RU2365751C2 - Система и способ исследований в процессе бурения - Google Patents

Система и способ исследований в процессе бурения Download PDF

Info

Publication number
RU2365751C2
RU2365751C2 RU2004122771/03A RU2004122771A RU2365751C2 RU 2365751 C2 RU2365751 C2 RU 2365751C2 RU 2004122771/03 A RU2004122771/03 A RU 2004122771/03A RU 2004122771 A RU2004122771 A RU 2004122771A RU 2365751 C2 RU2365751 C2 RU 2365751C2
Authority
RU
Russia
Prior art keywords
drilling
during drilling
external sensor
sensor
research during
Prior art date
Application number
RU2004122771/03A
Other languages
English (en)
Other versions
RU2004122771A (ru
Inventor
Джеймс С. МАЙЕС (US)
Джеймс С. МАЙЕС
Original Assignee
Шлюмбергер Текнолоджи Бв
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Шлюмбергер Текнолоджи Бв filed Critical Шлюмбергер Текнолоджи Бв
Publication of RU2004122771A publication Critical patent/RU2004122771A/ru
Application granted granted Critical
Publication of RU2365751C2 publication Critical patent/RU2365751C2/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/01Devices for supporting measuring instruments on drill bits, pipes, rods or wirelines; Protecting measuring instruments in boreholes against heat, shock, pressure or the like
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/06Measuring temperature or pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V11/00Prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00
    • G01V11/002Details, e.g. power supply systems for logging instruments, transmitting or recording data, specially adapted for well logging, also if the prospecting method is irrelevant

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Geophysics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Earth Drilling (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Measuring Fluid Pressure (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Drilling And Boring (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

Изобретение относится к исследованию скважин в процессе бурения и предназначено для определения затрубного давления в процессе бурения. Техническим результатом изобретения является повышение надежности измерений за счет обеспечения возможности непрерывных измерений различных скважинных параметров в процессе бурения в режиме реального времени в условиях высоких температур и давлений. Система устанавливается в буровом инструменте, подвешенном на буровой вышке посредством бурильной колонны. Система включает в себя, по меньшей мере, один буровой воротник, устройство для исследований в процессе бурения и, по меньшей мере, один внешний датчик. Буровой воротник имеет боковые стенки в виде трубы, образующие канал для протекания бурового раствора через него. Устройство для исследований в процессе бурения установлено в канале, по меньшей мере, одного бурового воротника и может выборочно извлекаться из него. Внешний датчик расположен в боковой стенке воротника бура и изолирован от канала. При этом внешний датчик открыт в скважину для выполнения измерений и оснащен беспроводной связью с устройством для исследований в процессе бурения. 3 н. и 32 з.п. ф-лы, 8 ил.

