RU2357788C2 - Method of treating natural and assosiated oil gas from sulphuric compounds and facility for implementation of this method - Google Patents

Method of treating natural and assosiated oil gas from sulphuric compounds and facility for implementation of this method Download PDF

Info

Publication number
RU2357788C2
RU2357788C2 RU2007125515/15A RU2007125515A RU2357788C2 RU 2357788 C2 RU2357788 C2 RU 2357788C2 RU 2007125515/15 A RU2007125515/15 A RU 2007125515/15A RU 2007125515 A RU2007125515 A RU 2007125515A RU 2357788 C2 RU2357788 C2 RU 2357788C2
Authority
RU
Russia
Prior art keywords
gas
water
absorbent
vacuum
mpa
Prior art date
Application number
RU2007125515/15A
Other languages
Russian (ru)
Other versions
RU2007125515A (en
Inventor
Роберт Врамшабович Дарбинян (RU)
Роберт Врамшабович Дарбинян
Юрий Иванович Духанин (RU)
Юрий Иванович Духанин
Николай Николаевич Коленко (RU)
Николай Николаевич Коленко
Александр Александрович Белугин (RU)
Александр Александрович Белугин
Станислав Анатольевич Клементьев (RU)
Станислав Анатольевич Клементьев
Original Assignee
Закрытое акционерное общество "Научно-производственное объединение "Аркон"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое акционерное общество "Научно-производственное объединение "Аркон" filed Critical Закрытое акционерное общество "Научно-производственное объединение "Аркон"
Priority to RU2007125515/15A priority Critical patent/RU2357788C2/en
Publication of RU2007125515A publication Critical patent/RU2007125515A/en
Application granted granted Critical
Publication of RU2357788C2 publication Critical patent/RU2357788C2/en

Links

Landscapes

  • Gas Separation By Absorption (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

FIELD: oil and gas industry.
SUBSTANCE: upon dehydration and scrubbing of solid particles in filter 1 source gas is compressed in compressor 2, further it is cooled in heat exchanger 3 and directed to absorption into device 4. Section of the inlet nozzle of device 4 is made so, as to facilitate rate of gas within ranges of 650-700 m/sec and vacuum of value 0.005-0.007 MPa (abs) for creating a turbulent mode and for intensifying absorption process. In section of an outlet from the vacuum cavity nozzle rate of gas is maintained within ranges of 180-250 m/sec, also pressure is raised to 1.5 MPa. Simultaneously under influence of pressure drop alkaline water is supplied into the vacuum cavity from an electrolytic cell 8; this water is preliminary purified via magnet device 12 with induction of 0.2-03 tesla. Steam-gas mixture created in device 4 is cooled in heat exchanger 5 with circulation water and is directed to separation in vortex separator 6. Treated gas is sent to further processing, while separated water is regenerated in desorber 14.
EFFECT: increased efficiency of coefficient of mass transfer at contact of treated gas and absorbent, reduced mass-dimension characteristics of device and reduced costs per unit.
2 cl, 1 ex, 1 dwg

Description

Изобретение относится к газовой и нефтяной промышленности, в частности к способам и устройствам струйной очистки газов от кислых газов: сероводорода, диоксида углерода, меркаптанов, тяжелых углеводородов.The invention relates to the gas and oil industries, in particular to methods and devices for gas jet cleaning from acid gases: hydrogen sulfide, carbon dioxide, mercaptans, heavy hydrocarbons.

Известен способ абсорбционной очистки природного и попутных нефтяных газов от сероводорода, диоксида углерода и других компонентов, включающий поглощение этих компонентов хемсорбентом в абсорбере с последующим их выделением из хемсорбента в десорбере методом нагрева и возвращения отрегенерированного хемсорбента после охлаждения в абсорбер для повторного использования (А.П.Клименко. Сжиженные углеводородные газы. - М.: Недра, 1974 г., стр.213, рис.118).A known method of absorption purification of natural and associated petroleum gases from hydrogen sulfide, carbon dioxide and other components, including the absorption of these components with a absorbent in the absorber, followed by their separation from the absorbent in the stripper by heating and returning the regenerated absorbent after cooling to the absorber for reuse (A.P. Klimenko. Liquefied hydrocarbon gases. - M .: Nedra, 1974, p. 213, Fig. 118).

Устройство для осуществления вышеуказанного способа очистки газа содержит двухступенчатый насадочный или тарельчатый абсорбер для контакта очищаемого газа с хемсорбентом, десорбер для нагрева хемсорбента и удаления абсорбированных компонентов, насос для подачи хемсорбента в ступени абсорбера, теплообменники для охлаждения хемсорбента и утилизации тепла кубовой жидкости десорбера, подогреватель кубовой жидкости (А.П.Клименко. Сжиженные углеводородные газы. - М.: Недра. 1974 г., стр.213, рис.118).A device for implementing the above method of gas purification comprises a two-stage nozzle or plate absorber for contacting the gas to be cleaned with the absorbent, a stripper for heating the absorbent and removing absorbed components, a pump for supplying the absorbent in the absorber stages, heat exchangers for cooling the absorbent and utilizing the heat of the stripping liquid of the stripper, the bottoms heater liquids (A.P. Klimenko. Liquefied hydrocarbon gases. - M .: Nedra. 1974, p. 213, Fig. 118).

