RU2357308C2 - Способ долговременного хранения твердых радиоактивных отходов - Google Patents

Способ долговременного хранения твердых радиоактивных отходов Download PDF

Info

Publication number
RU2357308C2
RU2357308C2 RU2006122760/06A RU2006122760A RU2357308C2 RU 2357308 C2 RU2357308 C2 RU 2357308C2 RU 2006122760/06 A RU2006122760/06 A RU 2006122760/06A RU 2006122760 A RU2006122760 A RU 2006122760A RU 2357308 C2 RU2357308 C2 RU 2357308C2
Authority
RU
Russia
Prior art keywords
clay
storage
waste
sandy
water
Prior art date
Application number
RU2006122760/06A
Other languages
English (en)
Other versions
RU2006122760A (ru
Inventor
Валентин Васильевич Вайнштейн (RU)
Валентин Васильевич Вайнштейн
Елена Васильевна Захарова (RU)
Елена Васильевна Захарова
Евгений Алексеевич Комаров (RU)
Евгений Алексеевич Комаров
Олег Николаевич Романов (RU)
Олег Николаевич Романов
Владимир Ильич Хвостов (RU)
Владимир Ильич Хвостов
Original Assignee
Открытое акционерное общество "Сибирский химический комбинат"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Сибирский химический комбинат" filed Critical Открытое акционерное общество "Сибирский химический комбинат"
Priority to RU2006122760/06A priority Critical patent/RU2357308C2/ru
Publication of RU2006122760A publication Critical patent/RU2006122760A/ru
Application granted granted Critical
Publication of RU2357308C2 publication Critical patent/RU2357308C2/ru

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

Изобретение относится к долговременному хранению твердых радиоактивных отходов (ТРО), образующихся при эксплуатации промышленных реакторов, в процессе работы атомных электростанций и других ядерных производств. При долговременном хранении ТРО, включающем их складирование в хранилищах и изоляцию путем заполнения пустот между отходами и стенками хранилища песчано-глинистыми породами, для заполнения полостей между фрагментами и деталями находящихся в хранилище ТРО, а также между стенками и дном хранилища используют текучую смесь, образованную смешением песчано-глинистой породы с водой при соотношении 1 породы на 2-8 л воды, создавая тем самым дополнительный барьер на пути распространения радионуклидов. Используют песчано-глинистую породу, содержащую 15-30% (здесь и далее мас.%) глинистых минералов и 40-60% кварца. Заполнение пустот в хранилище текучим песчано-глинистым раствором начинают снизу (со дна) и осуществляют постадийно, отдельными порциями, с выдержкой после нагнетания каждой порции от 5 до 30 суток до достижения максимального уплотнения слоя. При использовании заявленного способа песчано-глинистая масса, заполнив все пустоты между фрагментами ТРО, а так же между дном и стенками хранилища, формирует глинистый монолит, который будет сохранять пластичность и не будет подвергаться растрескиванию под воздействием градиента температур. 2 з.п. ф-лы.

