На фиг.2 схематически представлена структура материала гетерогенной ионопроводящей мембраны.
На фиг.3 представлены графики скорости веса электродов, в г/см2 осмотического проникновения воды электроды, в г/см2 единицы площади мембраны, от времени их выдержки, в часах, в водопроводной воде, где: для электрода сравнения ЭСН-МС1 с гомогенной ионообменной мембраной - кривая 1, и заявляемого электрода ЭСН-Ф - с гетерогенной ионопроводящей мембраной из материала, имеющего состав: перлит - 10 вес.%; фторопласт - 90 вес.%: - кривая 2.
В таблице 1 приведены сравнительные данные абсолютного увеличения веса электродов сравнения, в г/см2 единицы площади мембраны, от времени их выдержки, в сутках, в водопроводной воде для электрода сравнения ЭСН-МС1 - с гомогенной ионообменной мембраной и заявляемого электрода ЭСН-Ф - с гетерогенной ионопроводящей мембраной из материала состава: перлит -10 вес.%; фторопласт - 90 вес.%.
В таблице 2 приведены сравнительные данные потенциалов электродов сравнения, в мВ, от времени их выдержки, в сутках, в водопроводной воде для электрода сравнения ЭСН-МС1 и заявляемого электрода. ЭСН-Ф с гетерогенной ионопроводящей мембраной из материала, имеющего состав: перлит - 10 вес.%; фторопласт - 90 вес.%.
Электрод сравнения длительного действия (фиг.1) содержит диэлектрический корпус 1, заполненный раствором медносульфатного электролита 2, На дне корпуса 1 установлена гетерогенная ионопроводящая мембрана 3, которая поджата к стенкам корпуса 1 с помощью герметичной втулки 4. В раствор электролита 2 погружен медный электрод 5 в форме спирали, выполненный из многожильного медного провода с удаленной изоляцией. Верхняя часть медного электрода 5 герметично зафиксирована в пробке 6 крышки 7 в верхней части корпуса 1. В установочной нише боковой стенки корпуса 1 закреплен датчик потенциала 8. Выходной проводник медного электрода 5 и выходной проводник 9 датчика потенциала 8 соединены с клеммами, которые предназначены для подключения к измерительному прибору. Гетерогенная ионопроводящая мембрана 3 (фиг.2) выполнена из спрессованной смеси равномерно распределенных частиц гидрофильного материала в гидрофобном связующем материале. В качестве гидрофильного материала использован природный перлит 10 в количестве 5-15 вес.% и в качестве гидрофобного связующего - фторопласт 11 в количестве 90-95 вес.%.
Для изготовления ионообменной мембраны в суспензию фторопласта объемом 100 мл марки Ф-4Д добавляют 12 г порошка природного гидрофильного материала перлита, имеющего в соответствии с этикеткой содержание компонентов, вес.%: оксид кремния SiО2 - 75; оксид алюминия Аl2О3 - 13; оксид железа - Fe2О3 - 2; Н2О - 7;
Исходные компоненты тщательно перемешивают и полученную тестообразную массу высушивают в термостате при температуре 80-90°С для удаления лишней влаги. Затем из полученного материала прокатывают на механических вальцах листовую заготовку площадью 100х100 см и толщиной 3-4 мм, из которой вырезают круги диаметром 80 мм, которые затем герметично устанавливают на дне корпуса 1 с помощью резьбовой втулки 4. Проводник электрода 5 выводят через пробку 6 и фиксируют герметичной крышкой 7.
Испытания заявляемого электрода сравнения на влагопроницаемость мембраны проводили путем погружения корпуса электрода в стеклянную кювету с водопроводной водой, содержащей ионы натрия и калия, на глубину 20 мм и выдерживали в течение 32 суток. В одну кювету помещали заявляемый электрод сравнения ЭСН-Ф, а в другую - известный электрод ЭСН-МС1. Электроды взвешивали через одинаковые промежутки времени выдержки в водопроводной воде для определения количества воды, проникшей в электроды за счет осмотического процесса. После каждого взвешивания измеряли электрический потенциал электродов относительно стандартного хлорсеребряного электрода сравнения. Как следует из графика (фиг.3) скорость осмотического проникновения воды внутрь электрода ЭСН-Ф в пересчете на 1 см2 площади мембраны (кривая 2) на порядок ниже, и составляет 0,03 г/см2, чем для электрода ЭСН-МС1, в котором скорость осмотического проникновения воды внутрь электрода составляет 0,7 г/см2 за 96 часов выдержки (кривая 1). Низкая скорость осмотического проникновения воды в электрод ЭСН-Ф обеспечивает сохранение электрохимических свойств электролита и увеличивает срок службы электрода не менее чем до 10 лет. Абсолютное увеличение веса электрода ЭСН-МС1 составляет 80 г, а электрода ЭСН-Ф - 0,4 г за 32 суток выдержки в водопроводной воде (таблица 1).
