RU2366069C1 - Вентильный электропривод - Google Patents

Вентильный электропривод Download PDF

Info

Publication number
RU2366069C1
RU2366069C1 RU2007148204/09A RU2007148204A RU2366069C1 RU 2366069 C1 RU2366069 C1 RU 2366069C1 RU 2007148204/09 A RU2007148204/09 A RU 2007148204/09A RU 2007148204 A RU2007148204 A RU 2007148204A RU 2366069 C1 RU2366069 C1 RU 2366069C1
Authority
RU
Russia
Prior art keywords
input
signal
speed
output
code
Prior art date
Application number
RU2007148204/09A
Other languages
English (en)
Other versions
RU2007148204A (ru
Inventor
Александр Сергеевич Гончаров (RU)
Александр Сергеевич Гончаров
Эрнст Георгиевич Кузнецов (RU)
Эрнст Георгиевич Кузнецов
Сергей Михайлович Миронов (RU)
Сергей Михайлович Миронов
Василий Васильевич Романов (RU)
Василий Васильевич Романов
Original Assignee
Общество с ограниченной ответственностью "Научно-исследовательский институт механотронных технологий-Альфа-Научный Центр" (ООО "НИИМЕХАНОТРОНИКИ-АЛЬФА-НЦ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Научно-исследовательский институт механотронных технологий-Альфа-Научный Центр" (ООО "НИИМЕХАНОТРОНИКИ-АЛЬФА-НЦ") filed Critical Общество с ограниченной ответственностью "Научно-исследовательский институт механотронных технологий-Альфа-Научный Центр" (ООО "НИИМЕХАНОТРОНИКИ-АЛЬФА-НЦ")
Priority to RU2007148204/09A priority Critical patent/RU2366069C1/ru
Publication of RU2007148204A publication Critical patent/RU2007148204A/ru
Application granted granted Critical
Publication of RU2366069C1 publication Critical patent/RU2366069C1/ru

Links

Images

Landscapes

  • Control Of Electric Motors In General (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

Изобретение относится к области электротехники и может быть использовано в исполнительных системах различных механизмов с широким диапазоном регулирования скорости. Техническим результатом является улучшение динамических характеристик, увеличение устойчивости и уменьшение пульсаций скорости в широком дипапазоне отработки заданных скоростей. Электропривод содержит электродвигатель, устройство формирования цифрового сигнала скорости, преобразователь «код-ШИМ», коммутатор, устройство формирования направления вращения, датчик положения, преобразователь сигнала обратной связи по положению в код, устройство определения ошибки по положению и устройство определения рассогласования по скорости, устройство выделения модуля и наблюдатель скорости, составленный из двух сумматоров, интегратора, устройства выделения модуля, функционального преобразователя и устройства умножения. Наблюдатель скорости по сигналу вырабатывает сигнал оценки, используемый в электроприводе в качестве обратной связи. Наличие в наблюдателе устройства выделения модуля и функционального преобразователя позволяет перестраивать фильтрующие свойства наблюдателя в зависимости от величины цифрового сигнала скорости, устраняя помехи устройства формирования цифрового сигнала скорости, что приводит к улучшению показателей качества электропривода в широком диапазоне отработки заданных скоростей. 4 з.п. ф-лы, 5 ил.