Description

Изобретение относится к долговременному хранению твердых радиоактивных отходов (ТРО), образующихся при эксплуатации промышленных реакторов, в процессе работы атомных электростанций и других ядерных производств.
Действующая в России система обращения с ТРО предусматривает, в основном, их хранение без обработки в различных типах поверхностных или слабозаглубленных хранилищах (колодезного типа), находящихся на промплощадках АЭС и предприятий ЯТЦ.
Такие хранилища обычно выполнены в виде бетонных резервуаров большого объема (сотни кубометров), которые постепенно заполняют низко- и среднеактивными отходами (части труб технологических каналов, части графитовых деталей и графитовая крошка, загрязненные детали, фрагменты металлоконструкций, инструмент и т.д.). Вследствие незначительного содержания тепловыделяющих радионуклидов в отходах в хранилищах не происходит повышения температуры.
При длительных сроках эксплуатации (десятки лет) практически неизбежны нарушения в бетонных стенах и днищах хранилищ ввиду образования макро- и микротрещин, локальные разрушения бетона, через которые происходит поступление в хранилище поверхностных и грунтовых вод, атмосферных осадков. При контакте поверхностей твердых отходов с этими водами в них попадают радионуклиды, которые с потоком воды будут мигрировать в геологической среде, попадать в водоносные горизонты, загрязнять биосферу. Таким образом, существующие хранилища могут представлять большую опасность для окружающей среды, и поэтому требуется принятие мер, предупреждающих распространение радиоактивных загрязнений и повышающих надежность изоляции ТРО при долговременном хранении.
Очевидно, что поиск и разработка способов хранения ТРО, обеспечивающих водонепроницаемость хранилищ и локализацию радионуклидов в пределах хранилища, является актуальной задачей для предприятий ЯТЦ.
Наиболее перспективны и практически осуществимы способы консервации ТРО и их безопасного хранения, включающие фиксирование отходов в соответствующем матричном материале, обладающем стабильными гидроизоляционными свойствами.
Так, известен способ консервации твердых отходов путем залива полости контейнеров расплавленным битумом, который обладает гидрофобными свойствами. (Заявка Великобритании №1525068, МКИ G21F 9/36. Опубликована 20.09.78, №4669). Однако битум весьма пожароопасен и не может быть рекомендован для предприятий ЯТЦ, особенно в крупнотоннажном применении. Под воздействием радиоактивного излучения битум подвергается радиационной деструкции с выделением взрывоопасных газов.
Известен способ, согласно которому фрагменты ТРО заливают пластмассовой быстродействующей композицией на основе карбамидоформальдегидной смолы с добавлением пенообразователя, кислотного отвердителя и воды (Патент РФ №2078388, МПК6 G21F 9/34 от 08.10.91 г.). Для консервации хранилищ, в которых находятся десятки тонн ТРО, такой способ неприемлем по экономическим соображениям. Кроме того, матрицы органического происхождения также пожароопасны и подвергаются деструкции под воздействием радиоактивного излучения.
Известен также способ (А.с. СССР №1793478, МКИ6 G21F 6/36 от 19.11.90 г.), согласно которому ТРО, размещенные в контейнере или в бетонной емкости, заливают бетоном, являющимся инертным негорючим материалом.
Основные недостатки этого способа: бетон не обладает достаточной долговременной стойкостью под воздействием перепадов температур и водной эрозии. Под воздействием этих факторов возможны разломы всего бетонного массива аналогично бетонным стенкам хранилища и постепенное его разрушение, в результате чего невозможно гарантировать изоляцию радиоактивных отходов на сроки более длительные, чем содержание их навалом в существующих бетонных емкостях.
Известен способ, по которому контейнеры с радиоактивными отходами устанавливают в хранилищах, например в горных выработках, а затем производят закладку свободных пространств между контейнерами, стенками хранилища и его днищем буферными материалами, например бентонитом и др. (Патент РФ №2069906, МКИ6 G21F 9/24, опубликован 27.11.96 г., Бюл. №33) с последующим перекрытием сверху заполненного доверху хранилища и механическим уплотнением бентонитового слоя.
Основным недостатком данного способа является то, что он не может быть применен для существующих хранилищ, которые уже заполнены в навал (хаотично) ТРО из различных материалов, отличающихся по конфигурации (отрезки труб, фрагменты металлоконструкций, графитовые обломки и др.). Бентонитовым порошком невозможно заполнить имеющиеся пустоты между фрагментами конструкций различной геометрии и стенками уже существующего хранилища без предварительной выгрузки из него отходов. Способ пригоден только для заполнения новых хранилищ, когда ТРО, преимущественно упакованные в контейнеры, укладывают в хранилище и одновременно (послойно) засыпают бентонитовым грунтом, который дополнительно утрамбовывают. Чтобы использовать способ для действующих хранилищ, уже заполненных ТРО, необходимо отходы выгрузить, рассортировать, а затем послойно засыпать бентонитом, располагая их между слоями бентонита и утрамбовывая каждый вновь положенный слой. Выполнить такой комплекс работ практически невозможно без загрязнения окружающей среды и переоблучения персонала, проводящего работы. Кроме того, в случае проникновения воды в хранилище, заполненное бентонитом, его объем может возрасти в 5-10 раз, что приведет к разрушению хранилища и нарушению его герметичности.