Description

ПРЕДПОСЫЛКИ К СОЗДАНИЮ ИЗОБРЕТЕНИЯ
1. Область изобретения
Настоящее изобретение, в общем, относится к скважинным устройствам, используемым при проведении операций в скважине. Более конкретно настоящее изобретение относится к способам для определения параметров скважины посредством извлекаемого скважинного устройства, функционирующего в процессе бурения.
2. Обзор состояния изобретений в этой области
Добыча углеводородов из подземных формаций включает в себя процесс бурения скважин в земной формации. Для формирования скважины скважинный буровой инструмент подвешивается на буровой вышке и продвигается в земную формацию посредством бурильной колонны. В процессе бурения предпочтительно получать информацию об условиях в скважине. Такая информация полезна, например, для определения местоположения требуемых формаций, предупреждения потенциальных проблем и усовершенствования процесса бурения.
Скважинные буровые инструменты обычно компонуются в оборудование низа бурильной колонны (ОНБК), которая состоит из одного или нескольких буровых воротников с расположенными внутри устройствами. Одно такое устройство или комбинация устройств, обычно установленных в ОНБК, осуществляют замеры в процессе бурения (3ПБ) или каротаж в процессе бурения (КПБ) (здесь на них ссылаются как на устройства, используемые в процессе бурения, или ИПБ устройства). ИПБ устройства обычно включают в себя комбинацию сенсоров, телеметрических устройств, источников питания и/или других устройств для выполнения разнообразных функций в скважине, таких как осуществление измерений в скважине, компилирование информации о процессе бурения и связь с поверхностью. Примеры существующих ИПБ устройств и систем описаны в Патенте США № 5357483, принадлежащем патентообладателю Халибуртон, в Патенте США № 5517464, принадлежащем патентообладателю этого изобретения, и в заявке США № 20030080743, принадлежащей патентообладателю Бейкер Хьюз. Пример КПБ устройства описан в Патенте США № 4899112, принадлежащем патентообладателю настоящего изобретения. Некоторые такие ИПБ устройства, которые также могут быть сняты с оборудования низа бурильной колонны и заменены, как было описано, например, в Патенте США № 6577244, принадлежащем патентообладателю настоящего изобретения. По меньшей мере, подобные ИПБ устройства могут страдать от утечек, нарушения герметичности вокруг отверстий, проходящих через воротник бура, так или иначе, характеризуются отсутствием надежности или работоспособности в разнообразных условиях в скважинах.
Современные ИПБ устройства и связанные с ними устройства (ИПБ системы) обычно помещаются во внутрь стальных цилиндрических и полых буровых воротников (утяжеленных бурильных труб) для защиты их от влаги, температуры, а также от химического воздействия и/или воздействия давления. Однако предпочтительно такие устройства как сенсоры располагать таким образом, чтобы они имели возможность производить более точные измерения без увеличения потенциального риска повреждения или опасности подвергнуть воздействию остальную часть ИПБ системы. Риск утечки и/или повреждения может возрастать при условиях, когда отверстие проходит через буровой воротник в ИПБ систему. Следовательно, предпочтительно, чтобы скважинное буровое оборудование характеризовалось одним или несколькими способностями, а именно: в дальнейшем могло быть извлечено из бурового инструмента, вновь установлено в него, связь между устройствами была беспроводной, некоторые компоненты были изолированы от скважинных условий, определенные компоненты могли быть извлечены на поверхность для замены, ремонта и/или настройки и или обладали устойчивостью к утечкам. Более того, подобная система оптимизирует процесс бурения, уменьшает его время и содействует увеличению скорости и точности проводки скважины в буровой обстановке.
Далее предпочтительно, чтобы буровой инструмент был выполнен с возможностью функционирования даже в чрезвычайно жестких скважинных условиях. Забойное бурение скважин, таких как нефтяных, проходит в экстремальных рабочих условиях, таких как высокая температура, высокое давление, и жестокого физического контакта. Большая часть процесса бурения осуществляется на экстремальных глубинах на суше или глубоко под поверхностью морского дна. Условия окружающей среды, в которой работает в скважине оборудование для разведки нефти, могут быть очень суровыми. Температура, превышающая 200°С, и давление - 1,38×108 Па не являются необычными. Стандартные электронные компоненты обычно рассчитаны для работы приблизительно только до 125°С. Таким образом, появляется необходимость создать или экспериментально найти электрические компоненты, способные функционировать при высоких температурах, имеющихся в скважине.
Были разработаны различные скважинные устройства для работы в условиях высоких температур и давлений. Например, имеется ИПБ устройство, предназначенное для работы до 150°С, которое обеспечивает проведение инклинометрии в реальном времени и гамма исследований. Имеются также ИПБ устройства, предназначенные для работы при температурах до 175°С, которые могут работать при определенных условиях для решения специальных задач. Однако неизвестно ни одного коммерческого ИПБ устройства, способного работать при температуре выше 175°С в течение продолжительного времени, которое имеет требуемые характеристики, такие как проведение гамма-каротажа в реальном времени, возможность извлечения устройства и повторной его установки, а также возможности регистрации вибраций.
Были предприняты попытки разработать скважинные устройства с требуемыми характеристиками для использования в условиях высоких температур. В качестве примера можно привести скважинное устройство, предназначенное для работы при температуре до 180°С и сохранением живучести до 200°С, но с отсутствием непрерывной инклинометрии и возможностью осуществления ловильных работ в скважине. Надежность такого устройства еще не подтверждена при работе в скважинах при температурах, превышающих 170°С. Другое такое устройство спроектировано для работы при температуре до 200°С, но у него отсутствует возможность осуществления гамма-каротажа, непрерывная инклинометрия, измерение затрубного давления и возможность осуществления ловильных работ в скважине, а также предполагается, что оно характеризуется малой надежностью и низкой скоростью связи с поверхностью. Кроме того, электроника обычно приходит в негодность после воздействия температуры, превышающей 175°С, и это несмотря на применение кремниевых компонентов на изоляторах (ККИ), рассчитанных на температуру 225°С.
Надежность функционирования электронных компонентов является основной проблемой при создании высокотемпературных ИПБ устройств, т.к. в продаже имеется лишь небольшое количество компонентов, рассчитанных на функционирование при температуре 200°С.Те, которые имеются, обычно подпадают под три основных категории: (1) традиционные керамические компоненты, разработанные, главным образом, для рынка вооружений, которые интуитивно работают при высокой температуре; (2) мультичипные модули, разработанные (или которые могут быть разработаны) конечными пользователями, при использовании изделий, о которых известно, что они работают при высоких температурах; и (3) немногочисленные стандартные и очень дорогие кремниевые компоненты на изоляторах (ККИ), разработанные для рынка специально для работы при температуре 200°С и выше.
Предпринимаются попытки разработать процесс, способный создавать очень высокотемпературные цифровые и смешанные аналого-цифровые устройства. Пока такие попытки обещают восхитительные перспективы на долгосрочное будущее, но изделия для коммерческих целей на рынке отсутствуют. Отдельные компоненты еще предстоит разработать, что предполагает значительные затраты.
Необходимы также новые извлекаемые и переустанавливаемые ИПБ устройства. Возможность извлечения и повторной установки устройства обеспечивает значительное усовершенствование по сравнению с существующими технологиями, поскольку оборудование, которое вышло из строя в тяжелых условиях, может быть поднято на поверхность при помощи троса и заменено, устраняя необходимость долгого и дорогого процесса по подъему и спуску труб из скважины.
Предпочтительно, чтобы устройство было выполнено с возможностью осуществлять непрерывную инклинометрию; определять вибрацию в скважине; определять затрубное давление и гамма-излучение; измерять в реальном времени затрубное и/или внутреннее давление в процессе бурения; проводить в реальном времени непрерывную инклинометрию; определять в реальном времени гамма-излучение; проводить в реальном времени мониторинг вибрации; работать с высокой скоростью; обладать высокопроизводительной системой обработки сигналов, большой скоростью получения данных, измерением гамма-излучения и получения данных по нему, и/или замером давления и/или способностью повторной герметизации для получения данных по давлению, и все это в течение продолжительного времени и в условиях высокой температуры и давления. Также предпочтительно, чтобы подобное устройство и связанные с ним компоненты, такие как датчики, электроника, герметизация, материалы и корпус были работоспособны в зонах с высокой температурой минимум до 175°С, но лучше по меньшей мере до 200°С и давлениях по меньшей мере до 20 Кф/д2 (1406,5 кг/см2).
Следовательно, существует необходимость в ИПБ системе, обладающей одной и большим числом улучшенных способностей.
ОПИСАНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ
По меньшей мере, согласно одному аспекту настоящее изобретение относится к системе для измерения скважинных параметров в процессе бурения. Эта система располагается в скважинном буровом инструменте, подвешенном на буровой вышке посредством бурильной колонны. Скважинный буровой инструмент расположен в скважине, проходящей подземные формации. Эта система включает в себя, по меньшей мере, один буровой воротник, имеющий трубчатые боковые стенки, определяющие канал для подачи бурового раствора; ИПБ устройство, установленное в канале, по меньшей мере, одного воротника бура, и которое может быть селективно извлечено из него, а также, по меньшей мере, один внешний датчик, установленный на боковой стенке воротника бура и изолированный от канала. По меньшей мере, один датчик экспонирован в направлении скважины для измерений параметров скважины и оборудован беспроводной связью с ИПБ устройством.
Согласно другому аспекту настоящее изобретение относится к способу осуществления исследований в процессе бурения. Способ включает в себя обеспечение скважинного бурового инструмента в формации для формирования ствола скважины, регистрацию скважинных параметров посредством внешнего датчика (датчиков), расположенного в кармане трубчатой, боковой стенки, осуществление беспроводной передачи сигналов между ИПБ устройством и внешним датчиком (датчиками) и селективным извлечением ИПБ устройства из скважинного бурового инструмента. Согласно другим вариантам осуществления внешний датчик остается на скважинном буровом инструменте после подъема ИПБ устройства. В других вариантах реализации внешний датчик извлекается вместе с ИПБ устройством. В скважинном буровом инструменте имеется, по меньшей мере, один воротник бура с ИПБ устройством. Буровой воротник имеет трубчатую боковую стенку, образующую канал для подачи бурового раствора через него. Внешний датчик (датчики) предпочитают изолировать от внутреннего канала.
Наконец, согласно другому аспекту изобретение относится к системе измерений скважинных параметров. Система расположена в скважинном буровом инструменте, подвешенном в скважине ниже буровой установки. Система снабжена извлекаемым ИПБ устройством и, по меньшей мере, одним датчиком. ИПБ устройство расположено внутри скважинного бурового инструмента. Буровой инструмент имеет внутренний канал для подачи бурового раствора. По меньшей мере, один датчик расположен в буровом воротнике скважинного бурового инструмента и изолирован от канала. По меньшей мере, один датчик предназначен для замера скважинных параметров. Датчик давления оборудован связью с ИПБ устройством, вследствие чего между ними проходят сигналы.
Предпочтительно, чтобы системы функционировали при высоких температурах и давлении, выше 200°С и 20 Кф/д2 (1406,5 кг/см2), соответственно. Система может быть обеспечена системным контроллером, процессором сигналов, системой получения данных и датчиками. В качестве датчиков могут быть использованы любые датчики, такие как датчик вибраций в скважине, инклинометр, датчик межтрубного давления (в процессе бурения), датчик гамма-излучения и непрерывной инклинометрии.
Датчики выполнены с возможностью замера либо гамма-лучей, ударов, вибрации, внутреннего и внешнего давления, температуры, скорости звука, времен прихода, либо их комбинаций. Датчики могут быть расположены внутри скважинного бурового инструмента и приспособлены для измерения одного из параметров: гамма-лучей, ударов, вибрации, внутреннего и внешнего давления, температуры, скорости звука, времен прихода или их комбинаций. Система может включать в себя сигнальный блок в ИПБ устройстве, сигнальный блок в датчиках для беспроводной передачи сигналов между ними. Сигналы могут характеризовать команды, связь, энергию и другие типы информации. Блоки сигналов и датчиков предпочтительно собраны либо на существующих керамических, кремниевых, мультичипных модулях, набором программируемых в полевых условиях логических элементов и их комбинаций. Система также может быть оборудована системой управления, включающей в себя контроллер, процессор, модуль получения данных, передатчик, приемник и/или связующую цепь. Датчики могут включать в себя передатчик, приемник, измерительное устройство и/или источник энергии. Источник энергии может заряжаться от ИПБ устройства. Система может быть также оборудована запорным механизмом, предназначенным для ориентации ИПБ устройства в воротнике бура.
Предпочтительно, чтобы система имела возможность непрерывного замера направления и наклона бурения. Также предпочтительно, чтобы система проводила замеры в реальном времени и/или действовала в условиях высоких температур и давлений.
Другие аспекты и преимущества изобретения станут ясными после последующего описания и формулы изобретения.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Для того чтобы перечисленные особенности и преимущества настоящего изобретения могли быть поняты в деталях, более подробное описание изобретения, кратко изложенного выше, может быть выполнено со ссылками на приложенные чертежи. Следует отметить, однако, что приложенные чертежи иллюстрируют только типичные варианты осуществления этого изобретения и, следовательно, не считаются ограничивающими его объем, для изобретения может быть возможным осуществление других одинаково эффективных вариантов реализации.
Фиг.1 представляет схематическое изображение скважинного бурового инструмента, подвешенного на буровой установке в скважине, и в нем находится ИПБ система.
Фиг.2 изображает вид продольно- поперечного разреза ИПБ системы, изображенной на фиг.1.
Фиг.3 представляет схематический вид компонентов ИПБ системы, изображенной на фиг.2.
Фиг.4 представляет детальный вид внутреннего датчика, изображенного на фиг.2.
Фиг.5 представляет детальный вид внешнего датчика, изображенного на фиг.2.
Фиг.6 представляет вид частичного поперечного разреза альтернативного варианта осуществления ИПБ системы на фиг.2, изображающий систему беспроводной связи.
Фиг.7 представляет схематическую диаграмму альтернативного варианта осуществления системы беспроводной связи, изображенной на фиг.6.
Фиг.8 изображает схему последовательности операций способа при осуществлении измерений в скважине при помощи извлекаемого ИПБ устройства.
ДЕТАЛЬНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Фиг.1 - это схематическое изображение буровой вышки 10 и бурильной колонны 12. Буровая вышка установлена на основании 15 вышки и соединена с бурильной колонной и поддерживает ее посредством сложной системы кабелей и шкивов (не показана). Бурильная колонна подвешена на буровой вышке 10 и расположена в скважине 17, проникая в толщу формации F. Бурильная колонна включает в себя бурильные трубы 16 (три из них показаны на фиг.1), оборудование низа бурильной колонны (ОНБК) 9 и буровое долото 5 на нижнем конце его. Обычно только часть массы бурильной колонны приходится на формацию. Остальная часть массы бурильной колонны подвешена на буровой вышке на тросах и шкивах и других поддерживающих компонентах. Бурение скважины начинается, когда долото разными способами приводится во вращение или, поворачивая ротор (не показан), или буровым двигателем, расположенным между буровым долотом и остальной частью бурильной колонны.
Во время процесса бурения специальная жидкость 3, в разговоре называемая буровой раствор, закачивается из ствола по трубе 2 через бурильную колонну 12, ОНБК 9 и буровое долото 5. Буровой раствор вытекает из долота и выдавливается в скважину через зазор или кольцевое пространство 7, между буровым инструментом и стенкой скважины и назад через трубу 4 в направлении, показанном стрелками. Поток буровой жидкости через буровой инструмент используется для энергоснабжения и обеспечивает возможность иметь связь посредством импульсных телеметрических систем, что будет высоко оценено специалистами в этой области. Использование подобных скважинных буровых установок описано, например, в Патенте США №5357483, патентообладатель Халибуртон и Патенте США №5517464, принадлежащем патентообладателю этого изобретения. Предпочтительно, чтобы используемая телеметрическая система была совместимой с существующей поверхностной аппаратурой для демодуляции. Также предпочтительно, чтобы была обеспечена связь процесса бурения в реальном режиме времени с автоматической системой принятия решения в месте расположения скважины.
ОНБК на фиг.1 включает в себя буровые воротники 18 (могут быть использованы один или несколько), в которых находятся скважинные устройства, используемые для осуществления разнообразных скважинных операций. Одна из групп таких устройств обычно называется системой для работы в процессе бурения или ИПБ системой 19. ИПБ система включает в себя ИПБ устройство 14, такое как для каротажа в процессе бурения (КПБ), для измерения в процессе бурения (ИПБ) или другие устройства, используемые в процессе бурения, и датчики этих устройств (Фиг.2). ИПБ устройство 14 используется для осуществления в процессе бурения таких функций среди других, как выполнение скважинных измерений, связи с поверхностью. ИПБ устройство 14 связано с датчиками для осуществления скважинных измерений. ИПБ устройство может быть использовано для определения направления и наклона скважины, гамма-излучения, удара, вибрации, скорости звука, времени прихода и/или других природных или созданных человеком явлений. Связанные с устройством процессоры и компьютеры также могут быть включены в процесс обработки дополнительной информации.
Предпочтительно, чтобы датчики были выполнены с возможностью осуществления работы в условиях высоких температур и давлений и могли производить измерения как в реальном времени, так и/или записи. Могут использоваться разнообразные датчики, такие как для регистрации длительного гамма-излучения. Некоторые из таких датчиков работают при 200°С в течение более короткого периода времени. Такие датчики предпочтительно модифицировать для обеспечения измерений при таких высоких температурах. Могут также использоваться датчики для определения давления при высоких температурах. Предпочтительно, чтобы такие датчики отвечали требованиям по точности и живучести для температуры среды в скважине (по меньшей мере) 200°С.