Description

Изобретение относится к электротехнике и может быть использовано в исполнительных системах различных механизмов с широким диапазоном регулирования скорости.
Известна система управления вентильным двигателем (пат. РФ № 2098917), содержащая двигатель, инвертор, датчик положения ротора с цифровым преобразователем сигнала и микро-ЭВМ, реализующую алгоритмы управления при трогании двигателя, разгоне, торможении и в стационарном режиме. Недостатком системы управления является то, что данная система не может реализовать широкий диапазон регулирования скорости двигателя из-за низкой информативности сигнала обратной связи по положению, определяемой наличием 3-х выходов датчика положения ротора.
Известны вентильные электроприводы (а.с. СССР № 1319221, № 1510060), содержащие электродвигатель, датчик положения ротора, усилитель мощности, устройство определения рассогласования по скорости и устройство формирования сигнала частоты вращения, представляющее собой наблюдатель, вырабатывающий оценку скорости. Сигнал оценки скорости используется в качестве главной обратной связи в системе регулирования скорости. Электроприводы имеют ограниченные точность и диапазон регулирования частоты вращения из-за ошибки, обусловленной действием момента нагрузки.
Известна система управления синхронным двигателем (US 2006/0125440 А1), содержащая синхронный двигатель, датчик углового положения, 3-х фазный инвертор, устройство определения рассогласования по скорости, регулятор скорости, а также наблюдатель скорости, представляющий собой модель двигателя, причем полученная оценка скорости используется в качестве главной обратной связи электропривода. Недостатком электропривода является невозможность реализовать широкий диапазон регулирования скорости, т.к. датчик положения ротора формирует дискретный сигнал обратной связи по положению, что приводит к пульсирующему сигналу оценки скорости, вырабатываемому наблюдателем при отработке низких скоростей, и, как следствие, к неудовлетворительной работе электропривода в нижней части диапазона регулирования.
Наиболее близким к изобретению является вентильный электропривод (а.с. СССР № 1829101), содержащий электродвигатель с датчиком положения ротора, преобразователь «код-ШИМ», коммутатор, датчик положения исполнительного механизма, преобразователь сигнала обратной связи по положению в код, а также функциональные элементы, реализованные с использованием программного вычислителя: устройство определения ошибки по положению, устройство определения направления вращения, устройство определения рассогласования по скорости и устройство определения скорости двигателя с цифровым выходом. Недостатком электропривода является то, что он обладает невысокими динамическими характеристиками и ограниченным диапазоном регулирования скорости из-за значительных пульсаций сигнала скорости, вырабатываемого устройством определения скорости двигателя, которые не позволяют сформировать «динамичные» настройки привода.
Техническим результатом, на достижение которого направлено изобретение, является улучшение динамичных характеристик, увеличение помехоустойчивости и уменьшение пульсации скорости в широком диапазоне отработки заданных скоростей.
Технический результат достигается тем, что в вентильный электропривод, содержащий электродвигатель, устройство формирования цифрового сигнала скорости, последовательно соединенные преобразователь «код-ШИМ» и коммутатор, выход которого подключен к электродвигателю, устройство формирования направления вращения, датчик положения, преобразователь сигнала обратной связи по положению в код, последовательно соединенные устройство определения ошибки по положению и устройство определения рассогласования по скорости, причем первый вход устройства определения ошибки по положению служит для подачи входного кода, второй вход устройства определения ошибки по положению подключен к выходу преобразователя обратной связи по положению в код, дополнительно введены первое устройство выделения модуля, первый сумматор, а также последовательно соединенные второй сумматор, интегратор, второе устройство выделения модуля, функциональный преобразователь и устройство умножения, причем выход устройства определения рассогласования по скорости подключен к входу первого устройства выделения модуля, к входу устройства формирования направления вращения и к первому входу второго сумматора, выход первого устройства выделения модуля подключен к входу преобразования «код-ШИМ», выход устройства формирования направления вращения соединен с вторым входом коммутатора, датчик положения установлен на валу электродвигателя, выход датчика положения подключен к входу преобразователя сигнала обратной связи по положению в код, выход которого подключен к входу устройства формирования цифрового сигнала скорости и к третьему входу коммутатора, выход устройства формирования цифрового сигнала скорости подключен к первому входу первого сумматора, выход устройства умножения подключен к второму входу второго сумматора, выход интегратора подключен к третьему входу второго сумматора, второму входу первого сумматора и к второму входу устройства определения рассогласования по скорости, а выход первого сумматора подключен к второму входу устройства умножения.
Функциональный преобразователь выполнен с реализацией убывающей ступенчатой зависимости выходного сигнала от входного, причем максимальный выходной сигнал соответствует нулевому входному сигналу, а максимальный выходной сигнал - максимальному входному сигналу.