В качестве прототипа по технической сущности и достигаемому эффекту выбран известный способ (ЕР 0081403), согласно которому в трещины в грунте в зоне хранения радиоактивных отходов закачивают вязкий раствор, содержащий смесь на основе различных цементов и глин, таких как монтмориллонит и вермикулит. В процессе затвердения такой смеси формируется кристаллическая структура, в которую включается вода, таким образом образование барьера происходит в результате химической реакции. Основным недостатком способа является невозможность его использования для создания барьера в существующих хранилищах ТРО. Это связано с тем, максимальное заполнение пустот в уже существующем хранилище происходит только при поэтапном режиме нагнетания барьерной композиции, при этом перерыв между этапами нагнетания может достигать до 30 суток. С использованием композиции по способу-прототипу при поэтапном режиме нагнетания будет формироваться барьер из несвязанных между собой частей (образующихся после каждого этапа нагнетания), а не монолит, так как химическая реакция, в результате которой происходит затвердение барьерной композиции, осуществляется в определенном объеме, в данном случае, в объеме смеси, помещенной в хранилище за каждый этап. Это приведет к увеличению водопроницаемости барьера, снижению изолирующих свойств по отношению к радионуклидам. Аналогичные процессы будут происходить и в случае возникновения дефектов в кристаллической структуре барьера как при его формировании, так и в процессе его долговременной эксплуатации. Высокое содержание твердого вещества в вязкой массе ограничивает ее проникающую способность в сложные по конфигурации полости, мелкие трещины и поры. В случае повышения содержания воды в композиционной смеси система становится двухфазной: вода и подвижная твердая фаза, не способная образовывать кристаллическую структуру и не обладающая водоизоляционными свойствами, так как воды значительно больше, чем необходимо для образования кристаллической структуры. При образовании барьера по способу-прототипу отсутствуют подвижные мелкодисперсные частицы, способные заиливать трещины и поры в бетонных стенках хранилища и ограничивать миграцию радионуклидов.
Технической задачей изобретения является разработка более простого и экономически эффективного способа долговременного хранения ТРО в существующих хранилищах, уже заполненных отходами, обеспечивающего надежную локализацию радионуклидов в пределах хранилища и более качественное заполнение пустот между фрагментами отходов в объеме хранилища.
Поставленная задача решается тем, что при долговременном хранении ТРО, включающем их складирование в хранилищах и изоляцию путем заполнения пустот между отходами и стенками хранилища песчано-глинистыми породами, для заполнения полостей между фрагментами и деталями находящихся в хранилище ТРО, а также между стенками и дном хранилища используют текучую смесь, образованную смешением песчано-глинистой породы с водой при соотношении твердой и жидкой фаз 1:2÷8 (к одному килограмму породы добавляется от 2 до 8 литров воды), создавая тем самым дополнительный барьер на пути распространения радионуклидов.
Песчано-глинистые породы, используемые в качестве материала барьера, добываются из месторождений, расположенных в районе размещения объекта ЯТЦ. Критерием пригодности песчано-глинистой породы для использования является содержание глинистых минералов и кварца: 15-30% (здесь и далее мас.%) глинистых минералов и 40-60% кварца, что обеспечивает:
- высокую сорбционную способность такой породы по отношению к радионуклидам, присутствующим в ТРО;
- ее минимальную набухаемость при смешении с водой;
- минимальную водопроницаемость барьера, сформированного из такой породы.
Задача доставки песчано-глинистого раствора решается тем, что в толще твердых радиоактивных отходов предварительно выполняют до дна одну или несколько вертикальных и/или наклонных скважин, например, штатным буровым инструментом, вибробурами и др., и по ним нагнетают текучий песчано-глинистый раствор через обсадные перфорированные трубы.
Текучий песчано-глинистый раствор подают вниз на дно, заполняя пустоты и обволакивая отходы снизу доверху до перекрытия верхнего уровня отходов. Подача такого раствора снизу обеспечивает равномерное и полное заполнение всех пустот между фрагментами ТРО, исключает образование воздушных пробок. Формирование барьера при использовании песчано-глинистого раствора происходит за счет седиментации минеральных частиц (физический процесс), что обеспечивает образование противомиграционного и противофильтрационного барьера в объеме хранилища. Соотношение глинистых минералов (15-30%) и кварца (40-60%) в природном материале, используемом для создания барьера, позволяет достичь максимальной степени уплотнения твердой фазы с образованием монолита (продолжительность формирования монолита от 5 до 30 суток).
Заполнение пустот в хранилище с отходами текучим песчано-глинистым раствором осуществляют многостадийно отдельными порциями с выдержкой после нагнетания каждой порции от 5 до 30 суток до достижения максимального уплотнения слоя. Такой режим заполнения хранилищ с отходами позволяет исключить появление трещин, образующихся со временем. Каждая предыдущая порция, подвергаясь выдержке, стабилизируется по консистенции в объеме. При образовании трещин в бетонных стенках хранилища глинистые мелкодисперсные частицы будут заиливать поры и трещины, а при отслаивании фрагмента барьера от стенок хранилища на одном из этапов нагнетания пустоты будут заполнены текучей массой на последующем этапе, обеспечивая монолитность барьера в объеме.