Основной недостаток вышеуказанных способа и устройства - это сравнительно невысокий коэффициент массопередачи в абсорбере и недостаточно глубокое выделение сернистых соединений, диоксида углерода из очищаемого газа, что приводит к увеличению габаритов и металлоемкости абсорбера и десорбера, к большим затратам энергии на нагрев хемсорбента в процессе десорбции.The main disadvantage of the above method and device is the relatively low mass transfer coefficient in the absorber and the insufficiently deep separation of sulfur compounds, carbon dioxide from the gas to be cleaned, which leads to an increase in the dimensions and metal consumption of the absorber and stripper, and to large expenditures of energy for heating the absorbent during desorption.

Наиболее близким по технической сущности и достигаемому эффекту является способ очистки отходящих газов электрических станций от диоксида углерода, включающий подачу в поток газа, параллельно потоку, щелочного раствора оборотной воды золоудаления с последующим отделением щелочного раствора с абсорбированным диоксидом углерода в сепараторе (Патент РФ №2250129, МПК B01D 53/14, 53/52, опубл. 20.11.2004 г.).The closest in technical essence and the achieved effect is a method of purification of the exhaust gases of power plants from carbon dioxide, comprising supplying to the gas stream, parallel to the stream, an alkaline solution of circulating ash water, followed by separation of the alkaline solution with absorbed carbon dioxide in a separator (RF Patent No. 2250129, IPC B01D 53/14, 53/52, published on November 20, 2004).

Известно также устройство для очистки отходящих газов тепловых электрических станций от диоксида углерода, содержащее трубу, в которой производят смешение отходящих газов с щелочным раствором воды, насос для подачи раствора в трубу, сепаратор для отделения абсорбента от газа (Патент РФ №2250129, МПК B01D 53/52, опубл. 20.11,2004 г.).There is also known a device for cleaning the exhaust gases of thermal power plants from carbon dioxide, containing a pipe in which the exhaust gases are mixed with an alkaline solution of water, a pump for feeding the solution into the pipe, a separator for separating absorbent from gas (RF Patent No. 2250129, IPC B01D 53 / 52, published on November 20, 2004).

Основным недостатком вышеуказанных способа и устройства является недостаточная интенсивность массообмена между удаляемыми компонентами и абсорбентом и для достижения требуемой глубины очистки газа увеличивают время контакта газа с абсорбентом, снижают скорость газового потока для предотвращения уноса абсорбента с газом, что приводит к росту габаритов аппаратов, а также к росту затрат электроэнергии на повышение давления газа и обеспечение относительно высокого парциального давления удаляемых компонентов.The main disadvantage of the above method and device is the lack of mass transfer between the removed components and the absorbent, and to achieve the required depth of gas purification, increase the contact time of the gas with the absorbent, reduce the gas flow rate to prevent the absorption of absorbent with gas, which leads to an increase in the dimensions of the apparatus, as well as increased energy costs for increasing gas pressure and providing a relatively high partial pressure of the removed components.

Решаемая задача - повышение коэффициента массопередачи при контакте очищаемого газа и абсорбента, снижение массогабаритных размеров аппарата и блока очистки газа и уменьшение удельных затрат абсорбентов и энергии на очистку газа.The problem to be solved is to increase the mass transfer coefficient at the contact of the gas to be cleaned and the absorbent, to reduce the overall dimensions of the apparatus and the gas purification unit, and to reduce the specific costs of absorbents and energy for gas purification.

