RU2355902C2 - Устройство авиационного двигателя - Google Patents

Устройство авиационного двигателя Download PDF

Info

Publication number
RU2355902C2
RU2355902C2 RU2005141169/06A RU2005141169A RU2355902C2 RU 2355902 C2 RU2355902 C2 RU 2355902C2 RU 2005141169/06 A RU2005141169/06 A RU 2005141169/06A RU 2005141169 A RU2005141169 A RU 2005141169A RU 2355902 C2 RU2355902 C2 RU 2355902C2
Authority
RU
Russia
Prior art keywords
engine
gas turbine
turbine engine
engine according
fairing
Prior art date
Application number
RU2005141169/06A
Other languages
English (en)
Other versions
RU2005141169A (ru
Inventor
Ричард Джоффри СТРЕТТОН (GB)
Ричард Джоффри СТРЕТТОН
Original Assignee
РОЛЛС-РОЙС Пи-Эл-Си
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by РОЛЛС-РОЙС Пи-Эл-Си filed Critical РОЛЛС-РОЙС Пи-Эл-Си
Publication of RU2005141169A publication Critical patent/RU2005141169A/ru
Application granted granted Critical
Publication of RU2355902C2 publication Critical patent/RU2355902C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/32Arrangement, mounting, or driving, of auxiliaries
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/02Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
    • F02K3/04Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Retarders (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

Для того, чтобы устранять образование наружных утолщений при размещении вспомогательных механизмов и коробок приводов и приводить в действие эти механизмы, в соответствии с настоящим изобретением разделительные обтекатели расположены внутри перепускного канала внешнего контура двигателя. Канал внешнего контура двигателя находится между корпусом и внутренним контуром компрессора/турбины двигателя. Обтекатели имеют достаточные габариты, чтобы разместить вспомогательные механизмы, в то время как канал внешнего контура соответственно сформирован осесимметричным для того, чтобы устранять и уравновешивать любой эффект блокирования этих обтекателей в пределах канала при наличии воздушного потока. Дополнительно обтекатели можно предусматривать для размещения масляного бака двигателя, а также для размещения механизмов фильтра/теплообменника, предназначенных для двигателя. При таких обстоятельствах поддерживается имеющий значимость удлиненный цилиндрический профиль двигателя таким образом, что для этого двигателя требуется уменьшенное поперечное сечение, позволяя этим иметь уменьшенный планер летательного аппарата, что в результате приводит к наличию улучшенного профиля волны звукового удара. 2 н. и 15 з.п. ф-лы, 6 ил.