Заявленный способ имеет преимущества перед прототипом: песчано-глинистая текучая масса, заполнив все пустоты между фрагментами ТРО, а также дном и стенками хранилища, формирует глинистый монолит, в который включены ТРО (глинистый монолит выполняет роль матрицы для ТРО). Образование такого монолита возможно при использовании породы, содержащей 15-30% глинистых минералов и 40-60% кварца. При таком соотношении минералов монолит, образованный при периодическом заполнении существующего хранилища барьерной композицией, надежно изолирует радиоактивные материалы от окружающей среды. По сравнению с цементом (по способу-прототипу), при использовании которого невозможно заполнение всех пустот в существующем хранилище, текучая песчано-глинистая масса формирует монолит, который будет в течение всего периода времени хранения ТРО сохранять пластичность и не подвергаться растрескиванию под воздействием градиента температур, геологических сдвигов и эрозии, в отличие от бетонного монолита глинистый монолит обладает свойством самозалечивания трещин.
При заполнении бетонного корпуса хранилища текучая песчано-глинистая масса (1 кг породы, смешанный с 2-8 л воды) будет проникать в трещины и несплошности в уже имеющихся бетонных стенах. На начальном этапе заполнения хранилища текучим глинистым раствором будет происходить фильтрация воды в поры прилежащих слоев грунта, но после образования песчано-глинистого монолита (в течение 5-30 суток) фильтрация прекратится, так как будет сформирован барьер. Процесс кольматации илистой фракцией глинистого материала трещин и пор в стенках хранилища и в слое грунта, прилегающего к стенам хранилища с его наружной стороны, дополнительно обеспечивает повышение гидроизоляции хранилища.
Таким образом, вода, являющаяся мобильной средой, что делает нежелательным ее присутствие в известных способах хранения ТРО, в предлагаемом способе оказывается полезной, так как позволяет доставить песчано-глинистую породу в пустоты, существующие в хранилище, сформировать в объеме хранилища глинистый монолит с включенными в него ТРО и способствует заиливанию глинистыми частицами трещин в бетонной оболочке и пор грунта, герметизируя их за счет кольматации.
ПРИМЕР ОСУЩЕСТВЛЕНИЯ.
Использовали: 1. Сосуд цилиндрической формы (диаметром 150 мм, материал полиэтилен), в днище которого по периферии было выполнено несколько щелей с раскрытием до ~2,0 мм.
2. Воронку Бюхнера (d ~150 мм) с фильтровальной бумагой и без нее.
Сосуд и воронку заполняли ломом: обломками кирпича, графита, фарфорового боя на высоту до ~200 мм. В центре сосуда установили трубу ⌀ 20 мм. Затем по трубе на дно подавали вязкотекучую смесь порциями (пять стадий), состоящую из глинистого природного материала и воды, заполняли этой смесью сосуд с различным ломом на высоту до 200 мм, при этом слой глинистого материала над уровнем лома составлял 10-15 мм. Через отверстия в днище сосуда происходило отделение воды в процессе постадийного нагнетания глинистого раствора, одновременно происходила седиментация глинистых частиц и образование глинистого монолита с включенным в него ломом, что сопровождалось прекращением выделения воды через дно сосуда. После этого в сосуд залили воду, слой воды составил ~30 мм. Во всех вариантах опытов после 100 дней выдержки и наблюдений:
- протечек из отверстий днища не отмечено;
- масса глинистой матрицы, контактирующей с водой, не разрыхлилась, не окаменела, сохранила пластичность.
Полученные положительные результаты лабораторных испытаний дают основание полагать, что образованная по предлагаемому способу матрица может обеспечить увеличение гидроизоляции и безопасность существующих хранилищ при большой длительности хранения ТРО.
При использовании песчано-глинистой породы, содержащей менее 15% глинистых минералов, ее сорбционная емкость оказывается недостаточной при использовании в качестве противомиграционного барьера, а при использовании породы, содержащей свыше 30% глинистых минералов, не достигается необходимой степени уплотнения монолита. Такой же эффект наблюдается при использовании песчано-глинистой породы, содержащей кварца менее 40%. При содержании кварца более 60% образуется барьер, неоднородный по минералогическому составу, с повышенным содержанием кварца в нижней части барьера.
При использовании текучей массы, содержащей менее 2 л воды на 1 кг породы, образуется вязкий раствор, который не заполняет все полости и пустоты в существующем хранилище ТРО, а при использовании текучей массы, содержащей более 8 л воды на 1 кг породы, на границе расслаивания твердой и жидкой фаз не будет формироваться монолит, образуется зона с повышенным содержанием не оседающих мелкодисперсных частиц.
Время выдержки после каждого этапа нагнетания текучей массы на основе песчано-глинистой породы определяется степенью заполнения существующего хранилища ТРО и соотношением глинистых минералов и кварца в породе. При заполнении объема хранилища на 30% (ТРО в виде крупных фрагментов) процесс формирования барьера после каждого этапа нагнетания заканчивается через 5 суток, а при 70% (максимальном) заполнении объема хранилища отходами (мелкие фрагменты ТРО) барьер формируется в течение 30 суток. За такое же время происходит полная седиментация глинистых минералов при их максимальном содержании в породе, равном 30%.
Заявленный способ можно использовать в существующих хранилищах твердых радиоактивных отходов реакторных производств, атомных станций и других предприятий, где образуются ТРО и хранение их организовано аналогичным способом. Способ пригоден также в различных производствах ряда вредных и особо токсичных веществ химической промышленности для обезвреживания твердых отходов.