Функциональный преобразователь выполнен с реализацией монотонно убывающей зависимости выходного сигнала от входного, причем максимальный выходной сигнал соответствует нулевому входному сигналу, а минимальный выходной сигнал - максимальному входному сигналу.
Устройство формирования цифрового сигнала скорости выполнено в виде устройства цифрового дифференцирования.
Датчик положения выполнен в виде сельсина, а преобразователь сигнала обратной связи по положению в код выполнен в виде преобразователя «фаза-код».
Работа устройства поясняется чертежами, где на фиг.1 изображена схема электропривода; на фиг.2 - структурная схема, отражающая динамические процессы в функциональных элементах электропривода: на фиг.3 и фиг.4 - варианты статических характеристик функционального преобразователя; на фиг.5 - осциллограммы переходных процессов функциональных элементов, полученные в электроприводе, реализованном по заявляемым техническим решениям.
Вентильный электропривод (фиг.1) содержит последовательно соединенные электродвигатель 1, коммутатор 2, преобразователь 3 «код-ШИМ», устройство 4 формирования цифрового сигнала скорости, устройство 5 формирования направления вращения, последовательно соединенные датчик 6 положения, преобразователь 7 сигнала обратной связи по положению в код, устройство 8 определения ошибки по положению, устройство 9 определения рассогласования по скорости и первое устройство 10 выделения модуля, первый сумматор 11, последовательно соединенные второй сумматор 12, интегратор 13, второе устройство 14 выделения модуля, функциональный преобразователь 15, устройство 16 умножения. Функциональные элементы 11-16 образуют наблюдатель 17 скорости. Первый сумматор 11 и второй сумматор 12 осуществляют алгебраическое суммирование входных сигналов. Датчик 6 положения установлен на валу электродвигателя 1.
Первый вход устройства 8 определения ошибки по положению служит для подключения внешнего устройства задания входного кода. Выход преобразователя 7 сигнала обратной связи по положению в код подключен к третьему входу коммутатора 2 и к входу устройства 4 формирования цифрового сигнала скорости, выход которого подключен к первому входу первого сумматора 11, выход которого подключен к второму входу устройства 16 умножения, выход которого подключен к второму входу второго сумматора 12. Выход интегратора 13 подключен к второму входу устройства 9 определения рассогласования по скорости, к третьему входу второго сумматора 12 и к второму входу первого сумматора 11. Выход устройства 9 определения рассогласования по скорости подключен к первому входу второго сумматора 12 и к входу устройства 5 формирования направления вращения, выход которого подключен ко второму входу коммутатора 2. Выход первого устройства 10 выделения модуля подключен к входу преобразователя 3 «код-ШИМ».
Электропривод работает следующим образом:
На первый вход устройства 8 определения ошибки по положению (фиг.1) подается текущий код заданного положения, а на второй вход - код, несущий информацию об угловом положении ротора электродвигателя 1, полученный с помощью датчика 6 положения и преобразователя 7 сигнала обратной связи по положению в код. В результате на выходе устройства 8 определения ошибки по положению образуется сигнал разности указанных кодов с определенным весом, который подается на первый вход устройства 9 определения рассогласования по скорости. На выходе устройства 9 формируется управляющий сигнал, на выходе устройства 10 формируется модуль управляющего сигнала, а на выходе устройства 5 - знак управляющего сигнала (сигнал, задающий направление вращения).
Модуль управляющего сигнала преобразуется в ШИМ-сигнал с помощью преобразователя 3 «код-ШИМ». Коммутатор 2 по сигналу устройства 5 формирования направления вращения, сигналу углового положения электродвигателя 1, поступающего с устройства 7, и ШИМ-сигналу преобразователя 3 «код-ШИМ» коммутирует фазные обмотки двигателя, в результате чего электродвигатель 1 вращается. При отработке линейно-измеряющего сигнала задания положения электропривод будет отрабатывать скорость, задаваемую темпом изменения сигнала задания.
Использование сигнала скорости, вырабатываемого устройством формирования цифрового сигнала скорости, непосредственно в качестве обратной связи по скорости, как это реализовано в прототипе, не позволяет получить высокие динамичные характеристики из-за пульсаций, обусловленных эффектами квантования по уровню и по времени.
Для получения высоких динамических характеристик в широком диапазоне отрабатываемых скоростей в электропривод введен наблюдатель 17 скорости. Наблюдатель по сигналу, поступающему с выхода устройства 4 формирования цифрового сигнала скорости, и по сигналу управления, поступающему с выхода устройства 9 определения рассогласования по скорости, вырабатывает оценку скорости, которая используется в качестве обратной связи.
Наблюдатель 17 скорости представляет собой модель электродвигателя с аппроксимацией динамических процессов апериодическим звеном первого порядка.
Модель реализована на интеграторе 13 и втором сумматоре 12 с охватом отрицательной обратной связью с выхода интегратора 13 на второй вход второго сумматора 12.
Сигнал управления, поступающий с выхода устройства 9 определения рассогласования по скорости, отрабатывается одновременно электродвигателем 1 и наблюдателем 17 скорости, причем первым входом наблюдателя является первый вход второго сумматора 12, а выходом - выход интегратора 13.