ИПБ устройство может быть вставлено в ОНКБ до подсоединения воротника бура 18 к другим воротникам, трубе, буровому долоту и скважинному приводу (при его наличии). Альтернативно ИПБ устройство может быть опущено на кабеле, подсоединенном к механическому разъему, иногда называемому приводной соединитель (не показан). ИПБ устройство опускается через бурильную колонну 16 в буровой воротник 18 после спуска его в скважину. ИПБ система может быть поднята и другая ИПБ система может быть установлена на ее месте посредством троса после спуска бурового воротника в скважину. Системы извлечения ИПБ устройств описаны, например, в Патенте США 6577244, принадлежащем патентообладателю настоящего изобретения. Известны также способы для аккомодации устройства к требованиям по ловимости в скважине и повторной установке при высоких температурах и давлениях.
На фиг.2 показана ИПБ система, используемая как ИПБ система 19 на фиг.1. Указанная ИПБ система включает в себя буровой воротник 18, ИПБ устройство 14, внутренний датчик 20 и внешний датчик 21. ИПБ устройство в этом варианте осуществления получает информацию из нескольких источников, таких как внутренний датчик 20 и внешний датчик 21. Традиционные ИПБ устройства могут использоваться в ИПБ системах, что будет оценено специалистами в данной области техники. Примеры ИПБ устройств описаны, например, в Патенте США № 5677244, принадлежащем патентообладателю настоящего изобретения.
Для осуществления скважинных измерений, например давления, используются датчики. Датчик может быть любого типа, например тензометром. Эти датчики собирают информацию и передают ее в ИПБ устройство. В случае замера давления внутри давление передается через канал 23, идущий через воротник бура и внутренний датчик 20, вмонтированный в ИПБ устройство. Внутренний датчик 20 экспонирован для воздействия давления бурового раствора, проходящего через канал 23 между устройством и воротником бура.
В случае измерения внешнего давления давление передается через отверстие 26, проходящее через стенку воротника бура 18 и втулку 24 к внешнему датчику 21, вмонтированному в ИПБ устройство. Внешний датчик установлен в устройстве в непосредственной близости к втулке 24, расположенной между ИПБ устройством и воротником бура. Внешний датчик открыт для воздействия скважинных флюидов и давлений за пределами воротника бура через отверстие 26. Обычно применяются герметизирующие уплотнения 29 в виде О-образных колец для устранения влияния внешнего давления на внутреннее давление.
Предпочтительно, чтобы ИПБ устройство было оснащено запорным механизмом 22 для обеспечения фиксации устройства внутри воротника бура. Предпочтительно, чтобы запорный механизм являлся механическим связующим звеном между воротником бура и ИПБ устройством. Запорный механизм включает в себя шпоночную канавку или вырез 27 в ИПБ устройстве, и соответствующий выступ - ключ 25, расположенный на ИПБ устройстве. Выступ и приемный вырез оперативно соединяются, устанавливая и закрепляя устройство в буровом воротнике. Выступ также используется для центровки ИПБ устройства внутри воротника бура и его ориентировки. Предпочтительно, чтобы датчик 21 подсоединялся к воротнику бура 18 напротив выступа 25. В других вариантах осуществления изобретения датчик может быть помещен в выступ или там могут быть многочисленные местоположения или многочисленные датчики, расположенные в других местах внутри ИПБ устройства и воротника бура.
Запорный механизм может активироваться, когда устройство вставляется или удаляется из воротника бура на поверхности. Альтернативно запорный механизм может активироваться, когда ИПБ устройство вставляется или удаляется из воротника бура в скважине. Это устройство может быть удалено с использованием канатного кабеля и подсоединяющего устройства и заменено другим устройством с использованием того же кабеля и устройства. На рынке имеются запорные механизмы для вставки, удаления и повторной установки существующих устройств для определения направления и инклинометрии. Такие запирающие механизмы могут быть приспособлены для использования в условиях высоких температур и давлений. Предпочтительно, чтобы это устройство было способно производить это механическое соединение при высоких температурах и давлениях.
Фиг.2 также показывает другие различные компоненты, которые могут быть использованы совместно или в соединении с ИПБ системой 19 и/или ИПБ устройством 14. Например, устройство изображено как имеющее источник энергии, такой как батареи 30 и/или электрогенератор 32. Батареи могут быть специально сконструированными или стационарными. Может быть использован генератор, имеющийся на рынке, использующий течение бурового раствора для производства электроэнергии. Предпочтительней, чтобы любой источник энергии был рассчитан для высокой температуры и давления. Например, система может работать, используя высокотемпературный источник энергии.
ИПБ устройство также снабжается контроллером системы и/или процессором сигналов и системой получения данных 36. Предпочтительно, чтобы система получения данных включала в себя датчики, такие как датчик направления и наклона, датчик гамма-лучей, датчик вибрации и температурный датчик. Могут применяться и другие датчики. Предпочтительно также наличие верхнего 38 и нижнего 40 коммуникационных разъемов. Беспроводной соединитель 42 и верхний разъем для телеметрии также могут использоваться для содействия при извлечении ИПБ устройства и/или установления связи с поверхностью.
Эти и другие скважинные устройства могут использоваться для выполнения разнообразных операций по энергоснабжению, связи, обработки и т.д.
Предпочтительно, чтобы эти компоненты скважинного устройства были рассчитаны для использования при высоких температуре и давлении и ударах.
Фиг.3 представляет схематическую диаграмму, иллюстрирующую функционирование ИПБ системы. Предпочтительно, чтобы ИПБ система включала в себя контроллер системы и процессор сигналов 35, систему получения данных 41, верхний разъем для связи с поверхностью 33, нижний разъем 37 для связи с поверхностью, телеметрию для импульсов бурового раствора, генератор 31 электрической энергии и различные датчики (39, 45, 41, 49). Эти компоненты могут быть интегрированы с ИПБ устройством или оперативно подсоединяться к нему. Некоторые такие компоненты образуют часть других устройств, расположенных в различных других частях скважинного устройства. Как показано на фиг.3, датчики включают в себя датчик гамма-излучения 45, датчик направления и наклона 49, датчик затрубного и внутреннего давлений 47, датчик температуры и детектор скважинной вибрации и температуры 39. Однако также возможно использование и других устройств.
Как показано, датчики собирают и направляют данные в систему для получения данных 41. Система получения данных связывается с контроллером системы и процессором сигналов. Контроллер системы может посылать команды в систему для получения данных для активирования датчиков и сбора информации. Процессор сигналов собирает и компилирует информацию, получаемую от системы получения данных. Затем информация может быть послана на поверхность и/или в остальную часть устройства через верхний и нижний коммуникационные разъемы. Другие компоненты могут быть расположены внутри или вокруг ИПБ системы, которая тоже может быть задействована. Телеметрическая система и генератор электрической энергии могут быть использованы для обеспечения связи и энергии для системного контроллера, датчиков и/или соединителей, а также других компонентов.
Для дополнительной надежности при режиме высоких температур предпочтительно, чтобы электроника всех систем такая, что используется в контроллере системы и процессора сигналов среди других, включала в себя в основном герметично закрытые мультичипные модули (МЧМ). МЧМ будут также служить устранению или минимизированию внутренних связей между интегрированными цепями и монтажными платами - слабые места, присущие высокотемпературным прикладным системам. Поскольку очень высокие температуры имеют тенденцию радикально уменьшать жизнеспособность электронных подсистем, предпочитаемый вариант осуществления этой системы будет позволять замену монтажных плат и других подсистем, обеспечивая возможность повторно использовать дорогостоящие МЧМ и другие компоненты.
Для увеличения надежности и сопротивления условиям окружающей среды предпочтительно, чтобы электронные компоненты внутри корпуса были усилены дополнительной защитой. Такая электроника может быть выполнена, например, на традиционных керамических компонентах, разработанных, главным образом, для рынка вооружений, и которые интуитивно должны работать при высокой температуре, мультичипных модулях, разработанных (или которые могут быть разработаны) конечными пользователями и/или на кремниевых компонентах на изоляторах (ККИ). Такие усиленные компоненты имеются в продаже. Дополнительные методики, которые могут быть использованы для усиления компонентов, включают в себя программируемую на месте вентильную матрицу и смешанные аналого-цифровые устройства, датчики гамма-излучения длительного пользования, высокотемпературные источники энергии, телеметрические системы, совместимые с существующими системами, высокоскоростную обработку сигналов, датчики для определения высоких температур и системы бурения в реальном времени. Другие компоненты системы, такие как датчики, электроника, компоновка, материалы и корпуса приборов, должны также быть рассчитаны на условия высоких температур и давлений.
Должны быть также предусмотрены высокотемпературные электронные компоненты для надежной работы этого устройства. Если нет надежных альтернатив, используются существующие ККИ компоненты. Кроме того, существующие программируемые на месте вентильные матрицы и смешанные аналого-цифровые устройства могут использоваться вместе с заявленным устройством. Эти методы обработки особенно подходят для высокоскоростного получения данных и обработки сигналов.
