RU2353764C2 - Термодинамический сепаратор и способ подготовки природного газа - Google Patents

Термодинамический сепаратор и способ подготовки природного газа Download PDF

Info

Publication number
RU2353764C2
RU2353764C2 RU2007109486/03A RU2007109486A RU2353764C2 RU 2353764 C2 RU2353764 C2 RU 2353764C2 RU 2007109486/03 A RU2007109486/03 A RU 2007109486/03A RU 2007109486 A RU2007109486 A RU 2007109486A RU 2353764 C2 RU2353764 C2 RU 2353764C2
Authority
RU
Russia
Prior art keywords
gas
separator
liquid phase
ejector
storage capacitor
Prior art date
Application number
RU2007109486/03A
Other languages
English (en)
Other versions
RU2007109486A (ru
Inventor
Рауф Раисович Юнусов (RU)
Рауф Раисович Юнусов
Дмитрий Николаевич Грицишин (RU)
Дмитрий Николаевич Грицишин
Original Assignee
Рауф Раисович Юнусов
Дмитрий Николаевич Грицишин
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Рауф Раисович Юнусов, Дмитрий Николаевич Грицишин filed Critical Рауф Раисович Юнусов
Priority to RU2007109486/03A priority Critical patent/RU2353764C2/ru
Publication of RU2007109486A publication Critical patent/RU2007109486A/ru
Application granted granted Critical
Publication of RU2353764C2 publication Critical patent/RU2353764C2/ru

Links

Images

Landscapes

  • Separating Particles In Gases By Inertia (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

Изобретение относится к нефтегазовой промышленности и может использоваться в малогабаритных установках подготовки газа. Техническим результатом является достижение требуемого качества подготовленного газа минимальным количеством аппаратов, компактность, уменьшенная металлоемкость, снижение расхода ингибитора гидратообразования. Производят подачу пластового газа во входной щелевой сепаратор с накопительной емкостью, очистку упомянутого газа от механических примесей и капельной влаги в щелевом сепараторе, сбор и частичную дегазацию жидкой фазы в накопительной емкости, последующую подачу газа в термодинамический сепаратор с эжектором. Сепарацию газа осуществляют до заданной глубины осушки для товарного газа. Сепарацию газа осуществляют с одновременным его охлаждением за счет вращения и разгона его потока до скорости, близкой и выше скорости звука, и утилизацией газа, выделившегося в накопительной емкости. На выходе из эжектора обеспечивают температуру газа, превышающую температуру гидратообразования. Установка подготовки газа включает щелевой сепаратор для очистки пластового газа от механических примесей и жидкой фазы, накопительную емкость для сбора и частичной дегазации жидкой фазы, термодинамический сепаратор с эжектором, в сопле которого установлено устройство для закручивания потока газа по тангенциальному направлению, камеру смешения, на вход которой обеспечено эжектирование части газов дегазации из накопительной емкости, диффузор, образующий калиброванный зазор с камерой смешения для отвода жидкой фазы в накопительную емкость. Устройство выполнено с возможностью разгона потока до скорости, близкой и выше скорости звука. 2 н.п. ф-лы, 4 ил.