Решение поставленной задачи заключается в том, что способ очистки природного и попутного нефтяного газов от сернистых соединений, диоксида углерода, меркаптанов, тяжелых углеводородов, включающий контакт очищаемого газа с жидким абсорбентом и поглощение этим абсорбентом извлекаемых компонентов с последующей десорбцией поглощенных компонентов из абсорбента путем нагрева для повторного его использования, контакт очищаемого газа и абсорбента производят в вакуумной полости аппарата с трубками переменного сечения, в котором создают вакуум за счет преобразования потенциальной и внутренней энергии газа в кинетическую энергию в результате повышения скорости очищаемого газа на входе в эту полость, в пределах 650-700 м/с, для соответствия его отношению к скорости звука в этом газе М=1.5-1.65 и создания вакуума величиной 0.005-0.007, с последующим снижением скорости потока в этой полости и повышением давления до 1.0-1.5 МПа, а в качестве абсорбента используют воду, насыщенную ионами гидроксильной группы (ОН)- и свободного водорода Н+, которую получают в электролизере при добавлении в воду 1-2% хлорида натрия для повышения электропроводности и создания щелочной среды с рН выше 7, затем ее нагревают до температуры 80-90°С за счет утилизации тепла, омагничивают в магнитном поле магнитной индукцией 0.2-0.3 Тл для повышения поверхностной энергии, и подают в вакуумную полость со скоростью 30-40 м/с в количестве 35-40% от массы очищаемого газа, где переводят активированную воду в паровую фазу, увеличивая поверхность контакта газа и абсорбента на молекулярном уровне, затем во втором сопле на выходе из вакуумной полости обеспечивают скорость газопаровой смеси в пределах 180-250 м/с, генерируя ультразвуковые колебания для интенсификации смешения контактирующих фракций, охлаждают ее в теплообменнике и конденсируют в циркуляционном контуре, а в сепараторе отделяют жидкость от очищенного газа, который направляют или на следующую технологическую операцию, или на повторную доочистку, в зависимости от требований по глубине очистки, а отделенную жидкость нагревают, десорбируют поглощенные компоненты и горячую воду направляют в бак-электролизер для повторного использования.The solution to this problem lies in the fact that the method of purification of natural and associated petroleum gases from sulfur compounds, carbon dioxide, mercaptans, heavy hydrocarbons, comprising contacting the gas to be purified with a liquid absorbent and absorbing the extracted components with this absorbent, followed by desorption of the absorbed components from the absorbent by heating to its reuse, the contact of the gas to be cleaned and the absorbent is produced in the vacuum cavity of the apparatus with tubes of variable cross section, in which the mind due to the conversion of the potential and internal energy of the gas into kinetic energy as a result of an increase in the speed of the gas being cleaned at the entrance to this cavity, within 650-700 m / s, to correspond to its ratio to the speed of sound in this gas M = 1.5-1.65 and create vacuum value of 0.005-0.007, followed by a decrease in the flow rate in this cavity and an increase in pressure to 1.0-1.5 MPa, and water, saturated with ions of the hydroxyl group (OH) - and free hydrogen H + , which is obtained in the electrolyzer by adding in water 1-2% sodium chloride to increase electrical conductivity and create an alkaline environment with a pH above 7, then it is heated to a temperature of 80-90 ° C due to heat recovery, magnetized in a magnetic field by magnetic induction 0.2-0.3 T to increase surface energy, and fed into a vacuum cavity with at a speed of 30-40 m / s in an amount of 35-40% by weight of the gas to be cleaned, where activated water is transferred to the vapor phase, increasing the contact surface of the gas and absorbent at the molecular level, then in the second nozzle at the exit from the vacuum cavity the gas velocity steam mixture in the range of 180-250 m / s, generating ultrasonic vibrations to intensify the mixing of the contacting fractions, cool it in a heat exchanger and condense in the circulation circuit, and the liquid is separated from the purified gas in the separator, which is sent either to the next process operation or to a second tertiary treatment, depending on the requirements for cleaning depth, and the separated liquid is heated, the absorbed components are desorbed and hot water is sent to the electrolysis tank for reuse.

Устройство для очистки природного и попутного нефтяного газов, содержащее абсорбер, десорбер, насос, подогреватель абсорбента, насыщенного извлекаемыми компонентами; абсорбер выполнен в виде аппарата с каналами переменного сечения с промежуточной полостью для преобразования потенциальной энергии потока газа в кинетическую, кинетической энергии - в потенциальную с целью создания в промежуточной полости вакуума, дополнительно оснащено электролизером для насыщения воды с хлоридом натрия гидроксид-ионами и ионами водорода, магнитным аппаратом для омагничивания воды перед ее подачей в вакуумную полость аппарата, рекуперативным теплообменником для утилизации тепла сжатого газа и нагрева воды в циркуляционном контуре.A device for purifying natural and associated petroleum gases, comprising an absorber, stripper, pump, heater of absorbent saturated with recoverable components; the absorber is made in the form of an apparatus with channels of variable cross section with an intermediate cavity for converting the potential energy of the gas flow into kinetic, kinetic energy into potential with the aim of creating a vacuum in the intermediate cavity, is additionally equipped with an electrolyzer for saturating water with sodium chloride with hydroxide ions and hydrogen ions, a magnetic apparatus for magnetizing water before it is fed into the vacuum cavity of the apparatus, a regenerative heat exchanger for utilizing the heat of compressed gas and heating the water to the compass contour.

Проведенный анализ технического уровня позволил установить, что заявителем не обнаружен аналог, характеризующийся признаками, идентичными всем существенным признакам заявленного изобретения, следовательно, оно соответствует критерию «новизна».The analysis of the technical level made it possible to establish that the applicant has not found an analogue characterized by features identical to all the essential features of the claimed invention, therefore, it meets the criterion of "novelty."

Сущность изобретения поясняется чертежом, где изображена принципиальная схема устройства по очистке газа от сернистых соединений и диоксида углерода.The invention is illustrated by the drawing, which shows a schematic diagram of a device for cleaning gas from sulfur compounds and carbon dioxide.