Предпочтительно, чтобы функционирование устройства и его компонентов контролировалось. Эксплуатационные характеристики среды или циклограмма выполняемого задания этого устройства могут быть установлены на максимальные температуру и давление при начальных промежуточных температуре и давлении (например, 400°F (204,44°С)и около 20 Кф/д2 (1406,5 кг/см2). Используются потенциальные компоненты, подсистемы и механические агрегаты, способные работать при температуре для гарантированного функционирования их в пределах установленных технических условий. Функционирование системы может проверяться посредством термического анализа, используя тепловизоры и/или термомоделирование при помощи компьютера, оценивая, таким образом, соответствующий тепловой поток и/или достаточное рассеивание тепла. Может также проводиться виртуальное испытание, автоматизированное проектирование для определения и улучшения выживаемости электронных устройств при помощи использования моделирования достоверных отказов.
Для проверки и оценки работы механических и электронных устройств в условиях высокого давления могут использоваться стендовые испытания и тестирование корпусов в высокотемпературных испытательных камерах при высоком давлении. Могут осуществляться всесторонние испытания и проверки в естественной среде для определения максимальных температурных ограничений существующих и потенциальных электронных и механических компонентов.
Если потенциальные электронные компоненты и механические агрегаты прошли первоначальное испытание, могут быть проведены испытания в природной среде для проверки требуемого качества функционирования. Предпочтительно, чтобы испытания в окружающей среде состояли в тестировании работы в условиях температуры и ударов согласно циклограмме осуществляемого задания. Отказы могут быть проанализированы и сделаны выводы по ним. Проверка компонентов может включать в себя идентификацию, испытание и оценку управления, связи, питания и других центральных или системных электронных устройств, датчиков, корпусов источников энергии и т.д.
Фиг.4 представляет увеличенное изображение части ИПБ системы 19 согласно фиг.2, изображающая внутренний датчик более детально. Фиг.4 показывает, как измеряется внутреннее давление или давление внутри воротника бура. Внутренний датчик 20 расположен в ИПБ устройстве 14. Отверстие 43 проходит от внутреннего датчика 20 к каналу 23, служащему для прохода жидкости между ними. Датчик 20 снабжен манометром, открытым в канал, и внутреннее давление (Р1) поддерживается там через отверстие.
Фиг.5 представляет увеличенное изображение части ИПБ системы 19 согласно фиг.2, показывающая внешний датчик более детально. На фиг.5 показано как измеряется внешнее или скважинное давление. Внешний датчик 21 расположен внутри ИПБ устройства 14 в месте контакта его с расположенной вблизи втулкой 24. Отверстие 26 проходит через воротник бура 18 и втулку 24 к датчику 21. Между втулкой 24 и ИПБ устройством имеется уплотнение или уплотнения 28 для изоляции отверстия и датчика от канала 23 в воротнике бура. Это отверстие и уплотнение позволяют жидкости осуществлять связь между датчиком и внешней частью воротника бура. Внешнее давление (РЕ) вне воротника бура воздействует по отверстию через воротник бура и втулку на внешний датчик 21. Датчик 21 внешнего давления имеет манометр, открытый действию давления в скважине.
Уплотнение 28 для повышенного давления предотвращает влияние внешнего давления на внутреннюю часть бурового воротника. Уплотнение служит для предотвращения проникновения бурового раствора через отверстие 26 и позволяет ему протекать через устройство. Если бы буровой раствор попадал в устройство через отверстие, измерение давления одним или обоими датчиками могло быть искаженным. Кроме того, буровой раствор, проходя через отверстие в формацию, создает риск повреждения бурового воротника из-за эрозии и формации за счет проникновения бурового раствора.
Фиг.6 показывает альтернативную модель ИПБ системы 19b с беспроводной связью. В этом варианте осуществления внешний датчик 21b является датчиком давления, помещенным в стенку бурового воротника и изолированным от канала 23. Так как датчик расположен в стенке воротника бура и открыт в скважину, необходимость отверстия 26 и уплотнений 28 отпадает. Датчик оборудован измерительным устройством 63, в данном случае манометром, для замера скважинного давления. Датчик может включать в себя другие измерительные устройства и датчики для выполнения других разнообразных измерений.
Предпочтительно, чтобы датчик 21b был беспроводным и адаптирован для связи через беспроводное соединение 46 с ИПБ устройством 14. ИПБ устройство снабжается беспроводной или бесконтактной системой 48 связи, которая включает датчик для производства измерения и передачи его в устройство. Бесконтактная система 48 связи включает в себя схему управления 52, ИПБ передатчик 54 и ИПБ приемник 54, предназначенные для управления и связи с внешним датчиком 21b. ИПБ устройство направляет сигнал через ИПБ передатчик 56 в датчик давления. Датчик давления включает в себя передатчик 58 и приемник 60 для связи с ИПБ устройством. Датчик давления получает команды от ИПБ устройства через приемник датчика 60 и передает снятые значения в ИПБ приемник 56 через передатчик датчика 58.
Предпочтительно, чтобы электромагнитные сигналы передавались по беспроводной связи между датчиком и ИПБ устройством. Электромагнитное поле, генерируемое ИПБ передатчиком, принимает приемник датчика. Затем датчик генерирует сигнал, посылая информацию в ИПБ приемник. Могут использоваться другие беспроводные системы связи для передачи сигналов между ИПБ устройством и датчиками такие среди них, как использующие магнитные поля, звуковые или ультразвуковые волны давления, видимый, инфракрасный или ультрафиолетовый свет и/или другие подобные методы.
Как показано на фиг.7, ИПБ устройство может быть адаптировано для направления мощности и/или коммуникационных сигналов датчику. Это достигается обеспечением схемы 62 в датчике давления, которая принимает и хранит некоторую часть или всю энергию, переданную ИПБ устройством. Эта энергия затем может быть использована для осуществления измерений и передачи их обратно в устройство. В некоторых вариантах осуществления этого изобретения схема 62 может являться устройством для хранения энергии, таким как емкость или батарея. Альтернативно схема может обеспечить средства для запитки датчика из другого источника, такого как генератор постоянного или переменного тока, или одной или нескольких батарей (не показано). Передатчик и приемник могут быть отдельными или интегрированным приемопередатчиком для передачи и приема сигналов.
Фиг.8 иллюстрирует способ осуществления скважинных измерений с использованием извлекаемого устройства, согласно фиг.1 и 2. При функционировании буровой инструмент продвигается в скважине 80. ИПБ устройство расположено в буровом инструменте 82. ИПБ устройство может быть или расположено в ОНБК, в то время как буровой инструмент находится в скважине, или опускаться в буровой инструмент на тросе. Сигнал посылается с поверхности в ИПБ систему для осуществления требуемых операций. Сигнал может быть послан с поверхности через телеметрическую систему импульсом давления бурового раствора в контроллер ИПБ системы. Этот сигнал может быть командой, калибровочным и/или силовым сигналом для активации ИПБ системы. Затем сигнал может быть передан от контроллера на датчики для осуществления измерения 86.
После завершения измерения датчик посылает данные назад в контроллер и на поверхность 88. ИПБ устройство может быть извлечено из бурового инструмента 90. ИПБ устройство может быть поднято отдельно от бурового инструмента, или буровой инструмент может быть поднят вместе с ИПБ устройством. То же самое или другое ИПБ устройство может быть опущено назад в скважину для дальнейших измерений. Это может быть сделано вставкой ИПБ устройства назад в буровой инструмент и посадкой его там или спуском туда всего бурового инструмента с ИПБ устройством.
Предпочтительно, чтобы датчик оставался в выключенном положении до тех пор, пока не нужно будет осуществить измерение. Когда необходимо, чтобы ИПБ устройство получило сигнал датчика, он генерирует и передает энергию в датчик. Датчик получает эту энергию и заряжает схему. Когда датчик получает команду и достаточно энергии для активации, он осуществляет требуемое измерение. Датчик получает данные и посылает результаты измерения в контроллер. Команда и силовые импульсы могут быть переданы и в другие устройства в скважинном инструменте.
Для начала измерения в вариантах осуществления этого изобретения может потребоваться только часть энергии, посланной из устройства. Баланс энергии, необходимой для осуществления измерения и реагирования, может поступить из внешнего источника энергии, как описано выше. В других вариантах осуществления этого изобретения может потребоваться, чтобы устройство направляло команду датчику, и вся энергия, необходимая для осуществления измерения и отправки результатов обратно в устройство, может поступать из хранилища энергии и/или генератора в воротнике бура.
Из последующего описания понятно, что можно делать любые модификации и изменения в предпочитаемых и альтернативных вариантах осуществления этого изобретения, не отходя от концепции настоящего изобретения. Например, хотя датчик, по меньшей мере, в некоторых аспектах описывается как манометр, понятно, что может быть использован любой тип датчика, такой как датчик температуры, плотности, расходомер и т.д.
Это описание сделано исключительно с целью иллюстрирования и не должно истолковываться в смысле ограничения. Объем этого изобретения должен определяться только формулировкой патентной формулы, которая следуют ниже. Термин «содержащий в себе» в формуле изобретения следует понимать в следующем смысле «по меньшей мере включающий в себя», так что перечисленный список элементов в патентной формуле является открытой группой. Предполагается, компоненты устройства, представленные в единственном числе, включают в себя множественное число указанных компонентов, если это специально не оговаривается.