Description

Данное предложение относится к одним из технических решений в области газовой промышленности, а именно к подготовке природного газа до товарных качеств соответствующих ОСТ 51.40-93.
На сегодняшний день по промышленным запасам природного газа Россия занимает одно из ведущих мест в мире, а по разведанным и добыче углеводородного сырья - первое (40% и 30% мировых показателей соответственно). Добыча природного газа в России с 1990 г. практически не снижалась и осталась на уровне 600 млрд м3 в год.
Россия обладает огромнейшими промышленными и разведанными запасами природного газа. Основные их залежи расположены в Западно-Сибирской, Волго-Уральской, Тимано-Печерской нефтегазоносной провинциях, а также в Восточной Сибири, на Северном Кавказе и Дальнем Востоке. Основными регионами по добыче углеводородного сырья стали Ямало-Ненецкий автономный округ. Уральский регион. Волгоградская, Самарская, Саратовская, Астраханская, Оренбургская области, а так же перспективными по запасам и разработке Восточная Сибирь, Дальний Восток, Республика Коми, Архангельская область, Ненецкий автономный округ.
К настоящему времени разведанность запасов в европейских регионах России и Западной Сибири достигает 65-70% по нефти и 40-45% по газу, в то же время Восточная Сибирь и Дальний Восток освоены только на 6-8%, а шельфы морей - лишь на 1%. Именно на эти труднодоступные регионы (включая север Тюменской и Архангельской областей) приходится около 46% перспективных и более 50% прогнозных ресурсов нефти и около 80% природного газа.
Если разработка крупных месторождений всегда рентабельна и имеет достаточно короткие сроки окупаемости проектов (в первую очередь это зависит от соотношения стоимости оборудования и объемов добываемого газа при существующей ценовой политике на газ и системе налогообложения), то разработка небольших, а тем более малых месторождений, удаленных от магистральных газопроводов, становится невыгодна с экономической точки зрения.
При освоении всех типов месторождений углеводородов есть свои трудности и проблемы как экономического, так и технического характера. Если взять Северные районы России, то это труднодоступность, суровый климат, доставка и монтаж технологического оборудования и сопутствующих разработке месторождения необходимых материалов. В центральных и южных районах, несмотря на развитую инфраструктуру, наличие перерабатывающей промышленности и возможность сбыта продукции, разработка малых месторождений зачастую так же нерентабельна из-за большой металлоемкости технологического оборудования подготовки газа до товарного качества. Поэтому для освоения малых и средних месторождений необходимо создание блочно-модульных установок заводской готовности с возможностью поставки товарного газа местным потребителям.
Для решения этой задачи предлагается достаточно много вариантов на основе существующих технологий подготовки газа до товарных качеств.
Поскольку потребление газа в мире постоянно возрастает, возникает необходимость постоянного наращивания добычи природного газа. Реальность решения задачи быстрого наращивания объемов добычи и транспортировки газа подтверждается приобретенным ранее опытом интенсивного развития отечественной газовой промышленности. Так с 1970 года удалось увеличить добычу газа в стране в несколько раз, при этом огромные капиталовложения в газовую промышленность окупались за два года. Столь значительные результаты достигнуты без привлечения иностранных инвестиций, силами отечественных производственных коллективов и специалистов. Одним из способов стабилизации и наращивания добычи углеводородного сырья может являться разработка месторождений со средними и малыми запасами газа, т.е. необходима достаточно простая и недорогая технология подготовки газа.
Для месторождений с низким содержанием тяжелых углеводородных компонентов, (или их отсутствием - как правило это газ сеноманских залежей) на сегодняшний день существует стандартная схема подготовки газа.
Фиг.1. Абсорбционный способ осушки природного газа - сырой газ 1 поступает во входной сепаратор (центробежный, гравитационный, щелевой и т.д.) 9, частично очищенный от механических примесей и капельной влаги газ направляется в абсорбер 4, где за счет абсорбционных свойств реагента 6 (ДЭГа, ТЭГа и т.д.) происходит остаточное извлечение из природного газа влаги, затем газ подается потребителю 2. Для восстановления абсорбционных свойств реагента используется цех регенерации 5.
Фиг.2. Адсорбционный способ осушки природного газа - сырой газ 7 поступает во входной сепаратор (центробежный, гравитационный, щелевой и т.д.) 16, частично очищенный от механических примесей и капельной влаги газ направляется в рабочий адсорбер 13 (адсорбер 14 находится на регенерации адсорбента - восстановление адсорбционных свойств реагента 15 с помощью вспомогательного цеха 11), осушенный газ подается потребителю 8. Для регенерации адсорберов используется отдельный цех подготовки 11.
Фиг.3. Способ осушки газа с помощью термодинамического сепаратора - сырой газ 23, 20 малогабаритный сепаратор, 27 капельная влага и механические примеси, 22 накопительная емкость; 21 термодинамический сепаратор, 24 сухой газ, 26 сконденсировавшееся жидкость, 25 газ дегазации, 28 дегазированная жидкость.
Фиг.4. Термодинамический сепаратор - 39 вход сырого газа, 36 выход сухого газа, 29 завихритель газового потока, 30 сопло, 31 регулируемый зазор между соплом 30 и камерой смешения 32, 34 диффузор, 33 регулируемый зазор между камерой смешения 32 и диффузором 34, 35 корпус аппарата, 38 место входа газов дегазации, 37 место сброса отделившейся жидкости.
Отрицательные стороны существующих технологий:
- для получения требуемых параметров газа необходимо поддерживать определенную концентрацию абсорбента (или переключаться на резервные колонны осушки с регенерированным адсорбентом);
- для регенерации реагентов необходима, как правило, дополнительная технология по восстановлению регенерирующих качеств реагентов (регенерация (десорбция) абсорбента (адсорбента));
- необходимо постоянно пополнять количество абсорбента (унос с газом) или производить замену адсорбента (с течением времени потеря адсорбционных качеств);
- для процесса осушки необходимы крупногабаритные аппараты - для обеспечения площади контакта газ - реагент.
Отсюда видно, что использование в технологии подготовки газа химических реагентов во многом увеличивает стоимость проекта как за счет самой стоимости абсорбента (адсорбента), так и большой металлоемкости технологических процессов восстановления свойств реагентов и подготовки газа до товарного качества, поэтому по экономическим соображениям данная технология неприменима на средних и малых месторождениях газа.
Достаточно много предлагается и существует конструкций сепараторов для очистки природного (попутного нефтяного) газа от капельной жидкости и механических примесей. (А.И.Скобло, Ю.К.Молоканов, А.И.Владимиров, В.А.Щелкунов. «Процессы и аппараты нефтегазопереработки и нефтехимии», Москва: НЕДРА, 2000. Конструкции данных аппаратов представляют собой, как правило, корпус цилиндрический (вертикальный или горизонтальный), вход газа, выход газа, выход жидкости, внутренние элементы (центробежные, инерционные, фильтрационные и т.д.).