Description

Настоящее изобретение касается разработки устройств авиационных двигателей и более конкретно относится к компоновкам двигателей, используемых в летательных аппаратах с высокой и сверхзвуковой скоростями полета.
В относительно современном авиационном газотурбинном двигателе некоторые вспомогательные агрегаты, такие как коробка приводов и электрический стартер/генератор, устанавливаются снаружи корпуса вентилятора внутри гондолы или планера, в пределах которых встраивается двигатель. Вспомогательные технические средства, такие как подводящие трубопроводы для смазочного масла и электрические кабели, прокладываются через обтекатели, проходящие поперек канала внешнего контура. Эти обтекатели не воспринимают на себя конструкционные силовые нагрузки, но обеспечивают при этом аэродинамическую профилированную форму вокруг вспомогательных технических средств.
Для сведения к минимуму аэродинамического сопротивления гондола и планер плотно облегают двигатель по его периферии, уменьшая лобовую площадь до ее минимальной величины. Однако имеется одно неудобство, которое состоит в том, что при профилировании аэродинамической формы планера или гондолы посредством компромисса допускается наличие утолщения для размещения вспомогательных технических средств. Ясно, что образованному любому утолщению можно придавать обтекаемую форму, но при этом подразумевается, что такое действие будет увеличивать коэффициент лобового сопротивления летательного аппарата из-за наличия более крутых углов капота, требуемых для того, чтобы осуществлять рабочую операцию очистки вспомогательных технических средств. Уже известно, что при сверхзвуковых скоростях полета летательного аппарата такое утолщение будет увеличивать звуковой удар на гондоле.
В описании изобретения по патенту Великобритании №744,695 раскрыт компактный двухконтурный газотурбинный двигатель, содержащий внутренний контур, имеющий последовательно размещенные компрессор, камеру сгорания и турбину. Поток ядра течения повернут и направлен вперед для того, чтобы протекать через камеру сгорания, которая размещена внутри множества дискретных патрубков. Двигатель дополнительно включает в себя дискретные перепускные проточные трубки, которые в периферийном направлении с чередованием размещены между трубками камеры сгорания. Поскольку трубки камеры сгорания простираются только на осевом участке перепускных труб, вспомогательные технические средства двигателя размещены между перепускными трубками и передним осевым участком трубок камеры сгорания. Хотя эта конфигурация двигателя является укороченной в связи с наличием противоточной камеры сгорания, имеется серьезный недостаток, заключающийся в том, что реверсирование газового потока вызывает существенные потери энергии потока и прерывание поступления газового потока в камеру сгорания. Кроме того, дополнительно периферийное чередование перепускных трубок и трубок камеры сгорания означает, что при любом заданном воздушном потоке через ядро течения в двигателе имеется не только кольцеобразный впуск, но при этом также ядро течения противоточной камеры сгорания занимает, по существу, существенный участок в кольцеобразном канале внешнего контура в современном обычном газотурбинном двигателе. Таким образом, перепускной газовый поток приводит к возникновению существенных энергетических проточных потерь, при этом энергия поступает в дискретные перепускные трубки. Таким образом, лобовая площадь этого двигателя может быть значительно увеличенной по сравнению с лобовой площадью обычного газотурбинного двигателя, имеющего кольцеобразный канал внешнего контура при отсутствии потока противоточной камеры сгорания. Более того, в описании изобретения по патенту Великобритании №744,695 не раскрывается ни наличие обтекателя, проходящего поперек канала внешнего контура, ни крепление вспомогательных технических средств внутри такого обтекателя. Двигатель, изготовленный в соответствии с изобретением по патенту Великобритании №744,695, не является пригодным для полета с высокими скоростями или со сверхзвуковыми скоростями.
В соответствии с настоящим изобретением предусматривается создание газотурбинного двигателя, содержащего ось вращения, вентилятор, внутренний контур двигателя, окруженный наружным корпусом с образованием перепускного канала, вспомогательные технические средства двигателя и обтекатель, при этом обтекатель проходит по существу радиально между внутренним контуром двигателя и наружным корпусом, причем двигатель отличается тем, что его вспомогательные технические средства размещены в пределах обтекателя.
Вспомогательные технические средства связаны с внутренним контуром двигателя с возможностью получения ими привода от него посредством использования приводного вала.
Имеются одни вспомогательные технические средства, которые содержат коробку приводов, и другие вспомогательные средства, которые смонтированы на первых с возможностью получения привода от них.
Предпочтительно вспомогательные технические средства размещены, по существу, аксиально по отношению к оси вращения двигателя, при этом другие вспомогательные средства установлены, по существу, аксиально вдоль коробки приводов для сведения к минимальной величине площади поперечного сечения обтекателя.
Альтернативно вспомогательные технические средства установлены по существу перпендикулярно к оси вращения двигателя.
При альтернативе вспомогательные технические средства расположены под углом относительно перпендикуляра к оси вращения двигателя и относительно прямой, параллельной этой оси вращения.
Предпочтительно другие вспомогательные технические средства выполнены с таким размером, который определяет аэродинамическую форму обтекателя.
Предпочтительно предусмотрено наличие, по меньшей мере, двух обтекателей, и при этом на месте их расположения не требуется наличие, по меньшей мере, двух обтекателей при обычном кольцеобразном порядке расположения направляющих лопаток.
Предпочтительно обтекатель приспособлен к передаче нагрузок от двигателя между внутренним контуром двигателя и наружным корпусом, при этом конструкционные нагрузки содержат любую одну или большее количество нагрузок из группы, в которую входят осевая тяговая, поперечная, вертикальная или скручивающая силовые нагрузки. При этом обтекатели являются криволинейными и выполнены так, чтобы спрямлять перепускаемый поток воздуха от вентилятора.
Предпочтительно двигатель окружен гондолой для того, чтобы сводить к минимуму значение аэродинамического сопротивления.
Предпочтительно обтекатели находятся в положении аэродинамического уравновешивания в направлении поперек двигателю.
Предпочтительно, по меньшей мере, чтобы один корпус был адаптирован к нормализации потока воздуха через перепускной канал, и такая адаптация осуществляется посредством придания бочкообразной формы, по меньшей мере, одному корпусу.
Предпочтительно обтекатели и/или корпус коробки приводов обеспечивают теплозащиту для механизмов вспомогательных технических средств.
При альтернативе масляный бак и/или теплообменники для дизельного топлива размещены в обтекателях.
Предпочтительно участок канала внешнего контура является подвижным для того, чтобы иметь доступ к обтекателю.
При альтернативе створка для доступа предусмотрена в корпусе, при этом створка для доступа предусматривается и в обтекателе.
Варианты воплощения настоящего изобретения будут теперь описываться посредством раскрытия примера его реализации со ссылками на сопроводительные чертежи, на которых:
фиг.1 - боковое сечение схематически представленного газотурбинного двигателя, смонтированного внутри гондолы и известного из существующего уровня техники;
фиг.2 - схематически изображенный боковой вид газотурбинного двигателя при возможной установке на крыле для высокоскоростных полетов;
фиг.3-схематически показанное продольное сечение, выполненное по горизонтальной центральной линии устройства авиационного газотурбинного двигателя в соответствии с настоящим изобретением;
фиг.3а - сечение обтекателя по линии А-А на фиг.3;
фиг.4 - схематически изображенное сечение носового участка устройства авиационного газотурбинного двигателя, выполненного в соответствии с настоящим изобретением;
фиг.5 - схематически показанное сечение обтекателя по линии В-В на фиг.4, выполненного в соответствии с дополнительным вариантом настоящего изобретения;