Claims (36)

1. Система для измерений скважинных параметров в процессе бурения, которая установлена в скважинном буровом инструменте, подвешенном на буровой вышке посредством бурильной колонны; при этом скважинный буровой инструмент расположен в скважине, проходящей в подземной формации, и содержит
по меньшей мере, один воротник бура, имеющий боковую стенку в виде трубы, образующей в ней канал для потока бурового раствора сквозь него; буровой воротник можно во время функционирования подсоединять к скважинному буровому инструменту;
устройство для исследований в процессе бурения, установленное в канале, по меньшей мере, одного воротника бура и которое может быть селективно извлечено из него; и
по меньшей мере, один внешний датчик, установленный в боковой стенке воротника бура и изолированный от канала; при этом, по меньшей мере, один внешний датчик является открытым в скважину для измерений параметров скважины, при этом, по меньшей мере, один внешний датчик выполнен с возможностью беспроводной связи с устройством для исследований в процессе бурения.
2. Система по п.1, в которой, по меньшей мере, один внешний датчик измеряет один из параметров: гамма-излучение, удар, вибрацию, давление, температуру, скорость звука, время прихода и их комбинацию.
3. Система по п.1, которая дополнительно содержит, по меньшей мере, один датчик для исследований в процессе бурения, расположенный внутри скважинного бурового инструмента для измерения одного из параметров: гамма-излучения, удара, вибрации, давления, температуры и их комбинацию.
4. Система по п.3, в которой, по меньшей мере, один внешний датчик выполнен с возможностью измерения затрубного давления.
5. Система по п.1, которая дополнительно содержит, по меньшей мере, один датчик для исследований в процессе бурения, расположенный в устройстве для исследований в процессе бурения; при этом, по меньшей мере, один датчик выполнен с возможностью измерения одного из параметров: внутреннего давления в воротнике бура, внешнего давления вне воротника бура и их комбинацию.
6. Система по п.5, в которой, по меньшей мере, один датчик для исследования в процессе бурения является открытым в канал для потока бурового раствора сквозь него для измерения параметров в канале.
7. Система по п.5, в которой, по меньшей мере, один датчик для исследований в процессе бурения является изолированным от канала для потока бурового раствора сквозь него и открытым в скважину для измерения там параметров.
8. Система по п.1, которая дополнительно содержит сигнальный блок, работающий в процессе бурения в устройстве для исследований в процессе бурения, и сигнальный блок датчиков во внешнем датчике для беспроводной передачи сигналов между ними.
9. Система по п. 8, в которой сигнальный блок, работающий в процессе бурения, и сигнальный блок датчиков выполнены на одном из видов компонентов: стандартная керамика, кремний на изоляторе, мультичипные модули, набор программируемых в полевых условиях логических элементов и их комбинаций.
10. Система по п.8, в которой сигналы представляют собой коммуникационные сигналы.
11. Система по п.10, в которой коммуникационные сигналы представляют одно из команд, посылаемых во внешний датчик, данных, посылаемых в устройство для исследований в процессе бурения, и их комбинаций.
12. Система по п.9, в которой сигналы представляют силовые импульсы для обеспечения энергией внешнего датчика.
13. Система по п.1, которая дополнительно содержит систему управления, предназначенную для связи с, по меньшей мере, одним внешним датчиком.
14. Система по п.13, в которой система управления содержит один из блоков: контроллер, процессор, модуль получения данных, передатчик, приемник, блок связи или их комбинацию.
15. Система по п.13, в которой, по меньшей мере, один внешний датчик содержит один из блоков: передатчик, приемник, измерительное устройство, источник энергии или их комбинацию.
16. Система по п.15, в которой источник энергии выполнен с возможностью зарядки посредством устройства для исследований в процессе бурения.
17. Система по п.1, которая дополнительно содержит запирающий механизм, приспособленный для ориентации устройства для исследований в процессе бурения в воротнике бура.
18. Система по п.17, в которой запирающий механизм включает в себя выступ - ключ, расположенный в воротнике бура, и паз - место для ключа, расположенное на устройстве для исследований в процессе бурения, для совмещения ее с выступом - ключом.
19. Система по п.1, в которой устройство для исследований в процессе бурения включает в себя устройство для непрерывной регистрации направления и наклона инструмента.
20. Система по п.1, в которой устройство для исследований в процессе бурения выполнено с возможностью осуществления непрерывных измерений в реальном времени.
21. Система по п.1, в которой устройство для исследований в процессе бурения выполнено с возможностью работы в условиях высоких температур и давления.
22. Способ измерений скважинных параметров в процессе бурения включает в себя следующие этапы:
осуществляют продвижение скважинного бурового инструмента в формацию для формирования скважины; при этом скважинный буровой инструмент содержит, по меньшей мере, один воротник бура с устройством для исследований в процессе бурения внутри него; по меньшей мере, один воротник бура, имеющий боковые стенки в виде трубы, образующей в ней канал для потока бурового раствора сквозь нее;
при этом осуществляют измерение скважинных параметров посредством, по меньшей мере, одного внешнего датчика, установленного в кармане боковой стенки трубы; при этом, по меньшей мере, один внешний датчик изолирован от указанного канала;
осуществляют беспроводную передачу сигналов между устройством для исследований в процессе бурения и, по меньшей мере, одним внешним датчиком; и
осуществляют выборочное извлечение устройства для исследований в процессе бурения из скважинного бурового инструмента.
23. Способ по п.22, который дополнительно включает в себя измерение одного из скважинных параметров, внутренних параметров и их комбинации посредством, по меньшей мере, одного датчика для исследования в процессе бурения, установленного в устройстве для исследований в процессе бурения.
24. Способ по п.22, в котором сигналы представляют один из видов сигналов: коммуникационных сигналов, командных сигналов, силовых импульсов и их комбинации.
25. Способ по п.24, в котором коммуникационные сигналы представляют данные, полученные, по меньшей мере, от одного внешнего датчика и переданные в устройство для исследований в процессе бурения.
26. Способ по п.24, в котором силовые импульсы являются импульсами для обеспечения внешнего датчика энергией.
27. Способ по п.22, который дополнительно включает в себя передачу сигналов от устройства для исследований в процессе бурения на поверхность.
28. Способ по п.22, который дополнительно включает в себя регистрацию данных, полученных, по меньшей мере, от одного внешнего датчика.
29. Способ по п.22, который включает в себя передачу сигналов от устройства для исследований в процессе бурения, по меньшей мере, в один компонент скважинного бурового инструмента.
30. Способ по п.22, который включает в себя обработку данных, полученных, по меньшей мере, от одного внешнего датчика.
31. Сенсорная система для определения скважинных параметров, расположенная в скважинном буровом инструменте, подвешенном в скважине ниже буровой вышки; при этом система содержит
извлекаемое устройство для исследований в процессе бурения, расположенное в скважинном буровом инструменте, при этом указанное устройство для исследований в процессе бурения имеет внутренний канал для прохождения по нему бурового раствора; и
по меньшей мере, один внешний датчик, расположенный в воротнике бура скважинного бурового инструмента и изолированный от указанного канала; при этом, по меньшей мере, один внешний датчик выполнен с возможностью измерения скважинных параметров; по меньшей мере, один внешний датчик выполнен с возможностью беспроводной связи с устройством для исследований в процессе бурения для передачи сигналов между ними, и, по меньшей мере, один датчик для исследований в процессе бурения размещен на устройстве для исследований в процессе бурения.
32. Система по п.31, в которой сигналы представляют собой один из видов сигналов: силовые импульсы, коммуникационные сигналы, командные сигналы и их комбинации.
33. Система по п.32, в которой, по меньшей мере, один внешний датчик и устройство для исследований в процессе бурения, каждое содержит один из компонентов: передатчик, приемник и их комбинацию для беспроводной связи между ними.
34. Система по п.31, в которой устройство для исследований в процессе бурения включает в себя телеметрическую систему для связи с поверхностью.
35. Система по п. 31, в которой, по меньшей мере, один внешний датчик измеряет один из параметров: гамма-излучение, удар, вибрацию, давление, температуру, скорость звука, время прихода и их комбинацию.
Приоритет по пунктам:
25.07.2003 по пп.1-35.
RU2004122771/03A 2003-07-25 2004-07-23 Система и способ исследований в процессе бурения RU2365751C2 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US48114303P 2003-07-25 2003-07-25
US60/481,143 2003-07-25
US10/708,893 US7178607B2 (en) 2003-07-25 2004-03-30 While drilling system and method
US10/708,893 2004-03-30
US10/709,802 US7178608B2 (en) 2003-07-25 2004-05-28 While drilling system and method