Для того чтобы сигнал оценки скорости «следовал» за сигналом скорости вала двигателя, введена обратная связь по разности между сигналом, вырабатываемым устройством 4 формирования цифрового сигнала скорости, который поступает на второй вход наблюдателя 17, являющимся первым входом первого сумматора 11, и сигналом оценки скорости, поступающим с выхода интегратора 13, на второй вход первого сумматора 11. В результате разность сигналов, полученная на выходе сумматора 11, пройдя через устройство 16 умножения, поступает на модель электродвигателя, реализованную с помощью функциональных элементов 12, 13, которая стремится к отработке этой разности. При этом оценка скорости, вырабатываемая интегратором 13, следует за сигналом скорости, вырабатываемым устройством 4 формирования цифрового сигнала скорости.
Последовательно соединенные второе устройство 14 выделения модуля, функциональный преобразователь 15 и устройство 16 умножения образуют нелинейную обратную связь в наблюдателе 17, которая позволяет перестраивать фильтрующие свойства наблюдателя в зависимости от величины цифрового сигнала скорости, содержащего мультипликативную помеху.
На фиг.2 приведена структурная схема, отражающая динамические процессы в наблюдателе 17 скорости в рамках аппроксимации «динамики» электродвигателя апериодическим звеном первого порядка. Переменные на схеме представлены в относительных единицах, где ν - сигнал скорости на выходе устройства 4 формирования цифрового сигнала скорости;
Figure 00000001
- оценка сигнала скорости, вырабатываемая наблюдателем 17 скорости; u - сигнал управления, поступающий с выхода устройства 9 определения рассогласования по скорости; k - коэффициент, определяющий глубину обратной связи наблюдателя по разности v-
Figure 00000002
, который определяется сигналом, поступающим с выхода функционального преобразователя 15; Тм - постоянная времени модели; ФП - функциональный преобразователь.
Для медленно меняющейся переменной ν, что будет иметь место в установившемся режиме при отработке заданной скорости, коэффициент k также будет медленно меняться. Тогда можно записать уравнение в операторной форме для определения оценки скорости
Figure 00000002
:
Figure 00000003
Figure 00000004
,
где u - сигнал управления на первом входе наблюдателя;
ν - скорость на втором входе наблюдателя;
Figure 00000005
- оценка скорости на выходе наблюдателя;
k - коэффициент, определяемый выходным сигналом функционального преобразователя 15;
Тм - постоянная времени модели.
Из уравнения видно, что коэффициент k определяет «динамику» наблюдателя, т.к.
Figure 00000006
является сомножителем постоянной времени Тм. Введение нелинейной обратной связи в наблюдатель позволяет перестраивать коэффициент k в зависимости от величины скорости ν, что приводит к подстраиванию фильтрующих свойств наблюдателя и, при наличии мультипликативной помехи в сигнале v эффективно уменьшать пульсации в сигнале оценки скорости
Figure 00000001
.
На фиг.3 и фиг.4 приведены варианты статической характеристики функционального преобразователя 15, которые позволяют реализовать изменение коэффициента k в зависимости от модуля величины скорости
Figure 00000007
На фиг.3 приведена статическая характеристика в виде убывающей ступенчатой зависимости выходного сигнала от входного; на фиг.4 - в виде монотонно убывающей зависимости выходного сигнала от входного.
При высоких скоростях вращения электродвигателя, глубина обратной связи в наблюдателе, определяющая его быстродействия, небольшая; при этом фильтрующие свойства наблюдателя максимальны и оценка скорости
Figure 00000001
имеет меньшие пульсации по сравнению с сигналом скорости ν, что приводит к более качественному регулированию скорости двигателя.
При низких скоростях величина пульсации в виде мультипликативной помехи на выходе устройства 4 формирования цифрового сигнала скорости имеет более низкий уровень, при этом сигнал на выходе второго устройства 14 выделения модуля имеет малое значение, а на выходе функционального преобразователя 15 - большую величину, что обуславливает большую глубину обратной связи по сигналу с выхода первого сумматора 11, наблюдатель становится более динамичным и обладает меньшими фильтрующими свойствами. При этом обеспечиваются лучшие динамические характеристики в нижней части диапазона регулирования скорости и более глубокий диапазон регулирования.
На фиг.5 представлены осциллограммы переходных процессов, полученных в реальном вентильном электроприводе в соответствии с заявленными техническими решениями. На фиг.5а приведена осциллограмма переходного процесса оценки скорости, на выходе наблюдателя 17, являющегося выходом интегратора 13, на фиг.5б - осциллограмма скорости на выходе устройства 4 формирования цифрового сигнала скорости, полученная цифровым дифференцированием. Сигнал оценки скорости имеет существенно меньший уровень пульсации и его использование в заявляемом вентильном электроприводе позволяет получить высокие динамические характеристики электропривода в широком диапазоне отработки заданных скоростей.
Таким образом, совокупное введение функциональных элементов: первого устройства 10 выделения модуля, первого сумматора 11, второго сумматора 12, интегратора 13, второго устройства выделения модуля 14, функционального преобразователя 15 и устройства 14 умножения и связей между ними приводит к достижению технического эффекта, заключающегося в улучшении динамических характеристик, повышении помехоустойчивости и уменьшении пульсаций скорости в широком диапазоне отработки заданных скоростей.

