RU2349929C2 - Устройство для обнаружения оптических и оптоэлектронных приборов - Google Patents

Устройство для обнаружения оптических и оптоэлектронных приборов Download PDF

Info

Publication number
RU2349929C2
RU2349929C2 RU2007106605/28A RU2007106605A RU2349929C2 RU 2349929 C2 RU2349929 C2 RU 2349929C2 RU 2007106605/28 A RU2007106605/28 A RU 2007106605/28A RU 2007106605 A RU2007106605 A RU 2007106605A RU 2349929 C2 RU2349929 C2 RU 2349929C2
Authority
RU
Russia
Prior art keywords
input
output
lens
processing unit
photodetector
Prior art date
Application number
RU2007106605/28A
Other languages
English (en)
Other versions
RU2007106605A (ru
Inventor
Александр Сергеевич Казаков (RU)
Александр Сергеевич Казаков
Виктор Алексеевич Паджуев (RU)
Виктор Алексеевич Паджуев
Original Assignee
Общество с ограниченной ответственностью научно-производственное предприятие "ТАЛОС"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью научно-производственное предприятие "ТАЛОС" filed Critical Общество с ограниченной ответственностью научно-производственное предприятие "ТАЛОС"
Priority to RU2007106605/28A priority Critical patent/RU2349929C2/ru
Publication of RU2007106605A publication Critical patent/RU2007106605A/ru
Application granted granted Critical
Publication of RU2349929C2 publication Critical patent/RU2349929C2/ru

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

Изобретение относится к оптической локации и может быть использовано для обнаружения и получения изображений оптических и оптоэлектронных объектов (OO) в зондируемом объеме пространства. Техническим результатом изобретения является автоматизация процесса и уменьшение времени обнаружения и привязки положения OO относительно окружающих предметов. Устройство содержит объектив 2 с интерференционным светофильтром на λ1, электронно-оптический преобразователь (ЭОП) 3, фотоприемник 4 с объективом на входе, выполненный телевизионным, блок обработки 5, видеоконтрольный блок 6, синхрогенератор 7, делитель 8 кадровой частоты, модулятор 9, импульсный лазер 10 на λ1, первый объектив 11, блок 12 затворных импульсов, пульт 13 управления, лазер 14 с «ножевой» диаграммой излучения на λ2, второй объектив 15, формирователь 16 импульсов запрета, объектив 17 с интерференционным светофильтром на λ2, фотоприемник 18, блок 19 выделения световозвратного сигнала обнаруживаемого объекта, схему И 20, электронный компас 21. 4 ил.