фиг.6 - схематически изображенное сечение переднего участка авиационного газотурбинного двигателя, взятое по горизонтальной центральной линии устройства авиационного газотурбинного двигателя, в соответствии с настоящим изобретением.
Обращая внимание на фиг.1, можно видеть, что показанный поз.10 обычно известный из существующего уровня техники двухконтурный газотурбинный реактивный двигатель имеет основную ось 11 вращения. Двигатель 10 содержит расположенные последовательно в осевом потоке воздухозаборник 12, вентилятор 13 двигателя и внутренний контур 8 двигателя, который сам содержит компрессор 14 среднего давления, компрессор 15 высокого давления, оборудование 16 для работы камеры сгорания, турбину 17 высокого давления, турбину 18 среднего давления, турбину 19 низкого давления. Двигатель 10 дополнительно включает в себя выхлопное сопло 20. Гондола 21 по существу окружает двигатель 10 и образует как воздухозаборник 12, так и выхлопное сопло 20.
Газотурбинный двигатель 10 работает обычным способом и так, чтобы воздух, входящий в воздухозаборник 12, был бы ускорен с помощью вентилятора 13 с целью получения двух воздушных потоков: первый воздушный поток протекает во внутренний контур 8 двигателя и через компрессор 14 среднего давления, а второй воздушный поток проходит через канал 22 внешнего контура для того, чтобы обеспечить осевую тягу двигателя. Компрессор 14 среднего давления сжимает воздушный поток, направленный в него, перед подачей этого воздуха в компрессор 15 высокого давления, где имеет место дальнейшее сжатие потока.
Сжатый воздух, выпущенный от компрессора 15 высокого давления, направляется к оборудованию 16 для работы камеры сгорания, где он смешивается с топливом, после чего смесь воспламеняется. Получаемые в результате нагретые продукты сгорания затем расширяются, и таким образом перед выпуском через выхлопное сопло 20 и перед потерей энергии заставляют работать турбину 17 высокого давления, турбину 18 среднего давления, и турбину 19 низкого давления при обеспечении дополнительной тяги двигателя с помощью выхлопного сопла 20. Турбина 17 высокого давления, турбина 18 среднего давления и турбина 19 низкого давления соответственно приводят в действие компрессор 15 высокого давления, компрессор 14 среднего давления и вентилятор 13 посредством соединительных валов 23, 24 и 25.
Вентилятор 13 по периферии окружен конструкционным элементом в виде корпуса 41 вентилятора, который опирается на кольцеобразно установленные выпускные направляющие лопатки 9, проходящие между корпусом 39, который окружает внутренний контур 8 двигателя.
Двигатель 10 дополнительно включает в себя агрегат 28 коробки приводов/генератора, который используется для запуска двигателя в работу и для выработки электричества, как только двигатель запускается в работу и продолжает ее в обычном режиме. Вырабатываемое электричество используется для двигателя и связанных с ним авиационных вспомогательных электрически действующих технических средств способом, хорошо известным из существующего уровня техники. Агрегат 28 коробки приводов/генератора кинематически связан с возможностью осуществления привода с высоконапорным валом 24 путем использования приводного средства 35. Однако при других вариантах воплощения изобретения агрегат 28 коробки приводов/генератора может получать привод любым одним или большим количеством валов 24, 25. При этом варианте воплощения изобретения агрегат 28 коробки приводов/генератора включает в себя внутреннюю коробку 29 приводов, присоединяющую первый ведущий вал 30 к валу 23 высокого давления, промежуточную коробку приводов 31, присоединяющую первый ведущий вал 30 ко второму ведущему валу 32, и наружную коробку 33 приводов, соединенную с возможностью осуществления привода со вторым ведущим валом 32. Наружная коробка 33 приводов с возможностью осуществления привода связана с генератором 34, который обладает способностью работы по вышеупомянутому способу. Генератор 34 и наружная коробка 33 приводов смонтированы на корпусе вентилятора и размещены в пределах гондолы 21. Первый ведущий вал 30, промежуточная коробка 31 приводов и второй ведущий вал 32 размещены в пределах распределительного обтекателя 40 канала внешнего контура.
Согласно ссылке на страницы 66-71 5-го издания книги «The Jet Engine», опубликованной компанией Rolls-Royse pls в 1986 году, ISBN 0902121235, коробка 33 приводов не только приводит в рабочее положение стартер и генератор 36, но также является приводом для других вспомогательных технических средств, таких как множество насосов. Традиционно коробка 33 приводов и приводимые вспомогательные технические средства (36) размещаются по периферии вокруг корпуса 41 вентилятора и вообще в нижней части двигателя 10.
Другие вспомогательные технические средства 36, известные из существующего уровня техники, также монтируются на корпусе вентилятора.
Вообще, газотурбинный двигатель включает в себя множество вращающихся рабочих лопаток компрессоров 13, 14, 15 и лопаток турбин 17, 18, 19, расположенных вокруг общей оси 11. При таких обстоятельствах умозрительно газотурбинный двигатель представляется цилиндрическим. Таким образом, основную форму газотурбинного двигателя представляют собой продольный цилиндр и любые механизмы 28, 36 вспомогательных технических средств, которые будут выступать наружу по отношению к основной цилиндрической форме. Что касается высокоскоростного летательного аппарата, то следует отметить, что его аэродинамический профиль и граница области полетных режимов имеют большое значение в отношении коэффициента сопротивления, а также в отношении звуковых ударов/шума. При таких обстоятельствах наличие опережающих выступов и выпуклостей, вызываемых наличием механизмов коробок приводов и вспомогательных технических средств в дополнение к основному цилиндрическому профилю двигателя, вызывает проблемы, когда стремятся сводить к минимальной величине аэродинамическое сопротивление.
На фиг.2 иллюстрируется типичное устройство двигателя для высокоскоростных полетов, расположенного на крыле 2 летательного аппарата 3. Как может быть замечено, крыло 2 связано с газотурбинным двигателем 10. При наличии высокой скорости полета и при потенциально возможной сверхзвуковой скорости полета носовой воздухозаборник гондолы является неудобным для использования из-за серьезности проблемы формирования ударной волны, и поэтому непрестанно уменьшающаяся эффективность воздухозаборника проявляется по мере возрастания скорости потока забираемого воздуха. Таким образом, при высоких скоростях полета так называемые входные конфигурации при внешнем / внутреннем сжатии, когда сверхзвуковой поток воздуха, входящий в воздухозаборник, существенно уменьшается до дозвукового потока, приводят к тому, что они являются предпочтительными для согласования с потребностями компрессора двигателя. Этот тип устройства входа воздуха, как показано на фиг.2, создает серию мягких ударных волн без чрезмерного уменьшения эффективности воздухозаборника компрессора.
Для того чтобы уменьшать аэродинамическое сопротивление, величина диаметра вентилятора сохраняется минимальной по своему значению, что приводит в результате к наличию относительно большой длины двигателя. Относительно длинный и тонкий профиль двигателя 10 получен при учете компромисса посредством удовлетворения требования размещения механизмов вспомогательных технических средств в пределах гондолы 21, что в результате в этом примере приводит к наличию, по меньшей мере, одного выступающего утолщения 5 в нижней части двигателя 10. Это утолщение 5, хотя и аэродинамически сглаженное, все еще увеличивает коэффициент аэродинамического сопротивления, а также вызывает увеличенную интенсивность звукового удара.
В идеальном случае, профиль двигателя в пределах гондолы должен быть сведен к минимальной его характеристике для того, чтобы достичь как можно низкое значение коэффициента аэродинамического сопротивления, а также при высоких скоростях полета достичь сокращения проблем, связанных с шумом во внешней среде при наличии в ней звукового удара.
Настоящее изобретение относится к компоновке двигателя, при которой механизмы вспомогательных технических средств находятся в пределах основного цилиндрического профиля двигателя, таким образом значительно уменьшая аэродинамическое сопротивление и помогая сводить к минимуму звуковой удар.