Publications (2)

Publication Number Publication Date
RU2004122771A RU2004122771A (ru) 2006-01-20
RU2365751C2 true RU2365751C2 (ru) 2009-08-27

Family

ID=34891116

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2004122771/03A RU2365751C2 (ru) 2003-07-25 2004-07-23 Система и способ исследований в процессе бурения

Country Status (8)

Country Link
US (2) US7178607B2 (ru)
CN (1) CN1576513B (ru)
CA (2) CA2472674C (ru)
DE (1) DE102004035772B4 (ru)
FR (1) FR2858065A1 (ru)
GB (3) GB2404209B (ru)
MX (1) MXPA04006685A (ru)
RU (1) RU2365751C2 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013009715A1 (en) * 2011-07-08 2013-01-17 Schlumberger Canada Limited System and method for determining a health condition of wellsite equipment
RU2569141C1 (ru) * 2014-11-20 2015-11-20 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" Способ управления процессом эксплуатации шарошечного долота
RU2589372C1 (ru) * 2015-05-05 2016-07-10 Общество с ограниченной ответственностью "Научно-производственное предприятие ЭНЕРГИЯ" Устройство для гамма-гамма каротажа, доставляемое в интервал исследования на буровом инструменте

Families Citing this family (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7178607B2 (en) * 2003-07-25 2007-02-20 Schlumberger Technology Corporation While drilling system and method
US20050088316A1 (en) * 2003-10-24 2005-04-28 Honeywell International Inc. Well control and monitoring system using high temperature electronics
US7442932B2 (en) * 2003-11-18 2008-10-28 Halliburton Energy Services, Inc. High temperature imaging device
US8544564B2 (en) 2005-04-05 2013-10-01 Halliburton Energy Services, Inc. Wireless communications in a drilling operations environment
US20060033638A1 (en) 2004-08-10 2006-02-16 Hall David R Apparatus for Responding to an Anomalous Change in Downhole Pressure
US7662082B2 (en) 2004-11-05 2010-02-16 Theragenics Corporation Expandable brachytherapy device
US7548068B2 (en) 2004-11-30 2009-06-16 Intelliserv International Holding, Ltd. System for testing properties of a network
GB2426265B (en) * 2005-05-21 2011-01-05 Schlumberger Holdings Roll stabilised unit
US7411517B2 (en) * 2005-06-23 2008-08-12 Ultima Labs, Inc. Apparatus and method for providing communication between a probe and a sensor
US8004421B2 (en) * 2006-05-10 2011-08-23 Schlumberger Technology Corporation Wellbore telemetry and noise cancellation systems and method for the same
US7465268B2 (en) 2005-11-18 2008-12-16 Senorx, Inc. Methods for asymmetrical irradiation of a body cavity
US20070227780A1 (en) * 2006-03-31 2007-10-04 Macpherson Calum Robert Drill string system for performing measurement while drilling and logging while drilling operations
US8636060B2 (en) * 2007-01-25 2014-01-28 Intelliserv, Llc Monitoring downhole conditions with drill string distributed measurement system
US8740873B2 (en) * 2007-03-15 2014-06-03 Hologic, Inc. Soft body catheter with low friction lumen
US20080228023A1 (en) * 2007-03-15 2008-09-18 Senorx, Inc. Soft body catheter with low friction lumen
US8082990B2 (en) * 2007-03-19 2011-12-27 Schlumberger Technology Corporation Method and system for placing sensor arrays and control assemblies in a completion
EP2025863A1 (en) * 2007-08-09 2009-02-18 Services Pétroliers Schlumberger A subsurface formation monitoring system and method
US8739897B2 (en) * 2007-11-27 2014-06-03 Schlumberger Technology Corporation Pressure compensation and rotary seal system for measurement while drilling instrumentation
US20090251960A1 (en) * 2008-04-07 2009-10-08 Halliburton Energy Services, Inc. High temperature memory device
DE102008001439B4 (de) * 2008-04-28 2011-06-16 Dresdner Grundwasserforschungszentrum E.V. Vorrichtung und Verfahren zur Durchführung einer azimutalen Prüfung von in Bohrlöchern eingebauten Ringraumabdichtungen auf vorhandene Hohlräume, Kanäle und Strömungen
US8657035B2 (en) * 2008-06-06 2014-02-25 Schlumberger Technology Corporation Systems and methods for providing wireless power transmissions and tuning a transmission frequency
US8060311B2 (en) 2008-06-23 2011-11-15 Schlumberger Technology Corporation Job monitoring methods and apparatus for logging-while-drilling equipment
US7711500B1 (en) * 2008-10-24 2010-05-04 General Electric Company Pressure relief valve monitoring
US7823656B1 (en) 2009-01-23 2010-11-02 Nch Corporation Method for monitoring drilling mud properties
GB2467177A (en) * 2009-01-27 2010-07-28 Sensornet Ltd Sensing inside and outside tubing
US9248311B2 (en) 2009-02-11 2016-02-02 Hologic, Inc. System and method for modifying a flexibility of a brachythereapy catheter
US9579524B2 (en) 2009-02-11 2017-02-28 Hologic, Inc. Flexible multi-lumen brachytherapy device
ATE554269T1 (de) * 2009-05-07 2012-05-15 Prad Res & Dev Ltd Elektronische vorrichtung eines bohrwerkzeugs
US10207126B2 (en) 2009-05-11 2019-02-19 Cytyc Corporation Lumen visualization and identification system for multi-lumen balloon catheter
AU2010249496B2 (en) 2009-05-20 2016-03-24 Halliburton Energy Services, Inc. Downhole sensor tool with a sealed sensor outsert
WO2010135591A2 (en) 2009-05-20 2010-11-25 Halliburton Energy Services, Inc. Downhole sensor tool for nuclear measurements
CN101701519B (zh) * 2009-10-28 2013-07-24 南京航空航天大学 深井无动力数据传输装置
US8378840B2 (en) * 2010-01-08 2013-02-19 National Oilwell Varco, L.P. Surface communication device and method for downhole tool
CN101892830B (zh) * 2010-04-27 2013-04-24 北京科技大学 一种深部地应力随钻测试系统
US20120041695A1 (en) 2010-08-16 2012-02-16 Csi Technology, Inc. Integrated vibration measurement and analysis system
US9352172B2 (en) 2010-09-30 2016-05-31 Hologic, Inc. Using a guide member to facilitate brachytherapy device swap
US20120112924A1 (en) * 2010-11-09 2012-05-10 Mackay Bruce A Systems and Methods for Providing a Wireless Power Provision and/or an Actuation of a Downhole Component
US8393393B2 (en) 2010-12-17 2013-03-12 Halliburton Energy Services, Inc. Coupler compliance tuning for mitigating shock produced by well perforating
US8397814B2 (en) 2010-12-17 2013-03-19 Halliburton Energy Serivces, Inc. Perforating string with bending shock de-coupler
US8397800B2 (en) 2010-12-17 2013-03-19 Halliburton Energy Services, Inc. Perforating string with longitudinal shock de-coupler
US8985200B2 (en) 2010-12-17 2015-03-24 Halliburton Energy Services, Inc. Sensing shock during well perforating
WO2012148429A1 (en) 2011-04-29 2012-11-01 Halliburton Energy Services, Inc. Shock load mitigation in a downhole perforation tool assembly
US10342992B2 (en) 2011-01-06 2019-07-09 Hologic, Inc. Orienting a brachytherapy applicator
US20120241169A1 (en) 2011-03-22 2012-09-27 Halliburton Energy Services, Inc. Well tool assemblies with quick connectors and shock mitigating capabilities
US9091152B2 (en) 2011-08-31 2015-07-28 Halliburton Energy Services, Inc. Perforating gun with internal shock mitigation
US20130094812A1 (en) * 2011-10-12 2013-04-18 Baker Hughes Incorporated Conduit Tube Assembly and Manufacturing Method for Subterranean Use
US9091153B2 (en) * 2011-12-29 2015-07-28 Schlumberger Technology Corporation Wireless two-way communication for downhole tools
CN109899059B (zh) * 2012-01-05 2023-07-28 默林科技股份有限公司 钻柱通信系统、部件和方法
US20130222149A1 (en) * 2012-02-24 2013-08-29 Schlumberger Technology Corporation Mud Pulse Telemetry Mechanism Using Power Generation Turbines
US9726007B2 (en) * 2012-03-12 2017-08-08 Globaltech Corporation Pty Ltd Downhole surveying
WO2014003699A2 (en) 2012-04-03 2014-01-03 Halliburton Energy Services, Inc. Shock attenuator for gun system
CN102681006A (zh) * 2012-06-11 2012-09-19 范志明 一种地震预测系统
CN102865068B (zh) * 2012-09-12 2015-12-02 中国海洋石油总公司 一种探头
WO2014046655A1 (en) 2012-09-19 2014-03-27 Halliburton Energy Services, Inc. Perforation gun string energy propagation management with tuned mass damper
US9598940B2 (en) 2012-09-19 2017-03-21 Halliburton Energy Services, Inc. Perforation gun string energy propagation management system and methods
US9447678B2 (en) 2012-12-01 2016-09-20 Halliburton Energy Services, Inc. Protection of electronic devices used with perforating guns
CN103899292B (zh) * 2012-12-26 2017-06-16 中国石油化工股份有限公司 用于随钻测量井下仪器的冲击振动状态的方法
CN103061753A (zh) * 2013-01-18 2013-04-24 西南石油大学 一种随钻井下流量测量监测早期溢流的装置
WO2014190439A1 (en) 2013-05-31 2014-12-04 Evolution Engineering Inc. Downhole pocket electronics
US9631446B2 (en) 2013-06-26 2017-04-25 Impact Selector International, Llc Impact sensing during jarring operations
US10190408B2 (en) 2013-11-22 2019-01-29 Aps Technology, Inc. System, apparatus, and method for drilling
CN103821500A (zh) * 2014-02-26 2014-05-28 常州凯锐自动化控制设备有限公司 具有振动传感功能的煤层气井下压力计及其测量方法
US9765613B2 (en) 2014-03-03 2017-09-19 Aps Technology, Inc. Drilling system and electromagnetic telemetry tool with an electrical connector assembly and associated methods
US9546546B2 (en) 2014-05-13 2017-01-17 Baker Hughes Incorporated Multi chip module housing mounting in MWD, LWD and wireline downhole tool assemblies
US9920617B2 (en) 2014-05-20 2018-03-20 Baker Hughes, A Ge Company, Llc Removeable electronic component access member for a downhole system
US9976404B2 (en) 2014-05-20 2018-05-22 Baker Hughes, A Ge Company, Llc Downhole tool including a multi-chip module housing
US9790784B2 (en) 2014-05-20 2017-10-17 Aps Technology, Inc. Telemetry system, current sensor, and related methods for a drilling system
WO2015192224A1 (en) * 2014-06-18 2015-12-23 Evolution Engineering Inc. Mud motor with integrated mwd system
US9642240B2 (en) * 2014-08-20 2017-05-02 Halliburton Energy Services, Inc. Printed circuit board assemblies and a wellbore system
CN104180853B (zh) * 2014-09-01 2016-08-24 黑龙江科技大学 矿井围岩多参数耦合测定装置
CA2958178C (en) 2014-09-16 2019-05-14 Halliburton Energy Services, Inc. Directional drilling methods and systems employing multiple feedback loops
US9976413B2 (en) * 2015-02-20 2018-05-22 Aps Technology, Inc. Pressure locking device for downhole tools
US9951602B2 (en) 2015-03-05 2018-04-24 Impact Selector International, Llc Impact sensing during jarring operations
DE112015006423T5 (de) * 2015-06-03 2018-01-18 Halliburton Energy Services, Inc. Bohrwerkzeug mit Elektronik nah am Meissel
US9835026B2 (en) 2015-09-28 2017-12-05 Schlumberger Technology Corporation High-speed transmission of annulus pressure-while-drilling by data compression
CN105275454B (zh) * 2015-10-14 2018-01-12 中国石油集团渤海钻探工程有限公司 可回收气压式井筒环空液面检测装置及其检测方法
US10787897B2 (en) 2016-12-22 2020-09-29 Baker Hughes Holdings Llc Electronic module housing for downhole use
CN108734781B (zh) * 2017-04-25 2021-09-10 中国石油化工股份有限公司 一种地层模型构建方法
GB2571920A (en) * 2018-02-27 2019-09-18 Aker Solutions Ltd Subsea module
CN108843308B (zh) * 2018-05-25 2023-07-21 河北华元科工股份有限公司 一种测孔仪
US10844668B2 (en) 2018-11-09 2020-11-24 National Oilwell Varco, L.P. Self-aligning wet connection capable of orienting downhole tools
CN111155985A (zh) * 2019-12-31 2020-05-15 陕西明泰电子科技发展有限公司 一种用于钻杆内的通信方法和钻具通讯装置
WO2022182710A1 (en) * 2021-02-23 2022-09-01 Erdos Miller, Inc. Wireless measurement while drilling module in a downhole tool
CN113530523A (zh) * 2021-07-12 2021-10-22 华北科技学院(中国煤矿安全技术培训中心) 一种煤层气钻探的随钻仪器
CN113640867B (zh) * 2021-07-23 2023-07-21 辽宁科技大学 一种涌水区域微震传感器的安装装置及安装方法
US20230135161A1 (en) * 2021-11-02 2023-05-04 Baker Hughes Oilfield Operations Llc Convertible gauge module and system
WO2023201439A1 (en) * 2022-04-22 2023-10-26 Ideon Technologies Inc. System and method for imaging subsurface density using cosmic ray muons
GB2623048A (en) * 2022-05-12 2024-04-10 Siemens Energy AS Sensor monitoring system