Claims (5)

1. Вентильный электропривод, содержащий электродвигатель, устройство формирования цифрового сигнала скорости, последовательно соединенные преобразователь «код-ШИМ» и коммутатор, выход которого подключен к электродвигателю, устройство формирования направления вращения, датчик положения, преобразователь сигнала обратной связи по положению в код, последовательно соединенные устройство определения ошибки по положению и устройство определения рассогласования по скорости, причем первый вход устройства определения ошибки по положению служит для подачи входного кода, второй вход устройства определения ошибки по положению подключен к выходу преобразователя обратной связи по положению в код, отличающийся тем, что в него дополнительно введены первое устройство выделения модуля, первый сумматор, а также последовательно соединенные второй сумматор, интегратор, второе устройство выделения модуля, функциональный преобразователь, выполненный с возможностью изменения коэффициента, определяющего глубину обратной связи по разности между сигналом скорости и оценкой сигнала скорости в зависимости от модуля величины скорости, и устройство умножения, причем выход устройства определения рассогласования по скорости подключен к входу первого устройства выделения модуля, к входу устройства формирования направления вращения и к первому входу второго сумматора, выход первого устройства выделения модуля подключен к входу преобразования «код-ШИМ», выход устройства формирования направления вращения соединен со вторым входом коммутатора, датчик положения установлен на валу электродвигателя, выход датчика положения подключен к входу преобразователя сигнала обратной связи по положению в код, выход которого подключен к входу устройства формирования цифрового сигнала скорости и к третьему входу коммутатора, выход устройства формирования цифрового сигнала скорости подключен к первому входу первого сумматора, выход устройства умножения подключен к второму входу второго сумматора, выход интегратора подключен к третьему входу второго сумматора, второму входу первого сумматора и к второму входу устройства определения рассогласования по скорости, а выход первого сумматора подключен к второму входу устройства умножения.
2. Вентильный электропривод по п.1, отличающийся тем, что функциональный преобразователь выполнен с реализацией убывающей ступенчатой зависимости выходного сигнала от входного, причем максимальный выходной сигнал соответствует нулевому входному сигналу, а минимальный выходной сигнал - максимальному входному сигналу.
3. Вентильный электропривод по п.1, отличающийся тем, что функциональный преобразователь выполнен с реализацией монотонно убывающей зависимости выходного сигнала от входного, причем максимальный выходной сигнал соответствует нулевому входному сигналу, а минимальный выходной сигнал - максимальному входному сигналу.
4. Вентильный электропривод по п.1, отличающийся тем, что устройство формирования цифрового сигнала скорости выполнено в виде устройства цифрового дифференцирования.
5. Вентильный электропривод по п.1, отличающийся тем, что датчик положения выполнен в виде сельсина, а преобразователь сигнала обратной связи по положению в код выполнен в виде преобразователя «фаза-код».
RU2007148204/09A 2007-12-24 2007-12-24 Вентильный электропривод RU2366069C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2007148204/09A RU2366069C1 (ru) 2007-12-24 2007-12-24 Вентильный электропривод