Устройство содержит фильтр 1 для очистки газа от влаги и твердых частиц перед подачей в компрессор 2, предназначенный для повышения давления газа, теплообменник 3 для охлаждения сжатого газа, аппарат 4 с входным и выходным соплами, между которыми размещена промежуточная полость большого объема, в которой производят смешение газа с парами активированного водяного абсорбента, теплообменник 5 для охлаждения газопаровой смеси и конденсации жидкости, вихревой сепаратор 6 для отделения жидкости от газа, бак 7 для десорбции из жидкости абсорбированных газов, бак 8 для сбора и активации абсорбента, при этом в баке 8 установлены электроды 9 (анод) и 10 (катод), которые подключены к выпрямителю тока 11, для насыщения воды гидроксид-ионами и ионами водорода, магнитный аппарат 12, установленный на линии подачи абсорбента в вакуумную полость аппарата, для повышения поверхностной энергии воды, насос 13 для циркуляции воды в замкнутом контуре, электронагреватель 14 для нагрева отделенной жидкости и десорбции поглощенных компонентов газа, свечу 15 для отвода десорбированных газов в атмосферу, арматуры 16 и 17 для регулирования потока газа, дюзу 18 для ограничения обратного потока газа, манометры 19 и 20 для контроля давлений газа на входе и газопаровой смеси на выходе из аппарата, мановакууметр 21 для контроля давления в вакуумной полости аппарата 4. Принцип работы устройства заключается в следующем. Исходный газ после очистки от влаги и твердых частиц в фильтре 1 сжимают в компрессоре 2 до давления, например, 0.4 МПа (абс) и после охлаждения в теплообменнике 3 направляют в аппарат 4, где сечение входного в вакуумную полость сопла выполнено таким образом, чтобы обеспечить скорость газа, в зависимости от плотности газа, в пределах 650-700 м/с для обеспечения отношения реальной скорости газа к скорости звука в газе, определяемом критерием Маха в пределах М=1.5-1.65, для создания вакуума величиной 0.005-0.007 МПа (абс) и турбулизации потока газа для интенсификации процесса смешения молекул газа с парами щелочной воды и повышения массопередачи, а в сечении выходного из вакуумной полости сопла обеспечивает скорость газопаровой смеси в пределах 180-250 м/с и повышение ее давления до 1.5 МПа для генерации ультразвуковых колебаний. Одновременно под действием перепада давления в вакуумную полость подают щелочную воду, которую получают предварительным нагревом в теплообменнике 3, при охлаждении сжатого газа до температуры 80-90°С, потом в баке 8 воду подвергают диссоциации в электролизере на водород (Н2+) и гидроксид-ионы (ОН-), для чего в воду добавляют хлорид натрия (NaCl) в количестве 1-23% от массы воды для повышения ее электропроводности и получают слабый щелочной раствор с рН выше 7. Затем воду, содержащую гидроксид-ионы и ионы водорода, пропускают через постоянный магнитный аппарат с индукцией 0.2-0.3 Тл для повышения поверхностной энергии и вводят в вакуумную полость в количестве 35-40% от массы обрабатываемого газа при скорости 30-40 м/с. В вакуумной полости, где давление 0.005-0.007 МПа, вода с температурой 80-90°С испаряется и переходит в паровую фазу. Ввиду большой скорости газа на входе в вакуумную полость имеет место активная турбулизация газа, особенно в приграничном слое, поэтому в вакуумной полости происходит как молекулярная, так и турбулентная диффузия молекул газа. Пары воды взаимодействуют с молекулами газа, расстояние между которыми в вакуумной полости значительно больше, чем при высоком давлении, и пары воды, обладая повышенной электромагнитной напряженностью и энергией поверхностного слоя из-за наличия в нем гидроксид-ионов, вступают во взаимодействие с кислыми газами: сероводород, диоксид углерода, то есть имеет место реакция нейтрализации кислотных компонентов газа, которая проистекает более интенсивно, чем в процессе физического растворения этих компонентов в воде. Щелочная вода активно поглощает эти компоненты, т.к. их растворимость в воде значительно выше других компонентов газов: метана, этана и др. Образовавшуюся в вакуумной полости газопаровую смесь пропускают через выходное сопло аппарата 4, сечение которого обеспечивает скорость потока 180-250 м/с и создание противодавления в пределах 1.5-2.0 МПа, генерируют ультразвуковые колебания и интенсифицируют процесс смешения и поглощения парами воды кислых газов, затем газопаровую смесь охлаждают в теплообменнике 5 циркулирующей водой с помощью насоса 13, конденсируют пары воды с поглощенными компонентами и направляют в вихревой сепаратор 6, где отделяют воду от газа, последний направляют на следующий технологический процесс или возвращают на всасывание компрессора 2, в случае, когда полученное содержание кислых компонентов в газе выше требуемых значений. Отделенную воду из сепаратора направляют в бак 7, где нагревают ее ТЭН-ами 14 до температуры 90-95°С, при которой поглощенные компоненты десорбируют из воды, и через свечу 15 выбрасывают в атмосферу или же направляют на переработку, а горячую воду из бака 7 направляют в бак 8 для повторного использования.The device comprises a filter 1 for cleaning gas from moisture and particulate matter before being fed to a compressor 2 designed to increase gas pressure, a heat exchanger 3 for cooling compressed