Обращая теперь внимание на фиг.3 и на фиг 4, можно видеть, что поддерживается вообще цилиндрический профиль гондолы или корпуса 21 двигателя 10 в то время, как механизмы вспомогательных технических средств размещены в пределах этого профиля. Двигатель 10 по существу конструируется так, как это описано со ссылкой на фиг.1, однако теперь будут рассматриваться те отличительные признаки, которые изложены в отношении настоящего изобретения.
В соответствии с настоящим изобретением предусмотрено наличие обтекателя 26, который расположен в пределах канала 22 внешнего контура, который охватывает механизмы 27 вспомогательных технических средств. Эти механизмы 27 вспомогательных технических средств включают в себя агрегат 28 коробки приводов / генератора, а также другие вспомогательные технические средства 36, такие как насосы для перекачивания масла, насосы для подачи топлива, электрические генераторы, предназначенные для подачи электроэнергии к техническим средствам планера, и гидравлически действующие механизмы. По существу, коробка 28 приводов теперь аксиально сопряжена (по оси 11), и каждое из приводимых вспомогательных технических средств 36 также, по существу, аксиально сопряжено в пределах обтекателя 26. Таким образом, оси вращения вспомогательных технических средств 36, получающих привод от коробки 28 приводов, по существу, являются перпендикулярно ориентированными по отношению к оси 11 двигателя.
Хотя является предпочтительным сопряжение коробки приводов и вспомогательных технических средств по существу параллельно оси 11, также является возможным их сопряжение по существу перпендикулярно или даже под углом между параллельной линией и перпендикуляром. Преимущество этого состоит в том, что приводной рычаг 54 взаимодействует с коробкой 28 приводов при наличии дающего преимущество и желательного угла (см. фиг.3) в зависимости от того, в каком месте приводной рычаг 54 взаимодействует с внутренним контуром 8 двигателя и в каком месте коробка 28 приводов смонтирована в пределах обтекателя 26.
Обтекатели 26 расположены в пределах общего цилиндрического профиля двигателя 10 и не создают выступающие утолщения, как это описано со ссылкой на фиг.2. В отличие от устройства, известного из предшествующего уровня техники, настоящее изобретение позволяет иметь более близкий к фигуре цилиндра профиль гондолы, который значительно уменьшает аэродинамическое сопротивление и/или принижает значимость звукового удара летательного аппарата.
Механизмы 27 вспомогательных технических средств соединены таким образом, чтобы обеспечивать их необходимое функционирование в соответствии с известными технологическими процессами.
На фиг.3а показана предпочтительная компоновка вспомогательных технических средств 28, 36, находящихся в пределах обтекателя, и непосредственно сам профиль обтекателя 36. Коробка 28 приводов размещена внутри по отношению к вспомогательным техническим средствам 36 и ориентирована радиально. Коробка 28 приводов соединена с возможностью осуществления привода с внутренним контуром 8 двигателя посредством приводного вала 54 и, по существу, сопряжена и скомпонована аксиально, благодаря чему представляет собой наименьшую область по отношению к потоку течения по перепускному каналу. Каждое вспомогательное техническое средство 36, получающее свой привод от коробки 28 приводов, расположено таким образом, что размер каждого из вспомогательных технических средств 36 удобно предопределяет аэродинамический профиль обтекателя 26. Такое расположение вспомогательных технических средств 28, 38 особенно приносит преимущество в уменьшении степени блокировки потока в перепускном канале 22.
Следует отметить, что, по меньшей мере, один другой обтекатель 26' может быть включен в двигатель, и этот обтекатель включает в себя другие вспомогательные технические средства 27'.
Традиционно множество направляющих лопаток 9, кольцеобразно размещенных (см. фиг.2), способно к передаче аэродинамических силовых нагрузок между внутренним контуром 8 и внешним корпусом 41 вентилятора, а затем на монтажное конструкционное крепление 58 летательного аппарата (см. фиг.4). Дополнительное преимущество настоящего изобретения состоит в том, что обтекатели 26, 26' спроектированы таким образом, что они воспринимают аэродинамические силовые нагрузки. При реализации настоящего изобретения, по меньшей мере, часть направляющих лопаток 9 может быть заменена обтекателями 26, 26', хотя существует возможность того, что все упорядоченное множество направляющих лопаток будет заменяться в том случае, если будет предусмотрено наличие не одного, а большего количества обтекателей 26, 26'.
В этом случае (см. фиг.4 и 6) обтекатели 26, 26' являются жестко соединенными между корпусом 39 внутреннего контура двигателя и корпусом 41 вентилятора или корпусом 21. Обтекатели 26, 26' представляют собой жесткую коробкообразную конструкцию 60, способную воспринимать осевую тяговую, вертикальную и горизонтальную силовые нагрузки, а также скручивающие силовые нагрузки, действующие на двигатель. Следует отметить, что для специалиста в данной области техники возможны многие различные конструкционные формы, но этот специалист легко поймет, что такие альтернативные формы должны являться техническими средствами для передачи силовых нагрузок, действующих на двигатель, между внутренним контуром 8 двигателя и корпусом 41 вентилятора. Обтекатели 26, 26' поэтому жестко присоединены к наружному корпусу 41 или 21 и к корпусу 39 внутреннего контура двигателя, при этом каждый корпус будет выполнен, по существу, кольцеобразным по форме и ему будет присуща большая жесткость. Когда обтекатели 26, 26' проходят в аксиальном направлении на относительно большой длине по сравнению с обтекателем 40 (см. фиг.2), известным из существующего уровня техники в ее данной области, реализуются дополнительные преимущества увеличенной жесткости внутреннего контура двигателя. Такие преимущества включают в себя улучшение контролирования зазоров у концевых участков лопаток, вследствие чего повышается экономичность эксплуатации.
Обращая теперь внимание на фиг.5, можно убедиться, что хорошо известным является тот факт, что направляющие лопатки также предусматриваются спрямляющими поток перепускаемого воздуха, выходящего из вентилятора 13. При дальнейшем совершенствовании настоящего изобретения для достижения дополнительного преимущества обтекатели 26, 26' также выполняются криволинейными с целью достижения аналогичного спрямления перепускаемого воздушного потока.
Обращая теперь внимание на фиг.6, можно видеть, что настоящее изобретение позволяет осуществлять размещение механизмов 27 вспомогательных технических средств в пределах обтекателя 26, но можно понимать при этом, что обтекатель 26, располагаемый в пределах перепускного канала 22, может вызывать турбулентность, блокирование и неоднородность в течении потока 24. При таких обстоятельствах осуществляется внутреннее формирование в рамках по существу концентрического размещения корпуса 21 гондолы и корпуса 39 внутреннего контура двигателя для образования перепускного канала 22 с той целью, чтобы осуществлять контролирование потока 24 для достижения эффективной эксплуатации двигателя 10. Внутреннее формирование включает в себя придание бочкообразной формы при наличии концентрического расположения корпуса 21 и корпуса 39 внутреннего контура двигателя для того, чтобы ограничивать эффект влияния введения обтекателей 26 внутрь этого канала 22. Это придание бочкообразной формы включает в себя радиальную протяженность перепускного канала 22 между местами, обозначенными радиальными протяженностями 44 и 43 и расположенными по существу далеко от обтекателей 26, 26', и соответственно местами, находящимися непосредственно и смежно положениям обтекателей 26, 26'. Величина радиальной протяженности 43 является большей, чем радиальная протяженность 44.