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA953785A (en) 1971-03-09 1974-08-27 Rudolf J. Rammner Apparatus for transmitting data from a hole drilled in the earth
US3746106A (en) 1971-12-27 1973-07-17 Goldak Co Inc Boring bit locator
US4787463A (en) 1985-03-07 1988-11-29 Flowmole Corporation Method and apparatus for installment of underground utilities
US4899112A (en) 1987-10-30 1990-02-06 Schlumberger Technology Corporation Well logging apparatus and method for determining formation resistivity at a shallow and a deep depth
US5061849A (en) 1988-04-01 1991-10-29 Baker Hughes Incorporated Externally mounted radioactivity detector for MWD employing radial inline scintillator and photomultiplier tube
US5796677A (en) 1988-12-22 1998-08-18 Schlumberger Technology Corporation Method of sonic logging while drilling a borehole traversing an earth formation
US4928088A (en) * 1989-03-10 1990-05-22 Schlumberger Technology Corporation Apparatus for extracting recorded information from a logging tool
CA2024061C (en) 1990-08-27 2001-10-02 Laurier Emile Comeau System for drilling deviated boreholes
GB9021253D0 (en) 1990-09-29 1990-11-14 Metrol Tech Ltd Method of and apparatus for the transmission of data via a sonic signal
US5253721A (en) 1992-05-08 1993-10-19 Straightline Manufacturing, Inc. Directional boring head
US5357483A (en) 1992-10-14 1994-10-18 Halliburton Logging Services, Inc. Downhole tool
US5517464A (en) 1994-05-04 1996-05-14 Schlumberger Technology Corporation Integrated modulator and turbine-generator for a measurement while drilling tool
CA2127476C (en) 1994-07-06 1999-12-07 Daniel G. Pomerleau Logging or measurement while tripping
US5586083A (en) 1994-08-25 1996-12-17 Harriburton Company Turbo siren signal generator for measurement while drilling systems
CA2151525C (en) 1995-06-12 2002-12-31 Marvin L. Holbert Subsurface signal transmitting apparatus
GB2309239B (en) 1996-01-17 2000-06-21 David Edward Holloway Ground boring apparatus
US5725061A (en) * 1996-05-24 1998-03-10 Applied Technologies Associates, Inc. Downhole drill bit drive motor assembly with an integral bilateral signal and power conduction path
US6693553B1 (en) * 1997-06-02 2004-02-17 Schlumberger Technology Corporation Reservoir management system and method
US6057784A (en) 1997-09-02 2000-05-02 Schlumberger Technology Corporatioin Apparatus and system for making at-bit measurements while drilling
US6026915A (en) * 1997-10-14 2000-02-22 Halliburton Energy Services, Inc. Early evaluation system with drilling capability
US6064210A (en) 1997-11-14 2000-05-16 Cedar Bluff Group Corporation Retrievable resistivity logging system for use in measurement while drilling
US6280874B1 (en) 1998-12-11 2001-08-28 Schlumberger Technology Corp. Annular pack
US6429653B1 (en) 1999-02-09 2002-08-06 Baker Hughes Incorporated Method and apparatus for protecting a sensor in a drill collar
GB2354022B (en) 1999-09-07 2003-10-29 Antech Ltd Carrier assembly
US6349778B1 (en) 2000-01-04 2002-02-26 Performance Boring Technologies, Inc. Integrated transmitter surveying while boring entrenching powering device for the continuation of a guided bore hole
US7385523B2 (en) * 2000-03-28 2008-06-10 Schlumberger Technology Corporation Apparatus and method for downhole well equipment and process management, identification, and operation
US6577244B1 (en) 2000-05-22 2003-06-10 Schlumberger Technology Corporation Method and apparatus for downhole signal communication and measurement through a metal tubular
US6367323B1 (en) * 2000-08-17 2002-04-09 Ryan Energy Technologies, Inc. Dynamic pressure device for oil drill systems
US6564883B2 (en) * 2000-11-30 2003-05-20 Baker Hughes Incorporated Rib-mounted logging-while-drilling (LWD) sensors
US6341498B1 (en) 2001-01-08 2002-01-29 Baker Hughes, Inc. Downhole sorption cooling of electronics in wireline logging and monitoring while drilling
US6877332B2 (en) 2001-01-08 2005-04-12 Baker Hughes Incorporated Downhole sorption cooling and heating in wireline logging and monitoring while drilling
US6672093B2 (en) 2001-01-08 2004-01-06 Baker Hughes Incorporated Downhole sorption cooling and heating in wireline logging and monitoring while drilling
US6839000B2 (en) 2001-10-29 2005-01-04 Baker Hughes Incorporated Integrated, single collar measurement while drilling tool
US7301474B2 (en) * 2001-11-28 2007-11-27 Schlumberger Technology Corporation Wireless communication system and method
US6856255B2 (en) * 2002-01-18 2005-02-15 Schlumberger Technology Corporation Electromagnetic power and communication link particularly adapted for drill collar mounted sensor systems
US6634427B1 (en) 2002-03-11 2003-10-21 Aps Technology, Inc. Drill string section with internal passage
US6705406B2 (en) 2002-03-26 2004-03-16 Baker Hughes Incorporated Replaceable electrical device for a downhole tool and method thereof
US6986282B2 (en) * 2003-02-18 2006-01-17 Schlumberger Technology Corporation Method and apparatus for determining downhole pressures during a drilling operation
US7178607B2 (en) * 2003-07-25 2007-02-20 Schlumberger Technology Corporation While drilling system and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
МОЛЧАНОВ А.А. ИЗМЕРЕНИЕ ГЕОФИЗИЧЕСКИХ И ТЕХНОЛОГИЧЕСКИХ ПАРАМЕТРОВ В ПРОЦЕССЕ БУРЕНИЯ СКВАЖИН. - М.: НЕДРА, 1983, с. 191-184. *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013009715A1 (en) * 2011-07-08 2013-01-17 Schlumberger Canada Limited System and method for determining a health condition of wellsite equipment
CN103649451A (zh) * 2011-07-08 2014-03-19 普拉德研究及开发股份有限公司 用于确定井场设备的健康状况的系统和方法
RU2614653C2 (ru) * 2011-07-08 2017-03-28 Шлюмбергер Текнолоджи Б.В. Система и способ определения исправности бурового оборудования
US10613003B2 (en) 2011-07-08 2020-04-07 Schlumberger Technology Corporation Method for determining a health condition of wellsite equipment
RU2569141C1 (ru) * 2014-11-20 2015-11-20 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" Способ управления процессом эксплуатации шарошечного долота
RU2589372C1 (ru) * 2015-05-05 2016-07-10 Общество с ограниченной ответственностью "Научно-производственное предприятие ЭНЕРГИЯ" Устройство для гамма-гамма каротажа, доставляемое в интервал исследования на буровом инструменте

Also Published As

Publication number Publication date
GB0414862D0 (en) 2004-08-04
CA2492962A1 (en) 2005-11-28
GB0501123D0 (en) 2005-02-23
MXPA04006685A (es) 2005-01-27
US20050016770A1 (en) 2005-01-27
CN1576513B (zh) 2010-06-23
GB2410513B (en) 2007-06-06
DE102004035772A1 (de) 2005-05-25
GB2404209B (en) 2005-10-05
CN1576513A (zh) 2005-02-09
GB0618330D0 (en) 2006-10-25
FR2858065A1 (fr) 2005-01-28
GB2429477A (en) 2007-02-28
US7178607B2 (en) 2007-02-20
GB2404209A (en) 2005-01-26
CA2492962C (en) 2008-04-01
CA2472674A1 (en) 2005-01-25
CA2472674C (en) 2008-07-29
GB2410513A8 (en) 2006-07-11
RU2004122771A (ru) 2006-01-20
DE102004035772B4 (de) 2014-08-14
US20050016771A1 (en) 2005-01-27
US7178608B2 (en) 2007-02-20
GB2410513A (en) 2005-08-03
GB2429477B (en) 2007-06-20

Similar Documents

Publication Publication Date Title
RU2365751C2 (ru) Система и способ исследований в процессе бурения
EP3426889B1 (en) Downhole production logging tool
US9715024B2 (en) Near-field electromagnetic communications network for downhole telemetry
CA2748658C (en) Pressure management system for well casing annuli
EP3356638B1 (en) Optical rotary joint in coiled tubing applications
US9513400B2 (en) Ambient-activated switch for downhole operations
US20110199862A1 (en) Interference testing while drilling
NO20190406A1 (en) Integrated optical module for downhole tools
WO2018058084A1 (en) Integrated optical module for downhole tools
CN107949684A (zh) 非垂直井中电磁遥测的优化
WO2015168806A1 (en) Downhole electronics carrier
US10718209B2 (en) Single packer inlet configurations
US9441425B2 (en) Drilling tool system and method of manufacture
Kyo et al. Plan and technological difficulties on NanTroSEIZE long term borehole monitoring system
US10502857B2 (en) Device for measuring resistivity in a wellbore

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20120724