Признаки известных устройств, совпадающих с признаками данного технического решения, заключаются в наличии входных, выходных и сливных патрубков, использовании центробежных сил для улавливания жидкой фазы и осаждение жидкой фазы и механических примесей за счет силы, с последующим отводом из устройств.
Основным недостатком всех этих устройств является низкая эффективность очистки газа и габариты. Чем больший объем газа необходимо очистить, тем больше габариты сепаратора. При резком увеличении входящего потока газа возможен подхват и унос жидкой фазы, не успевшей осесть в отстойную (накопительную) зону.
Близким вариантом является устройство для разделения газожидкостных смесей (патент РФ на изобретение №2260467, МПК B01D 19/00, 2004), состоящее из цилиндрического корпуса с коаксиально установленными внутри корпуса входной и выходной трубами, завихрителя, диспергатора жидкостных пробок. Патрубок ввода смеси переходит в камеру расширения и конфузором, начало и конец трубы выполнены коноидальными, а начало трубы размещено в конфузоре камеры расширения. Между входной и выходной трубами установлена промежуточная труба, в стенке которой выполнены последовательно расположенные тангенциальные, продольные и кольцевая щели. Вокруг этих щелей размещены стабилизаторы в виде коаксиальных труб. Патрубки отвода жидкости установлены в камере расширения и за камерой расширения.
Причина, препятствующая получению технического результата, который обеспечивается заявленным техническим решением, заключается в том, что достаточно мелкодисперсные капли жидкости выделить из газа невозможно из-за несовершенства конструкции и уноса их потоком газа. Данное устройство применимо только в виде первичного (входного) сепаратора.
Близким по аналогии является устройство, содержащее сопло с форкамерой с размещенным в ней средством для закрутки газового потока, на выходе сопла сверхзвуковой или дозвуковой диффузор с средством для отбора жидкой фазы. В диффузоре расположено средство для спрямления закрученного газового потока, (патент РФ на изобретение №2167374, МПК F25J 3/06, 2005).
Недостатком указанного устройства является конструктивное решение по отбору жидкости из диффузора, а также расположение диффузора непосредственно после сопла. В первом случае в связи с высокой скоростью потока отбор жидкости через перфорированные отверстие будет затруднителен и появляется большая вероятность проскока газа. Во втором - при прохождении газового потока сужающего устройства произойдет резкое снижение температуры и увеличение скорости потока, а сразу же после расширения будет наблюдаться обратный процесс, т.е. выделение из газа тяжелых углеводородов С5+ в начальном этапе, а затем сразу же будет наблюдаться обратный процесс.
Задача изобретения - максимально увеличить качество сепарации и обеспечить подготовку газа до ОСТ 51.40-93.
В результате применения термодинамического сепаратора повышается эффективность подготовки газа до требований ОСТ 51.40-93.
Данный технический результат при осуществлении изобретения достигается тем, что в термодинамическом сепараторе (фиг.4), состоящем из корпуса 35, входного 39 и выходного 36 патрубков, патрубка для слива жидкости 37, патрубка входа низконапорных газов 38, средства для закрутки газа (завихрителя) 29, сопла 30, калиброванного зазора между соплом и камерой смешения 31, камеры смешения 32, диффузора 34, имеющего с камерой смешения калиброванный зазор 33 для отвода жидкости, за счет термодинамических свойств газа и особенности конструкции достигается максимальное извлечение из газа влаги с попутной утилизацией низконапорных газов.
Работа сепаратора заключаются в следующем:
На вход аппарата 39 подается газовая смесь, поступающая с давлением 7,5-13 МПа. Рабочая среда (природный газ) перед контактом с эжектируемым потоком (газ из разделительной емкости) разгоняется до скорости, превышающей звуковую, предварительно получая вращение в завихрителе 29 перед соплом 30. Закрученный поток активного газа поступает в приемную камеру, куда подается пассивная среда через патрубок 38. В результате наличия вязкостного трения на границе рабочей струи образуется струйный турбулентный пограничный слой (результат захвата - эжекции пассивной среды). Через этот слой происходит обмен энергиями между активным и пассивным потоками. Струя рабочей среды, окруженная струйным турбулентным пограничным слоем, нарастающим вниз по течению, и сопровождающий ее, не захваченный еще пограничным слоем поток пассивной среды из приемной камеры поступают в камеру смешения 32. В камере смешения 32 продолжается интенсивный обмен энергиями между активным и пассивным потоками, выравнивание профиля скоростей с некоторым повышением статического давления потока по течению. Также происходит интенсивное снижение температуры потока газа за счет увеличения его скорости до величин, близких к скорости звука. Требуемая скорость газа и величина перепада давлений в сопле 6 активного газа зависят от заданной глубины осушки товарного газа и определяются расчетом по известным соотношениям газовой динамики. Снижение температуры движущегося с высокой скоростью потока газа сопровождается конденсацией жидкости из газовой фазы. По мере движения вдоль камеры смешения 32 активный поток замедляется, а пассивный разгоняется. Смешанный поток из камеры смешения 32 поступает в диффузор 34, где происходит его торможение, сопровождающееся дальнейшим возрастанием статического давления до величины, определяемой сопротивлением оборудования, в которое нагнетается смешанная среда. За счет придания активному потоку вращательного движения, жидкость благодаря центробежным силам отбрасывается к стенкам камеры смешения. Перед началом конической части диффузора 34 производится отвод сконденсировавшейся жидкой части через калиброванный зазор 33 между камерой смешения 32 и диффузором 34 в накопительную емкость. Снижение давления в емкости обеспечивается эжектированием части газов дегазации на вход камеры смешения 32 термодинамического сепаратора. По мере движения потока газа вдоль диффузора 34 происходит повышение как давления, так и температуры газа. При этом температура газа на выходе 36 из аппарата превышает температуру гидратообразования, что обеспечивает значительную экономию метанола по сравнению, например, с обычными схемами подготовки газа.
Габаритные размеры аппарата зависят от требуемого расхода и состава газа. Все элементы могут изготовляться промышленно.
Нами предлагается способ подготовки газа до товарного качества с использованием термодинамического сепаратора (фиг.3).
Согласно схеме (фиг.3) природный газ 23 с температурой - 10°С+30°С и давлением 7,5-13 МПа поступает сначала на вход малогабаритного щелевого сепаратора 20, где происходит первичная очистка газа от механических примесей и капельной влаги, которая сбрасывается в накопительную емкость 22. Затем газ поступает в термодинамический сепаратор 21 для окончательной осушки газа, после которого подготовленный газ подается потребителю 24. Сконденсировавшееся жидкая фаза из сепаратора 20 сбрасывается 27 в накопительную емкость 22. В накопительной емкости 22 происходит частичная дегазация жидкой фазы - газ низкого давления подается 25 для эжектирования в термодинамический сепаратор 21, а жидкая фаза 28 сбрасывается для последующей утилизации.