Это придание бочкообразной формы выполняется либо посредством формирования корпуса 21 внешнего контура или корпуса 39 внутреннего контура двигателя, либо приданием бочкообразности как корпусу 21, так и корпусу 39. Когда обтекатели 26, 26' меняют ширину по своей периферии в направлении по течению в связи с изменением размера вспомогательных технических средств, размещенных в этих обтекателях, степень бочкообразности формы также изменяется для поддержания постоянного или желательного в иных случаях профиля поперечного сечения воздушного потока. Следует учитывать, что степень придания бочкообразности формы должна быть относительно небольшой по своему значению и что наружный профиль гондолы должен поддерживаться цилиндрическим по форме, как это выше описано с указанием преимущества, получаемого от этого профилирования.
Следует также понимать, что хотя имеются возможные увеличенные вредные влияния вспомогательных технических средств на поток 24 воздуха и на традиционное ориентирование вспомогательных технических средств (в горизонтальном направлении по центральной линии), принято иметь возможность выполнения трех обтекателей, располагающихся при углах в 120 градусов, или даже четырех обтекателей, размещающихся при углах в 90 градусов. При альтернативе обтекатели в соответствии с реализацией настоящего изобретения могут находиться в неуравновешенном положении в рамках блокирования поперечного сечения при таких несимметричных изменениях, вызванных изменением поперечного сечения перепускного канала или иными причинами.
В дополнение к обтекателям 26, в которых размещаются механизмы 27 вспомогательных технических средств, следует также понимать (см. фиг.4), что могут включаться обтекатели 26, которые просто используются в качестве баков 34 для содержания смазочного масла, или они могут содержать масляные фильтры 35, или они могут быть предназначены для обеспечения соответствующего расположения теплообменников 45 для охлаждения масла или топлива. При любых особенностях учащенного технического обслуживания желательно размещать их вблизи предназначенных для этого панелей с вырезами или панелей 50 для обеспечения доступа, расположенных в корпусах двигателя.
Следует учитывать, что внутренний контур 8 двигателя, включая в себя камеру сгорания 16, а также турбины 17, 18, 19 и другие устройства, при эксплуатации двигателя будет становиться относительно нагретым. При таких обстоятельствах обтекатели 26 содержат соответствующие экранирующие средства 31, 52 для механизмов 27 вспомогательных технических средств двигателя, предохраняющие их от воздействия температур внутреннего контра 8 двигателя. При одном из вариантов воплощения настоящего изобретения это достигается тем, что используются кожух 31 коробки приводов и уплотнения корпуса 39 внутреннего контура двигателя и обтекателей 26 для того, чтобы экранировать вспомогательные технические средства в отдельной зоне. Тем не менее, следует учитывать, что поток воздуха через каналы 23 самостоятельно обеспечит охлаждение обтекателя 26, и это, в свою очередь, должно ограничить влияние нагреваемости в отношении механизмов вспомогательных технических средств, удерживаемых в пределах обтекателей 26.
Вообще, механизмы 27, удерживаемые в пределах обтекателей 26, будут снабжаться энергией, отбираемой от энергии, которую вырабатывают во внутреннем контуре 8 двигателя и затрачивают на тяговое движение, посредством смежной коробки 28 приводов. Таким образом, соответствующие радиальные приводы 54 (см. фиг.4), работающие с помощью внутреннего контура 8 двигателя, дают энергию привода этим коробкам 28 приводов и, таким образом, механизмам 27 вспомогательных технических средств, находящимся в пределах обтекателей 26. Альтернативно каждое из вспомогательных технических средств 27 может скорее получать индивидуальный привод от электрического двигателя 56, чем от радиального привода, снабжаемого энергией от двигателя.
Рабочие операции газотурбинного двигателя 10 могут осуществляться в соответствии с традиционной технологией его эксплуатации за исключением того, что обтекатели 26 позволяют осуществлять размещение механизмов 27 вспомогательных технических средств в пределах традиционного профиля обтекателя двигателя 10. Короче говоря, механизмы 27 вспомогательных технических средств расположены в пределах обтекателей 26, которые проходят по ширине перепускного канала 22. Воздушный поток 24 поддерживается благодаря соответствующему несимметричному формированию и приданию бочкообразной формы каналу 23 внешнего контура для смягчения влияния блокировки, вызванной обтекателями 26. При таких обстоятельствах даже при таком придании бочкообразности корпусу 21 двигатель 10 имеет уменьшенный диаметр поперечного сечения по сравнению с тем, который имеется у известного двигателя при реализации других целесообразных соображений (например, при наличии отогнутых профилей лопаток вентилятора или при наличии системы трубопроводов или системы каналов двигателя, проложенных между обтекателем 37 гондолы и корпусом 21 двигателя). Этот диаметр диктует величину минимального размера гондолы.
Ясно, что необходимо осуществлять техническое обслуживание коробки 28 приводов, а также механизмов 27 вспомогательных технических средств, удерживаемых в пределах обтекателей 26. При таких обстоятельствах, доступ к этим обтекателям 26 и механизмам 27 осуществляется через предназначенные для этого створки 50 доступа. Эти створки 50 доступа расположены в пределах корпуса 21 и образуют часть его конструкции, и корпус 21 определяет канал 23 внешнего контура двигателя. Створки 50 выполнены в виде шарнирных участков каналов, поворотно смонтированных относительно корпуса 21 гондолы. При альтернативе створки 50 доступа могут демонтироваться. Створки 50 доступа обеспечивают улучшенную жесткость канала 23 во время выполнения полета, в то время как зафиксированные секции 41а корпуса 41 обеспечивают конструкционную прочность для поддержания деталей двигателя (например, агрегата реверсирования тяги/регулируемого сопла). Створки 50 обеспечивают доступ во время выполнения рабочих операций по техническому обслуживанию к вспомогательным техническим средствам, находящимся в обтекателе 26, а также доступ к деталям внутреннего контура 8 двигателя.
Обращая внимание на фиг.6, можно видеть, что альтернативное обеспечение доступа включает в себя подвижный участок 21а гондолы 21, подвижную панель 62 корпуса 41, подвижную панель 64 обтекателя 26 для доступа к вспомогательным техническим средствам 27 и подвижную панель 66 корпуса 39 внутреннего контура 8 двигателя. Хотя в описании изобретения указано, что все эти панели 21а, 41, 62, 64 доступа могут быть подвижными, они могут быть смонтированы поворотными или иметь возможность демонтажа и крепления с помощью механизмов, известных из существующего уровня техники в данной области.
Для реализации более желательного профиля двигателя 10, а следовательно, и для выполнения более желательного поперечного сечения планера или гондолы, в которой этот двигатель 10 будет расположен, следует учитывать, что может быть улучшена характеристика звукового удара по сравнению с той, которая имеется у традиционных устройств газотурбинных авиационных двигателей, предназначенных для полета с высокими значениями скоростей. Кроме того, устранение вредных аэродинамических эффектов внешнего утолщения, вызывающего увеличенное сопротивление обтекателя или корпуса, должно улучшать рабочие характеристики летательных аппаратов. Кроме того, если имеется любое утолщение для получения однородности потока воздуха, оно должно будет распространяться скорее в боковом, чем в вертикальном направлении, то есть поперек планера, фюзеляжа или крыла. Более правильный профиль двигателя 10, совместимый с основой цилиндрической формой, позволяет уменьшать необходимую площадь поперечного сечения гондолы 21, сформированной вокруг двигателя 10, что, в свою очередь, позволит определить профиль фюзеляжа планера в пределах принятых норм проектирования летательных аппаратов, но с последовательным уменьшением интенсивности звуковых ударов при получении конкретных преимуществ для сверхзвукового полета.
В то время как в предшествующем описании изобретения предпринята попытка привлечь внимание к тем особенностям изобретения, которые, как уверен автор изобретения, являются имеющими конкретную важность, следует также понимать, что заявитель притязает на защиту в отношении любого патентоспособного признака или совокупности признаков, на которые здесь ранее сделана ссылка и которые здесь выше упомянуты и/или показаны на сопроводительных чертежах, независимо от того, подчеркивалось ли это специально со специфическим акцентом.