gas, an apparatus 4 with inlet and outlet nozzles, between which there is an intermediate cavity of large volume, in which gas mixing with vapors of activated water absorbent, heat exchanger 5 for cooling the gas-vapor mixture and liquid condensation, vortex separator 6 for separating the liquid from the gas, tank 7 for desorption from the liquid absorbers gas, a tank 8 for collecting and activating the absorbent, while in the tank 8 there are electrodes 9 (anode) and 10 (cathode), which are connected to a current rectifier 11, for saturation of water with hydroxide ions and hydrogen ions, a magnetic apparatus 12 installed on the supply line of the absorbent into the vacuum cavity of the apparatus, to increase the surface energy of water, a pump 13 for circulating water in a closed circuit, an electric heater 14 for heating the separated liquid and desorption of the absorbed gas components, a candle 15 for venting the desorbed gases to the atmosphere, valves 16 and 17 to control the gas flow, nozzle 18 to limit the reverse gas flow, gauges 19 and 20 to control the gas pressure at the inlet and the gas-vapor mixture at the outlet of the apparatus, manovacuum gauge 21 to control the pressure in the vacuum cavity of the apparatus 4. The principle of operation of the device is in the following. After purification of moisture and solid particles in the filter 1, the feed gas is compressed in a compressor 2 to a pressure of, for example, 0.4 MPa (abs) and, after cooling in a heat exchanger 3, is sent to apparatus 4, where the cross section of the nozzle inlet into the vacuum cavity is made in such a way as to ensure the gas velocity, depending on the gas density, in the range of 650-700 m / s to ensure the ratio of the real gas velocity to the speed of sound in the gas, determined by the Mach criterion in the range of M = 1.5-1.65, to create a vacuum of 0.005-0.007 MPa (abs ) and turbulization of the gas flow for intensification katsii mixing process gas molecules with vapors of alkaline water and improve mass transfer, and the output section of the nozzle of the vacuum chamber provides speed gas-vapor mixture in the range of 180-250 m / s and increase its pressure up to 1.5 MPa to generate ultrasonic vibrations. At the same time, under the influence of a pressure drop, alkaline water is supplied to the vacuum cavity, which is obtained by preheating in the heat exchanger 3, while cooling the compressed gas to a temperature of 80-90 ° C, then in the tank 8 the water is subjected to dissociation in the electrolyzer for hydrogen (H 2 + ) and hydroxide -ions (OH - ), for which sodium chloride (NaCl) is added to water in an amount of 1-23% of the mass of water to increase its electrical conductivity and a weak alkaline solution is obtained with a pH above 7. Then water containing hydroxide ions and hydrogen ions pass through permanent magnesium ny induction apparatus with 0.2-0.3 Tesla to increase surface energy and is introduced into a vacuum chamber in an amount of 35-40% by weight of the gas to be treated at a speed of 30-40 m / s. In a vacuum cavity, where the pressure is 0.005-0.007 MPa, water with a temperature of 80-90 ° C evaporates and passes into the vapor phase. Due to the high gas velocity at the entrance to the vacuum cavity, active gas turbulence takes place, especially in the boundary layer; therefore, both molecular and turbulent diffusion of gas molecules occurs in the vacuum cavity. Water vapors interact with gas molecules, the distance between which in the vacuum cavity is much greater than at high pressure, and water vapors, having increased electromagnetic tension and energy of the surface layer due to the presence of hydroxide ions in it, interact with acid gases: hydrogen sulfide, carbon dioxide, that is, there is a neutralization reaction of the acid components of the gas, which occurs more intensively than in the process of physical dissolution of these components in water. Alkaline water actively absorbs these components, as their solubility in water is significantly higher than other gas components: methane, ethane, etc. The gas-vapor mixture formed in the vacuum cavity is passed through the outlet nozzle of apparatus 4, the cross section of which provides a flow velocity of 180-250 m / s and the creation of back pressure in the range of 1.5-2.0 MPa, generate ultrasonic vibrations and intensify the process of mixing and absorption of acid gases by water vapor, then the gas-vapor mixture is cooled in the heat exchanger 5 by circulating water using a pump 13, water vapor is condensed with the absorbed components directed into vortex separator 6 where the water is separated from the gas, the latter is sent to the next process or recycled to the suction of compressor 2, in the case where the resulting content of acidic components in the gas above the desired values. The separated water from the separator is sent to the tank 7, where it is heated by TEN-ami 14 to a temperature of 90-95 ° C, at which the absorbed components are desorbed from the water, and released through the candle 15 into the atmosphere or sent for processing, and hot water from the tank 7 sent to the tank 8 for reuse.