Как следует из таблицы 2 потенциал электрода ЭСН-Ф за 32 суток выдержки в водопроводной воде остается стабильным и составляет 117-118 мВ, в то время как для электрода ЭСН-МС1 потенциал уменьшился за тот же период выдержки на 20 мВ, что свидетельствует о выходе его из строя, так как в соответствии с техническими требованиями потенциал электрода не может быть ниже 90 мВ. Сопротивление электрода ЭСН-Ф при толщине мембраны 3-4 мм составляет в 5-10 кОм, что соответствует техническим требованиям к электродам сравнения. Толщина гетерогенной ионопровящей мембраны 3-4 мм удовлетворяет условиям обеспечения механической прочности мембраны, пластичности при прокатке заготовки и экономии фторопласта. Кроме того, с увеличением толщины мембраны более 4 мм возрастает сопротивление электрода более 15 кОм. При содержании перлита 5 вес.% сопротивление электрода ЭСН-Ф равно 10 кОм при потенциале 110 мВ, а скорость осмотического проникновения воды внутрь электрода составляет 0,027 г/сутки. При уменьшении содержания перлита менее 5 вес.% сопротивление мембраны возрастает более 10 кОм. Увеличение содержания перлита свыше 10 вес.% приводит к ухудшению пластических свойств массы, что затрудняет изготовление ионопроводящей мембраны.
Электрод сравнения длительного действия устанавливают вертикально в грунт на дно шурфа (траншеи) на уровне нижней образующей трубопровода на расстоянии 300-350 мм от его боковой поверхности. Для создания надежного электрохимического контакта электрода с грунтом, в котором находится защищаемый объект, основание электрода обмазывают хорошо увлажненным густым глинистым раствором и засыпают просеянным песком или грунтом без крупных включений, затем хорошо увлажняют грунт с его утрамбовкой. Провода электрода сравнения 5, 9 выводят и подсоединяют к контрольно-измерительному пункту или вводят в автоматический выпрямитель для катодной защиты. Контрольно-измерительным прибором сравниваются потенциалы электрода сравнения и защищаемого трубопровода для обеспечения потенциала, обеспечивающего его электрохимическую защиту. Стабильность потенциала электрода сравнения ЭСН-Ф подтверждена длительными испытаниями опытной партии в реальных условиях на промышленных установках катодной защиты.
Источники информации
1. RU 2219290, 7 МПК C23F 13/16, 27.05.2003.
2. SU 1421000 А1, 15.03.1994.
3. US 4957612, 18.09.1990.
4. GB 1603629, 25.11.1981.
5. GB 2125827 A, 14.03.1984.
6. Электроды сравнения неполяризующиеся медно-сульфатные «Энергомера» ЭСН-МС1, (МС2) Руководство по эксплуатации: АИКС.421254.002 РЭ, «Концерн энергомера», ОАО «ЭТЗ «Энергомера», ОКП 42 1811, 12.2004 г.
7. Сборник нормативных документов для работников строительных и эксплуатационных организаций газового хозяйства РСФСР. Защита подземных трубопроводов от коррозии - Л.: Недра, 1991, с.11, 14-16.
8. SU 1601199, 5 MПK C23F 13/00, 23.10.1990, Бюл. №39.
9. ОАО «Газпром», Протокол технического совещания по применению электродов сравнения длительного действия на установках катодной защиты №106 от 18.12.2006 г., Москва
10. RU 2172943 С2, 7 МПК G01N 17/02, C23F 13/00, 2001.08.27. - прототип.
Таблица 1
Сравнительные данные абсолютного увеличения веса электродов сравнения, в г/см 2 единицы площади мембраны от времени их выдержки в водопроводной воде, в сутках, для электрода сравнения ЭСН-МС1 - с гомогенной ионообменной мембраной и заявляемого электрода ЭСН-Ф - с гетерогенной ионопроводящей мембраной из материала состава: перлит - 10 вес.%; фторопласт - 90 вес.%.
Время выдержки, в сутках 4 8 12 16 20 24 28 32
Увеличение веса электрода ЭСН-МС1, г/см2 5 12 17 36 47 58 69 80
Увеличение веса электрода ЭСН-Ф, г/см2 0,2 0,25 0,3 0,32 0,36 0,4 0,42 0,45
Таблица 2
Сравнительные данные потенциалов электродов сравнения, в мВ, от времени их выдержки в водопроводной воде для электрода сравнения ЭСН-МС1 и заявляемого электрода ЭСН-Ф с гетерогенной ионопроводящей мембраной из материала состава: перлит - 10 вес.%; фторопласт - 90 вес.%.
Время выдержки, в сутках 4 8 12 16 20 24 28 32
Потенциал электрода ЭСН-МС1, мВ 96 86 88 96 76 86 76 76
Потенциал электрода ЭСН-Ф, мВ 118 118 117 118 117 117 118 118