Claims (17)

1. Газотурбинный двигатель, содержащий ось вращения, вентилятор, внутренний контур, окруженный наружным корпусом с образованием перепускного канала, вспомогательные технические средства двигателя и обтекатель, проходящий по существу радиально между внутренним контуром двигателя и наружным корпусом, вспомогательные технические средства двигателя размещены внутри обтекателя, где вспомогательные средства содержат коробку приводов, а другие вспомогательные технические средства смонтированы на указанных вспомогательных средствах с возможностью получения от них привода, отличающийся тем, что другие вспомогательные технические средства установлены в аксиальной последовательности к оси вращения двигателя вдоль коробки приводов для образования минимальной площади поперечного сечения обтекателя.
2. Газотурбинный двигатель по п.1, отличающийся тем, что вспомогательные технические средства соединены с возможностью получения привода с внутренним контуром двигателя посредством ведущего вала.
3. Газотурбинный двигатель по п.1, отличающийся тем, что другие вспомогательные технические средства имеют размеры, которые определяют аэродинамическую форму обтекателя.
4. Газотурбинный двигатель по пп.1-3, отличающийся тем, что в нем предусмотрено, по меньшей мере, два обтекателя.
5. Газотурбинный двигатель по п.4, отличающийся тем, что обтекатель приспособлен к передаче нагрузок от двигателя между внутренним контуром двигателя и наружным корпусом.
6. Газотурбинный двигатель по п.5, отличающийся тем, что конструкционные нагрузки включают в себя любую одну или большее количество нагрузок из группы, в которую входят осевая тяговая, поперечная, вертикальная или скручивающая силовые нагрузки.
7. Газотурбинный двигатель по п.6, отличающийся тем, что обтекатель является криволинейным и выполнен таким образом, чтобы спрямлять перепускаемый поток воздуха от вентилятора.
8. Газотурбинный двигатель по п.7, отличающийся тем, что двигатель окружен гондолой для того, чтобы сводить к минимуму значение аэродинамического сопротивления.
9. Газотурбинный двигатель по п.1, отличающийся тем, что обтекатели аэродинамически сбалансированы в направлении поперек двигателю.
10. Газотурбинный двигатель по п.1, отличающийся тем, что, по меньшей мере, один корпус адаптирован к нормализации потока воздуха через перепускной канал.
11. Газотурбинный двигатель по п.10, отличающийся тем, что такая адаптация осуществляется посредством придания бочкообразной формы, по меньшей мере, одному корпусу.
12. Газотурбинный двигатель по п.1, отличающийся тем, что обтекатели и/или корпус коробки приводов обеспечивают теплозащиту для механизмов вспомогательных технических средств.
13. Газотурбинный двигатель по п.1, отличающийся тем, что в обтекателях размещены масляный бак и/или теплообменники дизельного топлива.
14. Газотурбинный двигатель по п.1, отличающийся тем, что участок перепускного канала является подвижным для обеспечения доступа к обтекателю.
15. Газотурбинный двигатель по п.1, отличающийся тем, что в корпусе предусмотрена створка доступа.
16. Газотурбинный двигатель по п.1, отличающийся тем, что в обтекателе предусмотрена створка доступа.
17. Летательный аппарат, включающий в себя газотурбинный двигатель, как описан в любом из предыдущих пунктов.
RU2005141169/06A 2003-07-08 2004-06-30 Устройство авиационного двигателя RU2355902C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB0315894.6A GB0315894D0 (en) 2003-07-08 2003-07-08 Aircraft engine arrangement
GB0315894.6 2003-07-08