Пример выполнения способа очистки природного и попутного нефтяного газа от сернистых соединений и диоксида углерода.An example of the method of purification of natural and associated petroleum gas from sulfur compounds and carbon dioxide.

Попутный нефтяной газ, содержащий 5% сероводорода и меркаптанов, а также 3% диоксида углерода расходом 600 нм3/ч при исходной плотности 0.78 кг/м3, сжимают в компрессоре с давления 0.1 МПа до 0.4 МПа. Сжатый газ после компрессора при температуре 130-135°С подают в теплообменник 3, который охлаждают циркуляционной водой, при этом расход воды ограничивают таким образом, чтобы температура воды на выходе из теплообменника 3 составляла 90-95°С. Горячий газ подают в аппарат 4, при этом площадь сечения отверстия на входе в вакуумную полость рассчитана таким образом, чтобы обеспечить скорость газа равную 700 м/с. При этой скорости потока в вакуумной полости трубы образуют остаточное давление, равное 0.005-0.007 МПа, которое обеспечивает отношение к барометрическому давлению, под которым находится вода в баке, порядка 15-20. Под действием этого перепада давления воду в количестве 165 кг/ч, содержащую гидроксид-ионы и водород, пропускают через постоянный магнитный аппарат напряженностью 0.25 Тл и тангенциально подают в вакуумную полость через сопло со скоростью 40 м/с. В вакуумной полости пары испарившейся щелочной воды поглощают кислые газы: сероводород и диоксид углерода. Газопаровую смесь пропускают через выходное сопло аппарата 4 со скоростью 210 м/с и создают противодавление 1.2 МПа, при котором возникают ультразвуковые колебания, которые интенсифицируют процесс смешения и поглощения удаляемых кислых компонентов щелочной водой, направляют в теплообменник 5, где в результате охлаждения смеси пары абсорбента конденсируют и отделяют в вихревом сепараторе 6. Очищенный газ с остаточным содержанием сероводорода 0.05% и диоксида углерода 0.08%, которые существенно ниже исходной их концентрации при одноразовой обработке и может быть еще снижено при повторной обработке, направляют потребителю, а отделенную воду отводят в бак 7, где повышают температуру электронагревателями до температуры 95°С, при которой десорбируют поглощенные компоненты и сбрасывают их в атмосферу, или на факел на сжигание, или на рассеивание, а горячую воду направляют в бак-электролизер для повторного использования.Associated petroleum gas containing 5% hydrogen sulfide and mercaptans, as well as 3% carbon dioxide with a flow rate of 600 nm 3 / h at an initial density of 0.78 kg / m 3 , is compressed in a compressor from a pressure of 0.1 MPa to 0.4 MPa. The compressed gas after the compressor at a temperature of 130-135 ° C is fed into a heat exchanger 3, which is cooled by circulating water, while the water flow rate is limited so that the temperature of the water at the outlet of the heat exchanger 3 is 90-95 ° C. Hot gas is fed into the apparatus 4, while the cross-sectional area of the hole at the entrance to the vacuum cavity is calculated in such a way as to ensure a gas velocity of 700 m / s. At this flow rate in the vacuum cavity of the pipe, a residual pressure of 0.005-0.007 MPa is formed, which provides a ratio of about 15-20 to the barometric pressure under which the water in the tank is located. Under the influence of this pressure drop, water in an amount of 165 kg / h, containing hydroxide ions and hydrogen, is passed through a 0.25 T permanent magnetic apparatus and is tangentially fed into the vacuum cavity through a nozzle at a speed of 40 m / s. Vapors of evaporated alkaline water absorb acid gases in the vacuum cavity: hydrogen sulfide and carbon dioxide. The gas-vapor mixture is passed through the outlet nozzle of the apparatus 4 at a speed of 210 m / s and a backpressure of 1.2 MPa is created, during which ultrasonic vibrations arise that intensify the process of mixing and absorption of the removed acidic components with alkaline water, they are sent to the heat exchanger 5, where, as a result of the mixture being cooled, the absorbent vapor condensed and separated in a vortex separator 6. Purified gas with a residual content of hydrogen sulfide 0.05% and carbon dioxide 0.08%, which are significantly lower than their initial concentration with a single treatment batch and can be further reduced during reprocessing, sent to the consumer, and the separated water is diverted to tank 7, where the temperature is increased by electric heaters to a temperature of 95 ° C, at which the absorbed components are desorbed and dumped into the atmosphere, or to the flare for burning, or dispersion, and hot water is sent to the electrolytic tank for reuse.

Производительность насоса 13 для циркуляции охлаждающей воде в данном примере составляет 0.3 м3/ч при напоре 0.3 МПа, а расход активированной воды, подаваемой в вакуумную полость, составляет около 0,2 м3/ч.The performance of the pump 13 for cooling water circulation in this example is 0.3 m 3 / h at a pressure of 0.3 MPa, and the flow rate of activated water supplied to the vacuum cavity is about 0.2 m 3 / h.

Предлагаемое техническое решение позволяет производить абсорбционную очистку газов в струе потока без существенных затрат на электроэнергию при давлении исходного газа более 0.4 МПа, без специальных хемсорбентов, применение которых предъявляет высокие требования к коррозионной стойкости материалов, позволяет значительно снизить металлоемкость и габариты установки.The proposed technical solution allows the absorption cleaning of gases in the stream stream without significant energy costs at a source gas pressure of more than 0.4 MPa, without special chemisorbents, the use of which makes high demands on the corrosion resistance of materials, and significantly reduces the metal consumption and dimensions of the installation.

Сравнение существенных признаков предложенного изобретения и известных решений дает основание считать, что предложенное техническое решение отвечает критериям «изобретательский уровень» и «промышленная применимость».Comparison of the essential features of the proposed invention and known solutions gives reason to believe that the proposed technical solution meets the criteria of "inventive step" and "industrial applicability".