Claims (2)

1. Способ подготовки газа, включающий подачу пластового газа во входной щелевой сепаратор с накопительной емкостью, очистку упомянутого газа от механических примесей и капельной влаги в щелевом сепараторе, сбор и частичную дегазацию жидкой фазы в накопительной емкости, последующую подачу газа в термодинамический сепаратор с эжектором, где сепарацию газа осуществляют до заданной глубины осушки для товарного газа, сепарацию газа осуществляют с одновременным его охлаждением за счет вращения и разгона его потока до скорости, близкой и выше скорости звука, и утилизацией газа, выделившегося в накопительной емкости, при этом на выходе из эжектора обеспечивают температуру газа, превышающую температуру гидратообразования.
2. Установка подготовки газа, включающая щелевой сепаратор для очистки пластового газа от механических примесей и жидкой фазы, накопительную емкость для сбора и частичной дегазации жидкой фазы, термодинамический сепаратор с эжектором, в сопле которого установлено устройство для закручивания потока газа по тангенциальному направлению, камеру смешения, на вход которой обеспечено эжектирование части газов дегазации из накопительной емкости, диффузор, образующий калиброванный зазор с камерой смешения для отвода жидкой фазы в накопительную емкость, при этом устройство выполнено с возможностью разгона потока до скорости, близкой и выше скорости звука.
RU2007109486/03A 2007-03-15 2007-03-15 Термодинамический сепаратор и способ подготовки природного газа RU2353764C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2007109486/03A RU2353764C2 (ru) 2007-03-15 2007-03-15 Термодинамический сепаратор и способ подготовки природного газа