Publications (2)

Publication Number Publication Date
RU2005141169A RU2005141169A (ru) 2006-06-27
RU2355902C2 true RU2355902C2 (ru) 2009-05-20

Family

ID=27741735

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005141169/06A RU2355902C2 (ru) 2003-07-08 2004-06-30 Устройство авиационного двигателя

Country Status (8)

Country Link
US (1) US7484354B2 (ru)
EP (1) EP1646776B1 (ru)
JP (1) JP4463810B2 (ru)
AT (1) ATE388314T1 (ru)
DE (1) DE602004012272T2 (ru)
GB (1) GB0315894D0 (ru)
RU (1) RU2355902C2 (ru)
WO (1) WO2005005810A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2647943C2 (ru) * 2012-01-31 2018-03-21 Юнайтед Текнолоджиз Корпорейшн Газотурбинный двигатель, оснащенный вентиляторным соплом с изменяемой площадью поперечного сечения, приводимым в положение для запуска

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004004945A1 (de) * 2004-01-31 2005-08-18 Mtu Aero Engines Gmbh Gasturbine, insbesondere Flugtriebwerk
FR2887931B1 (fr) * 2005-06-29 2007-08-17 Snecma Dispositif de support et de logement de servitudes dans un turboreacteur a double flux
DE102005046208A1 (de) * 2005-09-28 2007-03-29 Mtu Aero Engines Gmbh Strahltriebwerk
DE102006015639A1 (de) * 2006-04-04 2007-10-11 Mtu Aero Engines Gmbh Strahltriebwerk mit Generatoreinheit
FR2905975B1 (fr) * 2006-09-20 2008-12-05 Snecma Sa Conduite de soufflante pour une turbomachine.
US20080073152A1 (en) * 2006-09-25 2008-03-27 Pratt & Whitney Canada Corp. Tower shaft (uts) shielding
US9126691B2 (en) * 2007-05-30 2015-09-08 United Technologies Corporation Access door for gas turbine engine components
FR2917714B1 (fr) * 2007-06-25 2009-11-27 Airbus France Turboreacteur pour aeronef
US8312728B2 (en) 2007-06-28 2012-11-20 United Technologies Corporation Generator with separate oil system for improved nacelle performance
GB0719814D0 (en) * 2007-10-05 2007-11-21 Rolls Royce Plc Flux-switching machine
US8333554B2 (en) * 2007-11-14 2012-12-18 United Technologies Corporation Split gearbox and nacelle arrangement
US8438859B2 (en) * 2008-01-08 2013-05-14 Rolls-Royce North American Technologies, Inc. Integrated bypass engine structure
US20090188334A1 (en) 2008-01-25 2009-07-30 United Technologies Corp. Accessory Gearboxes and Related Gas Turbine Engine Systems
US8016227B2 (en) * 2008-01-28 2011-09-13 Honeywell International Inc. Non-handed engine cowl doors for fuselage mounted turbine engines
FR2933071B1 (fr) * 2008-06-25 2010-06-11 Snecma Dispositif de capotage de nacelle d'unite de puissance propulsive d'aeronef
US9121351B2 (en) * 2008-10-30 2015-09-01 Rolls-Royce North American Technologies, Inc. Gas turbine engine accessory system
US9816441B2 (en) * 2009-03-30 2017-11-14 United Technologies Corporation Gas turbine engine with stacked accessory components
US8450888B2 (en) * 2009-04-20 2013-05-28 General Electric Company Integrated brushless starter/generator system
US8966911B2 (en) * 2009-12-29 2015-03-03 Rolls-Royce North American Technologies, Inc. Turbofan engine with HP and LP power off-takes
DE102010014900A1 (de) * 2010-04-14 2011-10-20 Rolls-Royce Deutschland Ltd & Co Kg Nebenstromkanal eines Turbofantriebwerkes
US8973868B2 (en) 2011-03-28 2015-03-10 Rolls Royce North American Technologies, Inc. Airborne cooling system
US9534537B2 (en) 2011-03-29 2017-01-03 Rolls-Royce North American Technologies Inc. Phase change material cooling system for a vehicle
US9145834B2 (en) 2011-06-14 2015-09-29 Honeywell International Inc. Transverse mounted accessory gearbox
US9926849B2 (en) 2011-06-14 2018-03-27 Honeywell International Inc. Transverse mounted accessory gearbox
DE102011112254A1 (de) * 2011-09-02 2013-03-07 Rolls-Royce Deutschland Ltd & Co Kg Triebwerk für ein Luftfahrzeug mit einer Tankvorrichtung
DE102011112250A1 (de) * 2011-09-02 2013-03-07 Rolls-Royce Deutschland Ltd & Co Kg Hilfsgerätegetriebeeinrichtung für ein Triebwerk
US9062611B2 (en) * 2011-10-19 2015-06-23 United Technologies Corporation Split accessory drive system
GB2497934B (en) * 2011-12-22 2014-06-04 Rolls Royce Plc Aeroengine arrangement
US20140196472A1 (en) * 2012-01-31 2014-07-17 United Technologies Corporation Geared turbofan gas turbine engine architecture
US20150345426A1 (en) 2012-01-31 2015-12-03 United Technologies Corporation Geared turbofan gas turbine engine architecture
US10287914B2 (en) 2012-01-31 2019-05-14 United Technologies Corporation Gas turbine engine with high speed low pressure turbine section and bearing support features
US8887487B2 (en) 2012-01-31 2014-11-18 United Technologies Corporation Geared turbofan gas turbine engine architecture
US9222417B2 (en) 2012-01-31 2015-12-29 United Technologies Corporation Geared turbofan gas turbine engine architecture
US8935913B2 (en) * 2012-01-31 2015-01-20 United Technologies Corporation Geared turbofan gas turbine engine architecture
US8961112B2 (en) 2012-03-26 2015-02-24 United Technologies Corporation Torque frame bushing arrangement for gas turbine engine fan drive gear system
US10125693B2 (en) 2012-04-02 2018-11-13 United Technologies Corporation Geared turbofan engine with power density range
JP5856711B2 (ja) * 2012-04-25 2016-02-10 ゼネラル・エレクトリック・カンパニイ 航空機エンジン駆動軸収容室アセンブリ及び航空機エンジン駆動軸収容室アセンブリを組み付ける方法
US9945252B2 (en) 2012-07-05 2018-04-17 United Technologies Corporation Gas turbine engine oil tank with integrated packaging configuration
WO2014120125A1 (en) * 2013-01-29 2014-08-07 United Technologies Corporation Gas turbine engine with lower bifurcation heat exchanger
FR3016408B1 (fr) * 2014-01-16 2019-05-31 Safran Transmission Systems Ensemble d'entrainement d'accessoires pour turbomachine d'aeronef
WO2015163962A2 (en) * 2014-03-06 2015-10-29 United Technologies Corporation Gas turbine engine accessory architecture
AT515539B1 (de) 2014-09-04 2015-10-15 Facc Ag Ummantelung für ein Flugzeugtriebwerk und Verfahren zur Herstellung einer solchen Ummantelung
GB201417123D0 (en) * 2014-09-29 2014-11-12 Rolls Royce Plc Apparatus for mounting a component in a gas turbine engine
US20160311551A1 (en) * 2015-03-19 2016-10-27 Hamilton Sundstrand Corporation Engine proximate nitrogen generation system for an aircraft
US10578017B2 (en) * 2015-06-23 2020-03-03 United Technologies Corporation Windmill and negative-G oil system for geared turbofan engines
US20170184027A1 (en) * 2015-12-29 2017-06-29 General Electric Company Method and system for compressor and turbine cooling
US20170335713A1 (en) 2016-05-18 2017-11-23 Rolls-Royce North American Technologies, Inc. Gas turbine engines with flutter control
DE102016215030A1 (de) * 2016-08-11 2018-02-15 Rolls-Royce Deutschland Ltd & Co Kg Turbofan-Triebwerk mit einer im Sekundärstromkanal liegenden und ein separates Abschlusselement aufweisenden Verkleidung
DE102016215036A1 (de) * 2016-08-11 2018-02-15 Rolls-Royce Deutschland Ltd & Co Kg Turbofan-Triebwerk mit Überdruckklappe an einer im Sekundärstromkanal liegenden Verkleidung
US11022042B2 (en) 2016-08-29 2021-06-01 Rolls-Royce North American Technologies Inc. Aircraft having a gas turbine generator with power assist
GB201616759D0 (en) * 2016-10-03 2016-11-16 Rolls Royce Deutschland Ltd & Co Kg Accessory gearbox for a gas turbine engine
CN207320369U (zh) * 2017-03-07 2018-05-04 富士康(昆山)电脑接插件有限公司 卡缘连接器
US11255215B2 (en) 2017-07-06 2022-02-22 Rolls-Royce North American Technologies Inc. Gas turbine engine with microchannel cooled electric device
US10900371B2 (en) 2017-07-27 2021-01-26 Rolls-Royce North American Technologies, Inc. Abradable coatings for high-performance systems
US10858950B2 (en) 2017-07-27 2020-12-08 Rolls-Royce North America Technologies, Inc. Multilayer abradable coatings for high-performance systems
GB201716499D0 (en) * 2017-10-09 2017-11-22 Rolls Royce Plc Gas turbine engine fireproofing
DE102017124049B4 (de) 2017-10-16 2023-02-23 Rolls-Royce Deutschland Ltd & Co Kg Flugzeug mit einem Strahltriebwerk
GB201806461D0 (en) * 2018-04-20 2018-06-06 Rolls Royce Plc Gas turbine engine
GB201811219D0 (en) 2018-07-09 2018-08-29 Rolls Royce Plc Apparatus for gas turbine engines
FR3089954B1 (fr) * 2018-12-12 2021-01-08 Airbus Operations Sas Ensemble de motorisation pour un aeronef comprenant un support de charge
GB2582969A (en) * 2019-04-12 2020-10-14 Rolls Royce Plc Accessory gearbox assembly
US20210094121A1 (en) * 2019-09-30 2021-04-01 The Boeing Company Methods, Systems, and Apparatuses for Laser Ablation Process Control in Real Time
FR3107735B1 (fr) * 2020-02-27 2022-02-04 Safran Aircraft Engines Turbomachine a double flux comprenant au moins un accessoire ou equipement
EP3892845A1 (en) 2020-04-07 2021-10-13 Rohr, Inc. Nacelle with independent opening thrust reverser section
FR3110547B1 (fr) * 2020-05-20 2022-04-22 Safran Nacelles Nacelle pour ensemble propulsif à très grand taux de dilution, comprenant une structure interne avant amovible et structurelle
FR3110939B1 (fr) * 2020-05-27 2022-09-09 Safran Trans Systems Turbomachine equipee de machines electriques accouplees a une surface d’accouplement
US11572838B2 (en) * 2020-09-29 2023-02-07 General Electric Company Accessory gearbox for a turbine engine
GB202017401D0 (en) * 2020-11-03 2020-12-16 Rolls Royce Plc Gas turbine engine with cabin blower system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB642585A (en) 1945-06-02 1950-09-06 Lockheed Aircraft Corp Improvements in or relating to an internal combustion turbine power plant
GB744695A (en) * 1953-07-29 1956-02-15 Max Adolf Muller Improvements in static structures for jet propulsion engines
GB1127659A (en) * 1966-09-16 1968-09-18 Rolls Royce Improvements in gas turbine engines
GB1277853A (en) * 1970-11-13 1972-06-14 Rolls Royce Gas turbine engines
GB1358076A (en) * 1971-06-19 1974-06-26 Rolls Royce Oil manifolds and coolers for ducted fan gas turbine engines
US3830058A (en) 1973-02-26 1974-08-20 Avco Corp Fan engine mounting
US4308464A (en) * 1978-04-19 1981-12-29 Fuji Electric Co., Ltd. Bulb type tubular turbine-generator
GB2041090A (en) * 1979-01-31 1980-09-03 Rolls Royce By-pass gas turbine engines
US4437627A (en) * 1982-03-12 1984-03-20 The Boeing Company Integrated power plant installation system
US5143329A (en) * 1990-06-01 1992-09-01 General Electric Company Gas turbine engine powered aircraft environmental control system and boundary layer bleed
FR2698911B1 (fr) * 1992-12-09 1995-01-06 Snecma Agencement de moteur d'avion.
US6128896A (en) * 1998-01-14 2000-10-10 Saiz; Manuel Munoz Aircraft air conditioner energy recovery device
US6134880A (en) * 1997-12-31 2000-10-24 Concepts Eti, Inc. Turbine engine with intercooler in bypass air passage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2647943C2 (ru) * 2012-01-31 2018-03-21 Юнайтед Текнолоджиз Корпорейшн Газотурбинный двигатель, оснащенный вентиляторным соплом с изменяемой площадью поперечного сечения, приводимым в положение для запуска