Claims (2)

1. Способ очистки природного и попутного нефтяного газов от сернистых соединений, диоксида углерода, меркаптанов, тяжелых углеводородов, включающий контакт очищаемого газа с жидким абсорбентом и поглощение этим абсорбентом извлекаемых компонентов с последующей десорбцией поглощенных компонентов из абсорбента путем нагрева для повторного его использования, отличающийся тем, что контакт очищаемого газа и абсорбента производят в вакуумной полости аппарата с трубками переменного сечения, в котором создают вакуум за счет преобразования потенциальной и внутренней энергии газа в кинетическую энергию в результате повышения скорости очищаемого газа на входе в эту полость, в пределах 650-700 м/с, для соответствия его отношению к скорости звука в этом газе М=1,5-1,65, и создания вакуума величиной 0,005-0,007 МПа (абс) и повышением давления до 1,0-1,5 МПа, а в качестве абсорбента используют воду, насыщенную ионами гидроксильной группы (ОН)- и свободного водорода Н+, которую получают в электролизере при добавлении в воду 1-2%-ного хлорида натрия, для повышения электропроводности и создания щелочной среды с рН выше 7, затем ее нагревают до температуры 80-90°С за счет утилизации тепла, омагничивают в магнитном поле с магнитной индукцией 0,2-0,3 Тл для повышения поверхностной энергии и подают в вакуумную полость со скоростью 30-40 м/с в количестве 35-40% от массы очищаемого газа, где переводят ее в паровую фазу, увеличивая поверхность контакта газа и абсорбента на молекулярном уровне, затем, во втором сопле на выходе из вакуумной полости обеспечивают скорость газопаровой смеси в пределах 180-250 м/с, генерируя ультразвуковые колебания для интенсификации смешения контактирующих компонентов, охлаждают ее в теплообменнике и конденсируют в циркуляционном контуре, а в сепараторе отделяют жидкость от очищенного газа, который направляют или на следующую технологическую операцию, или на повторную доочистку, в зависимости от требований по глубине очистки, а отделенную жидкость нагревают, десорбируют поглощенные компоненты, а горячую воду направляют в бак-электролизер для повторного использования.1. The method of purification of natural and associated petroleum gases from sulfur compounds, carbon dioxide, mercaptans, heavy hydrocarbons, comprising contacting the gas to be cleaned with a liquid absorbent and absorbing the extracted components with this absorbent, followed by desorption of the absorbed components from the absorbent by heating for reuse, characterized in that the contact of the gas to be cleaned and the absorbent is produced in the vacuum cavity of the apparatus with tubes of variable cross-section, in which a vacuum is created due to conversion the potential and internal energy of the gas into kinetic energy as a result of increasing the speed of the gas being cleaned at the entrance to this cavity, in the range of 650-700 m / s, in order to correspond to its ratio to the speed of sound in this gas M = 1.5-1.65, and creating a vacuum of 0.005-0.007 MPa (abs) and increasing the pressure to 1.0-1.5 MPa, and as the absorbent use water saturated with ions of the hydroxyl group (OH) - and free hydrogen H + , which is obtained in the electrolyzer by adding 1-2% sodium chloride in water to increase electrical conductivity and create alkaline medium with a pH above 7, then it is heated to a temperature of 80-90 ° C due to heat recovery, magnetized in a magnetic field with magnetic induction of 0.2-0.3 T to increase surface energy and fed into a vacuum cavity at a speed of 30-40 m / s in the amount of 35-40% of the mass of the gas to be purified, where it is transferred to the vapor phase, increasing the contact surface of the gas and absorbent at the molecular level, then, in the second nozzle at the outlet of the vacuum cavity, the gas-vapor mixture is provided with a speed in the range of 180-250 m / s, generating ultrasonic vibrations for intensification mixing the contacting components, cool it in the heat exchanger and condense it in the circulation circuit, and in the separator the liquid is separated from the purified gas, which is sent either to the next process step or to re-purify, depending on the requirements for the depth of cleaning, and the separated liquid is heated, the absorbed components are desorbed, and hot water is sent to the electrolysis tank for reuse. 2. Устройство для очистки природного и попутного нефтяного газов, содержащее абсорбер, десорбер, насос, подогреватель абсорбента, насыщенного извлекаемыми компонентами, отличающееся тем, что абсорбер выполнен в виде аппарата с каналами переменного сечения с промежуточной полостью для преобразования потенциальной энергии потока газа в кинетическую и создания вакуума величиной 0,005-0,007 МПа, а в последующем преобразования кинетической энергии газопаровой смеси в потенциальную энергию, при этом устройство дополнительно оснащено электролизером для диссоциации воды с хлоридом натрия на гидроксид-ионы и ионы водорода, магнитным аппаратом для омагничивания воды перед ее подачей в вакуумную полость аппарата, рекуперативным теплообменником для утилизации тепла сжатого газа и нагрева воды в циркуляционном контуре. 2. A device for purifying natural and associated petroleum gases, containing an absorber, stripper, pump, heater of absorbent saturated with extractable components, characterized in that the absorber is made in the form of an apparatus with variable cross-section channels with an intermediate cavity for converting the potential energy of the gas flow into kinetic and creating a vacuum of 0.005-0.007 MPa, and subsequently converting the kinetic energy of the gas-vapor mixture into potential energy, while the device is additionally equipped with an electrolyte erom water dissociation with sodium chloride for hydroxide ions and hydrogen ions, the magnetic apparatus for magnetizing water before it is fed into a vacuum chamber apparatus, the regenerative heat exchanger for recovering heat of the compressed gas and the heating water in the circulation circuit.
RU2007125515/15A 2007-07-06 2007-07-06 Method of treating natural and assosiated oil gas from sulphuric compounds and facility for implementation of this method RU2357788C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2007125515/15A RU2357788C2 (en) 2007-07-06 2007-07-06 Method of treating natural and assosiated oil gas from sulphuric compounds and facility for implementation of this method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2007125515/15A RU2357788C2 (en) 2007-07-06 2007-07-06 Method of treating natural and assosiated oil gas from sulphuric compounds and facility for implementation of this method