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2007109486/03A RU2353764C2 (ru) 2007-03-15 2007-03-15 Термодинамический сепаратор и способ подготовки природного газа

Publications (2)

Publication Number Publication Date
RU2007109486A RU2007109486A (ru) 2008-09-20
RU2353764C2 true RU2353764C2 (ru) 2009-04-27

Family

ID=39867706

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007109486/03A RU2353764C2 (ru) 2007-03-15 2007-03-15 Термодинамический сепаратор и способ подготовки природного газа

Country Status (1)

Country Link
RU (1) RU2353764C2 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2458298C1 (ru) * 2011-03-10 2012-08-10 Общество С Ограниченной Ответственностью "Аэрогаз" Способ разделения газовых смесей
RU2458297C1 (ru) * 2011-03-10 2012-08-10 Общество С Ограниченной Ответственностью "Аэрогаз" Способ разделения газовых смесей
WO2015057109A1 (en) 2013-10-18 2015-04-23 3S Gas Technologies Ltd A multicomponent mixture separation device and a nozzle channel for the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2458298C1 (ru) * 2011-03-10 2012-08-10 Общество С Ограниченной Ответственностью "Аэрогаз" Способ разделения газовых смесей
RU2458297C1 (ru) * 2011-03-10 2012-08-10 Общество С Ограниченной Ответственностью "Аэрогаз" Способ разделения газовых смесей
WO2012121621A1 (ru) * 2011-03-10 2012-09-13 Imaev Salavat Zainetdinovich Способ разделения газовых смесей
WO2012121620A1 (ru) * 2011-03-10 2012-09-13 Imaev Salavat Zainetdinovich Способ разделения газовых смесей
WO2015057109A1 (en) 2013-10-18 2015-04-23 3S Gas Technologies Ltd A multicomponent mixture separation device and a nozzle channel for the same

Also Published As

Publication number Publication date
RU2007109486A (ru) 2008-09-20

Similar Documents

Publication Publication Date Title
RU2627864C1 (ru) Система и способы удаления захваченной жидкости
EP2416865B1 (en) Separation system comprising a swirl valve
AU2016233921B2 (en) Coalescer for co-current contactors
RU2247595C2 (ru) Способ смешивания текучих сред
AU2016220515B2 (en) Inner surface features for co-current contactors
EP0195464A1 (en) Column for removing liquid from a gas
WO2009140993A1 (en) Method and device for removing contaminants from a contaminated gas stream
OA12251A (en) A method and a system for separating a mixture.
CN103071371A (zh) 一种活性焦再生混合汽的处理方法和装置
AU2013224145A1 (en) Gas treatment system using supersonic separators
WO2014117633A1 (zh) 提高加氢装置氢气利用率的方法及装置
RU2353764C2 (ru) Термодинамический сепаратор и способ подготовки природного газа
Khafizov et al. Use of vortex apparatuses in gas cleaning process
WO2020001246A1 (zh) 一种酸性水脱气除油方法及其装置
US6974542B2 (en) Method and apparatus for removing foaming contaminants from hydrocarbon processing solvents
RU2292227C1 (ru) Трубное устройство предварительной сепарации
Sinaiski et al. Separation of multiphase, multicomponent systems
RU2366488C2 (ru) Термодинамический сепаратор и способ подготовки газа с высоким содержанием с3+
CN110452741B (zh) 生物质气化气相脱焦方法、液相脱焦方法及联合脱焦方法
RU65785U1 (ru) Сепаратор-каплеотбойник для тонкой очистки газа от жидкости
CN112159678A (zh) 一种基于强化洗涤与分离的加氢反应后处理工艺及装置
RU2291736C2 (ru) Способ газодинамической сепарации
RU2633720C1 (ru) Жидкостно-газовый сепаратор
RU2376523C2 (ru) Способ транспортирования газоводонефтяной смеси и устройство для его осуществления
RU2312698C1 (ru) Установка для очистки углеводородной жидкой среды от растворенных газов

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20110316