Claims (3)

1. Способ долговременного хранения твердых радиоактивных отходов, включающий их складирование в хранилищах и изоляцию путем заполнения пустот между отходами и стенками хранилища песчано-глинистыми природными материалами, отличающийся тем, что полости между фрагментами расположенных в хранилище твердых радиоактивных отходов, а также между стенками и дном хранилища заполняют текучим составом, образованным при смешении песчано-глинистой породы с водой, создавая тем самым дополнительный барьер на пути распространения радионуклидов.
2. Способ по п.1, отличающийся тем, что в качестве материала барьера используют смесь песчано-глинистой природной породы, содержащей 15-30% глинистых минералов и 40-60% кварца (основных составляющих), с водой при соотношении 1 кг породы на 2-8 л воды.
3. Способ по п.1 или 2, отличающийся тем, что заполнение пустот в хранилище с отходами текучим песчано-глинистым раствором начинают снизу (со дна) и осуществляют постадийно, отдельными порциями, с выдержкой после нагнетания каждой порции от 5 до 30 сут до достижения максимального уплотнения слоя.
RU2006122760/06A 2006-06-26 2006-06-26 Способ долговременного хранения твердых радиоактивных отходов RU2357308C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2006122760/06A RU2357308C2 (ru) 2006-06-26 2006-06-26 Способ долговременного хранения твердых радиоактивных отходов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2006122760/06A RU2357308C2 (ru) 2006-06-26 2006-06-26 Способ долговременного хранения твердых радиоактивных отходов