Also Published As

Publication number Publication date
GB0315894D0 (en) 2003-08-13
EP1646776A1 (en) 2006-04-19
DE602004012272D1 (de) 2008-04-17
US7484354B2 (en) 2009-02-03
JP4463810B2 (ja) 2010-05-19
ATE388314T1 (de) 2008-03-15
RU2005141169A (ru) 2006-06-27
DE602004012272T2 (de) 2008-06-05
WO2005005810A1 (en) 2005-01-20
US20060101804A1 (en) 2006-05-18
JP2007516376A (ja) 2007-06-21
EP1646776B1 (en) 2008-03-05

Similar Documents

Publication Publication Date Title
RU2355902C2 (ru) Устройство авиационного двигателя
EP3722575B1 (en) Reverse flow engine architecture
EP3500743B1 (en) Gas turbine engine with an embedded electric machine
EP1458967B1 (en) Gas turbine engine with offset drive
US9982556B2 (en) Turbine engine comprising a drive system for a device such as an accessories case
EP3511549B1 (en) A gas turbine engine comprising an accessory gearbox assembly
RU2485328C2 (ru) Турбореактивный двигатель, содержащий генератор тока, установленный в вентиляторе, и способ установки упомянутого генератора в вентиляторе
US20110239660A1 (en) Mounting arrangement for gas turbine engine accessories and gearbox therefor
CN113217582A (zh) 用于发动机的齿轮箱
US5105618A (en) Counterrotating fan engine
US2274743A (en) Air impeller device
US8403629B2 (en) Stator for a jet engine, a jet engine comprising such a stator, and an aircraft comprising the jet engine
RU2522208C1 (ru) Пилон газотурбинного двигателя в сборе и система газотурбинного двигателя
CN111140362A (zh) 气体涡轮引擎附件的冷却
US11881754B2 (en) Rigid bar for electrically connecting a machine in an aircraft turbine engine
CN110657045A (zh) 飞行器推进机组及具有这种推进机组的飞行器后部
CN108474265A (zh) 在居间压缩机壳体上具有推力吸收装置的涡轮喷气发动机
CN118223957A (zh) 涡轮风扇发动机的出口导向轮叶组件
US8794902B1 (en) System and method to improve the exhaust pressure across a RAM air turbine through secondary flow mixing
US5305600A (en) Propulsion engine
CN116209821A (zh) 设置有螺旋桨和偏置定子轮叶的涡轮机模块
GB2379483A (en) Augmented gas turbine propulsion system
EP3301288B1 (en) Accessory gearbox for a gas turbine engine
RU2815564C1 (ru) Авиационная силовая установка
CN113356929A (zh) 用于交错转子组件的旋转支撑件

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20090701

NF4A Reinstatement of patent

Effective date: 20110720

MM4A The patent is invalid due to non-payment of fees

Effective date: 20150701