Claims (2)

1. Электрод сравнения длительного действия, содержащий диэлектрический корпус, заполненный раствором медно-сульфатного электролита, в который погружен медный электрод в форме спирали, на дне корпуса герметично установлена мембрана для обеспечения электрохимического контакта электрода с грунтом, на боковой стенке корпуса закреплен датчик потенциала, а выходные проводники медного электрода и датчика потенциала соединены с клеммами для подключения к измерительному прибору, отличающийся тем, что в качестве мембраны использована гетерогенная ионопроводящая мембрана, выполненная из спрессованной смеси равномерно распределенных частиц гидрофильного материала в гидрофобном связующем, причем в качестве гидрофильного материала использован перлит, а в качестве гидрофобного связующего - фторопласт при следующем соотношении компонентов, мас.%: перлит 5-15; фторопласт 90-95.
2. Электрод по п.1, отличающийся тем, что гетерогенная ионопроводящая мембрана имеет толщину 3-4 мм.
RU2008107446/02A 2008-02-26 2008-02-26 Электрод сравнения длительного действия RU2367725C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2008107446/02A RU2367725C1 (ru) 2008-02-26 2008-02-26 Электрод сравнения длительного действия

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008107446/02A RU2367725C1 (ru) 2008-02-26 2008-02-26 Электрод сравнения длительного действия

Publications (1)

Publication Number Publication Date
RU2367725C1 true RU2367725C1 (ru) 2009-09-20

Family

ID=41167904

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008107446/02A RU2367725C1 (ru) 2008-02-26 2008-02-26 Электрод сравнения длительного действия

Country Status (1)

Country Link
RU (1) RU2367725C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2593855C1 (ru) * 2015-11-03 2016-08-10 Публичное акционерное общество "Татнефть" им. В.Д. Шашина Способ эксплуатации трубопроводов системы нефтесбора и поддержания пластового давления нефтяного месторождения
RU194130U1 (ru) * 2019-05-21 2019-11-28 Общество с ограниченной ответственностью "Завод нефтегазовой аппаратуры Анодъ" Электрод сравнения

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2593855C1 (ru) * 2015-11-03 2016-08-10 Публичное акционерное общество "Татнефть" им. В.Д. Шашина Способ эксплуатации трубопроводов системы нефтесбора и поддержания пластового давления нефтяного месторождения
RU194130U1 (ru) * 2019-05-21 2019-11-28 Общество с ограниченной ответственностью "Завод нефтегазовой аппаратуры Анодъ" Электрод сравнения

Similar Documents

Publication Publication Date Title
US6814854B2 (en) Hydrogen permeation probe method
JP7104326B2 (ja) 腐食性評価装置とその方法
US3649492A (en) Method for determining the completeness of cathodic protection of corrodible metal structure
CN107941686A (zh) 研究铁质管道电化学腐蚀和管网水质变化的试验模拟平台
Olesen et al. Corrosion rate measurement and oxide investigation of AC corrosion at varying AC/DC current densities
Doi et al. Effects of oxygen pressure and chloride ion concentration on corrosion of Iron in mortar exposed to pressurized humid oxygen gas
RU2367725C1 (ru) Электрод сравнения длительного действия
Nahali et al. Effect of Na3PO4 inhibitor on chloride diffusion in mortar
CN106442303A (zh) 一种电子电器服役环境腐蚀性的测量方法
Adeloju et al. Corrosion resistance of Cu2O and CuO on copper surfaces in aqueous media
Sun et al. Atmospheric corrosion of aluminium in the northern Taklamakan Desert environment
WO2024012393A1 (zh) 一种用于模拟水下区水泥基材料钙离子溶出和氯离子扩散情况的装置
US7459067B2 (en) Semi-permanent reference electrode
US3549993A (en) Corrosion rate measuring method by maintaining electrolytic contact and excluding any substantial oxygen contact with a test specimen
RU2339740C1 (ru) Двухкамерный медно-сульфатный электрод сравнения неполяризующийся
EP3862465A1 (en) Copper/copper sulphate gel permanent reference electrode for the measurement of the true potential and current density of buried metal structures
RU2706251C1 (ru) Электрод сравнения
RU2122047C1 (ru) Электрод сравнения неполяризующийся
RU98588U1 (ru) Дискретный индикатор локальной коррозии металлических сооружений
GB2128751A (en) Hydrogen concentration meter
Poursaee et al. Principles of corrosion of steel in concrete structures
de Jones et al. Techniques for the Measurement of Electrode Processes at Temperatures above 100 C
RU2172943C2 (ru) Электрод сравнения длительного действия
JPH0452407B2 (ru)
WO2024069920A1 (ja) 試験体およびその作製方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20100227

PD4A Correction of name of patent owner
NF4A Reinstatement of patent

Effective date: 20120810

MM4A The patent is invalid due to non-payment of fees

Effective date: 20150227