Publications (2)

Publication Number Publication Date
RU2007125515A RU2007125515A (en) 2009-01-20
RU2357788C2 true RU2357788C2 (en) 2009-06-10

Family

ID=40375399

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007125515/15A RU2357788C2 (en) 2007-07-06 2007-07-06 Method of treating natural and assosiated oil gas from sulphuric compounds and facility for implementation of this method

Country Status (1)

Country Link
RU (1) RU2357788C2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011086402A1 (en) * 2010-01-14 2011-07-21 Ferenc Meszaros Method for reduction of the co2 content of flue and atmospheric gases, and equipments for application of the method
RU2558886C2 (en) * 2013-05-06 2015-08-10 Общество С Ограниченной Ответственностью Научно-Исследовательский И Проектный Институт По Обустройству Нефтяных И Газовых Месторождений Method of recycling refinery flare gases

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2382028B1 (en) * 2009-01-28 2018-05-09 Siemens Aktiengesellschaft Method for separating carbon dioxide from an exhaust gas of a fossil fired power plant
RU2465018C1 (en) * 2011-07-12 2012-10-27 Учреждение Российской академии наук Институт химии твердого тела Уральского отделения РАН Method for bio-wire coating for osteosynthesis

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011086402A1 (en) * 2010-01-14 2011-07-21 Ferenc Meszaros Method for reduction of the co2 content of flue and atmospheric gases, and equipments for application of the method
US8501129B2 (en) 2010-01-14 2013-08-06 Ferenc Meszaros Method for reduction of the CO2 content of flue and atmospheric gases, and equipments for application of the method
RU2558886C2 (en) * 2013-05-06 2015-08-10 Общество С Ограниченной Ответственностью Научно-Исследовательский И Проектный Институт По Обустройству Нефтяных И Газовых Месторождений Method of recycling refinery flare gases

Also Published As

Publication number Publication date
RU2007125515A (en) 2009-01-20

Similar Documents

Publication Publication Date Title
US7531096B2 (en) System and method of reducing organic contaminants in feed water
RU2432315C2 (en) Method and apparatus for converting hydrogen sulphide to hydrogen and sulphur
EP2796183A1 (en) Method for capturing carbon dioxide in power station flue gas and device therefor
KR20130086045A (en) Method and apparatus for capturing carbon dioxide in flue gas with activated sodium carbonate
KR101476310B1 (en) Removal of non-volatiles from ammonia - based c0₂-absorbent solution
CN109126392B (en) Method for carrying out CO (carbon monoxide) in flue gas by adopting ionic liquid2Trapping device and process
CN106241961A (en) A kind of water treatment facilities utilizing residual heat of electric power plant and method
RU2357788C2 (en) Method of treating natural and assosiated oil gas from sulphuric compounds and facility for implementation of this method
EP2230000B1 (en) Flue gas treatment system and method using ammonia solution
CN107743416B (en) Acid gas collecting system and acid gas collecting method using the same
GB2434330A (en) Removal of CO2 from flue gas
CN103896361A (en) Device and method for treating organic waste water by water plasma torch
CN109173598B (en) Method for recovering CS in viscose waste gas by using composite solvent2Method (2)
JP2004174370A (en) Method, apparatus and system for treating gas
MX2014010111A (en) Method and system for separating and destroying sour and acid gas.
RU2640616C2 (en) System and method of greenhouse gas processing
CN109173669B (en) Method for purifying yellow phosphorus tail gas
CN109824193A (en) Alumina chemical industry Waste acid recovery technology
KR20150004562A (en) Carbon dioxide capture device
US8545704B2 (en) Method for recovering amine from amine-containing waste water
RU2414282C1 (en) Method of recovering methane tank biogas
KR101168063B1 (en) Process and apparatus for regenerating low energy for separation of acidic gas
KR101815107B1 (en) Pollution reduction equipment for FPSO
KR101762596B1 (en) Offshore structure for arctic having winterization and auxiliary power fuel cell system
CN113577996A (en) VOCs device is handled to solution absorption method

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20090707