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2007148204/09A RU2366069C1 (ru) 2007-12-24 2007-12-24 Вентильный электропривод

Publications (2)

Publication Number Publication Date
RU2007148204A RU2007148204A (ru) 2009-06-27
RU2366069C1 true RU2366069C1 (ru) 2009-08-27

Family

ID=41026823

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007148204/09A RU2366069C1 (ru) 2007-12-24 2007-12-24 Вентильный электропривод

Country Status (1)

Country Link
RU (1) RU2366069C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2627493C2 (ru) * 2015-12-30 2017-08-08 федеральное государственное автономное образовательное учреждение высшего образования "Московский физико-технический институт (государственный университет)" Блок управления управляющим двигателем-маховиком с резервированием управляющего канала
RU2658678C1 (ru) * 2017-05-25 2018-06-22 Зао "Нии Механотроники-Альфа-Нц" Бесконтактный электропривод постоянного тока

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2627493C2 (ru) * 2015-12-30 2017-08-08 федеральное государственное автономное образовательное учреждение высшего образования "Московский физико-технический институт (государственный университет)" Блок управления управляющим двигателем-маховиком с резервированием управляющего канала
RU2658678C1 (ru) * 2017-05-25 2018-06-22 Зао "Нии Механотроники-Альфа-Нц" Бесконтактный электропривод постоянного тока

Also Published As

Publication number Publication date
RU2007148204A (ru) 2009-06-27

Similar Documents

Publication Publication Date Title
JP6661837B2 (ja) モータのベクトル制御方法、装置及び航空機
JP2012104047A (ja) サーボ制御器
US7265511B2 (en) Motor control device
JP2019083672A (ja) インバータ並びにモータの駆動制御方法
RU2366069C1 (ru) Вентильный электропривод
US6608456B2 (en) Motor control apparatus
CN114123895A (zh) 振动抑制方法及装置、伺服驱动器和伺服驱动系统
EP3010143B1 (en) Method for controlling force ripples of a generator
CN111800053A (zh) 电机驱动系统及方法
EP3171508A1 (en) Method for the scalar control of an induction motor, particularly at low speed operation, and scalar control system for an induction motor
JP4415615B2 (ja) 発電システムとその発電機制御方法
JP5998663B2 (ja) 交流電動機の駆動制御装置
KR101878090B1 (ko) 모터 제어 시스템 및 방법
CN109196773B (zh) 电机的控制装置以及控制方法
JP2010120453A (ja) 外乱振動抑制制御器
RU2399080C1 (ru) Самонастраивающийся электропривод
RU137708U1 (ru) Система управления скоростью вращения синхронного реактивного двигателя без короткозамкнутой обмотки на роторе
CN104901593A (zh) 电机驱动装置、方法及电机
JP6640659B2 (ja) 電力変換器の制御装置、電力変換システム、圧縮機駆動システム、フライホイール発電システム、及び、電力変換器の制御方法
Sayouti et al. Real-time DSP implementation of DTC neural network-based for induction motor drive
CN213693530U (zh) 电机驱动系统
RU2404503C1 (ru) Мехатронная система
CN109802612B (zh) 一种车辆及其驱动电机控制系统和方法
RU102160U1 (ru) Устройство управления асинхронным двигателем
RU2709098C1 (ru) Устройство согласованного управления электроприводами с электронной редукцией

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20101225