Publications (2)

Publication Number Publication Date
RU2006122760A RU2006122760A (ru) 2008-01-10
RU2357308C2 true RU2357308C2 (ru) 2009-05-27

Family

ID=39019797

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006122760/06A RU2357308C2 (ru) 2006-06-26 2006-06-26 Способ долговременного хранения твердых радиоактивных отходов

Country Status (1)

Country Link
RU (1) RU2357308C2 (ru)

Also Published As

Publication number Publication date
RU2006122760A (ru) 2008-01-10

Similar Documents

Publication Publication Date Title
US5980446A (en) Methods and system for subsurface stabilization using jet grouting
US6648551B1 (en) Method for stabilizing and reducing permeability of geologic or waste materials
Meegoda et al. Waste immobilization technologies
US20220134397A1 (en) Systems and methods for low level waste disposal
US11393604B2 (en) Device for disposing nuclear waste using deep geological repository
Pusch et al. Modern method for sealing deep boreholes
RU2357308C2 (ru) Способ долговременного хранения твердых радиоактивных отходов
CN109537612B (zh) 一种多孔冲击搅拌地下连续墙阻隔技术及其施工方法
RU2431733C1 (ru) Способ сооружения амбара при обустройстве нефтегазоконденсатных месторождений
Meneylyuk et al. Innovative technology of horizontal protective shield arrangement using injection
US9630225B2 (en) Long term storage of waste using adsorption by high surface area materials
Pusch et al. Roles of clay and concrete in isolating high-level radioactive waste in very long holes
RU2221148C2 (ru) Способ захоронения жидких отходов в виде рассола, содержащегося в подземной соляной камере
Hatem et al. Proportioning of cement-based grout for sealing fractured rock-use of packing models
Uglyanitca et al. Filling of the vertical mine workings with the autoclave slag-concrete
Engelhardt et al. Sealing of Deep Borehole in Crystalline Rock–Norwegian National Facility
US5533833A (en) Bulk backfill in situ liner for hard rock environment
US11517949B2 (en) Systems and methods for low level waste disposal
RU2743937C1 (ru) Способ утилизации бурового шлама
KR20000024039A (ko) 매립지 침출수 차단을 위한 주열식 심층혼합토고화연직차수벽 보강방법
Pusch et al. Long-term performance of contacting concrete and smectite clay in deep disposal of highly radioactive waste
Hatem et al. Performance of cement-poor concrete with different superplasticizers
Dixon et al. Backfilling techniques and materials in underground excavations: Potential alternative backfill materials in use in Posiva's spent fuel repository concept
Pusch et al. Condensed summary of current R&D on cementitious sealants for deep boreholes with HLW
None RANGERS: State of the Art and Science on Engineered Barrier Systems in Salt Formations

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160627