Description

Изобретение относится к оптической локации и может использоваться для обнаружения и получения изображений оптических и оптоэлектронных объектов в лоцируемом объеме пространства.
Известно устройство обнаружения оптоэлектронных объектов, описанное в патенте RU 2129287, выбранное в качестве прототипа. Устройство содержит последовательно соединенные объектив, электронно-оптический преобразователь (ЭОП), блок затворных импульсов, выход которого подключен к входу ЭОП, фотоприемное устройство и видеоконтрольное устройство (монитор), частотно-импульсный лазер, модулятор и делитель кадровой частоты, подключенные соответствующим образом к синхрогенератору, блоку обработки видеосигнала и пульту управления, а также источники высокого напряжения.
Устройство обеспечивает получение изображения наблюдаемого объема пространства на экране монитора. Устройство также обеспечивает просмотр пространства по дальности путем взаимного перемещения стробов, поступающих на ЭОП с блока затворных импульсов, относительно импульсов запуска частотно-импульсного лазера, обнаружение оптического или оптико-электронного объекта (OO).
Если дальность до ОО соответствует временному положению строба, изображение ОО выглядит на экране монитора в виде яркой точки, мелькающей с частотой кодоимпульсной модуляции, что позволяет обнаружить ОО и осуществить привязку его положения относительно окружающей местности.
Недостатком данного устройства является достаточно большое время, затрачиваемое на поиск ОО при последовательном просмотре зондируемого пространства. Например, при поле зрения фотоприемника по азимуту 0,1 рад, длительности строба, эквивалентной 50 м, для просмотра пространства в секторе 1 рад × 1 км потребуется просмотреть (1/0,1)×(1000/50)=200 изображений на экране монитора на предмет наличия в нем изображения OO.
При минимальном времени реакции оператора на просмотр одного изображения 0,5…1 с суммарное время анализа может составить 100…200 с/рад×км.
Очевидно, что (1/0,01)×(1000/500)=(1/0,005)×(1000/1000)=200.
В приведенном выражении числа 0,01 и 0,005 можно рассматривать как ширину диаграммы по азимуту зондирующего лазера (в рад), а числа 500 и 1000 как глубину просматриваемой зоны пространства (в метрах).
Таким образом, если обнаружение ОО проводится методом последовательного визуального анализа изображений на экране монитора, то сужение диаграммы излучения в направлении просмотра (сопровождается увеличением плотности облучения пространства) при соответствующем увеличении глубины просмотра по дальности (сопровождается увеличением фоновой составляющей в видеосигнале, затрудняющей обнаружение) не дает выигрыша во времени (количество разовых объемов пространства не изменяется). Уменьшение времени обзора в этом случае возможно только за счет уменьшения времени анализа каждого изображения, которое в минимуме может составлять не менее одного кадра (0,04 с) на одно изображение. Таким образом, даже если процесс анализа автоматизирован, время анализа может быть сокращено только до 200×0,04=8 сек.
Произведем оценку возможности сокращения времени поиска и измерения положения OO по азимуту и дальности посредством зондирования сектора пространства (1 рад × 1 км) лазером с «ножевой» диаграммой излучения по азимуту (αл, рад), работающим на частоте (fл, Гц), превышающей частоту кадров телевизионного приемника.
Допустим, что значение αл=0,005 рад позволяет осуществлять просмотр пространства по глубине 1 км. При угловой скорости ~60 угл. град/сек время сканирования пространства 1 рад × 1 км займет ~1 сек. При этом при частоте зондирующего лазера fл=4 кГц за время смещения по азимуту на ширину луча (0,005 рад) - 5 мс данный объем пространства будет прозондирован девятнадцатью импульсами лазера, что обеспечит большую вероятность обнаружения ОО.
Технической задачей изобретения является уменьшение времени обнаружения и привязки положения ОО относительно окружающих предметов путем сокращения времени просмотра пространства, автоматизации процесса обнаружения ОО, запоминании направлений и дальностей, соответствующих обнаруженным ОО, детальный анализ на экране монитора изображений только тех объемов пространства, в которых обнаружены ОО.
Поставленная задача достигается в устройстве для обнаружения оптических и оптоэлектронных объектов, содержащем последовательно размещенные объектив с интерференционным светофильтром на λ1, электронно-оптический преобразователь (ЭОП) и фотоприемник с объективом на входе, выход которого подключен к первому входу блока обработки, видеоконтрольный блок, пульт управления и синхрогенератор, первый выход которого через последовательно соединенные делитель кадровой частоты и модулятор подключен к управляющему входу частотно-импульсного лазера на λ1, на выходе которого размещен первый объектив, при этом второй выход синхрогенератора через блок затворных импульсов соединен с управляющим входом ЭОП, третий выход подключен к второму входу фотоприемника с объективом на входе, четвертый выход подсоединен к второму входу модулятора, пятый выход соединен с вторым входом блока обработки, а вход синхронизатора соединен с пультом управления, в которое согласно изобретению, введены лазер с «ножевой» диаграммой излучения на λ2, на выходе которого размещен второй объектив, последовательно размещенные объектив с интерференционным светофильтром на λ2 и фотоприемник, выход которого через введенные последовательно соединенные блок выделения световозвратного сигнала обнаруживаемого объекта и схему И подсоединен к третьему входу блока обработки, а также формирователь импульсов запрета, выход которого подключен к второму входу схемы И, при этом входы формирователя импульсов запрета и лазера с ножевой диаграммой излучения на λ2 объединены и подсоединены к шестому выходу синхрогенератора, четвертый вход блока обработки соединен с введенным электронным компасом, а выход блока обработки подключен к входу видеоконтрольного блока.
Изобретение поясняется чертежами. На фиг.1 приведена структурная электрическая схема устройства для обнаружения оптических и оптоэлектронных объектов; на фиг.2 - структурная электрическая схема схемы И; на фиг.3 - эпюры, поясняющие работу устройства; на фиг.4 изображен интерфейс на экране видеоконтрольного блока.
На фиг.1 обозначено: лоцируемый объем пространства 1; объектив 2 с интерференционным светофильтром на λ1; электронно-оптический преобразователь (ЭОП) 3; фотоприемник 4 с объективом на входе, выполненный телевизионным; блок обработки 5; видеоконтрольный блок 6; синхрогенератор 7; делитель 8 кадровой частоты; модулятор 9; импульсный лазер 10 на λ1; первый объектив 11; блок 12 затворных импульсов; пульт 13 управления; лазер 14 с «ножевой» диаграммой излучения на λ2; второй объектив 15; формирователь 16 импульсов запрета; объектив 17 с интерференционным светофильтром на λ2; фотоприемник 18; блок 19 выделения световозвратного сигнала обнаруживаемого объекта; схема И 20; электронный компас 21.
Устройство для обнаружения оптических и оптоэлектронных объектов работает следующим образом.
Поле зрения фотоприемника 4 (объектив 2, ЭОП 3) и поле подсвета импульсным лазером 10 на λ1 посредством первого объектива 11 пространственно согласованы, т.е. оптические импульсные сигналы лазера 10 на λ1 постоянно присутствуют в поле обзора фотоприемника 4, удаляясь от него со скоростью света.
Отраженные импульсные оптические сигналы от предметов в поле зрения фотоприемника 4 и оптические сигналы фона, непрерывные во времени, в спектральной полосе частот, определяемой интерференционным светофильтром на λ1, формируют посредством объектива 2 непрерывные во времени и импульсные оптические изображения на фотокатоде ЭОПа 3, который постоянно закрыт и открывается по сигналу на выходе блока 12 затворных импульсов, определяющего временную задержку момента открывания ЭОПа 3 (дальность) и время нахождения его в открытом состоянии (глубину по дальности).
Если дальность до ОО соответствует временному положению открытого состояния ЭОПа 3, то осуществляется усиление световозвратного сигнала от ОО с сохранением его пространственного положения на входе ЭОПа 3, преобразование изображения лоцируемого объема 1 пространства в телевизионный сигнал фотоприемником 4 и наблюдение соответствующего изображения видеосигнала с отметкой от ОО на экране видеоконтрольного блока 6. Наличие в поле зрения фотоприемника 4 постоянных малоразмерных источников света может привести к наличию сигналов, идентичных по виду сигналам от ОО. Использование в указанном известном устройстве кодоимпульсной модуляции лазерных импульсов, например формирование пачек зондирующих сигналов с частотой ниже кадровой, обеспечивает режим мерцания отметки сигнала ОО на экране видеоконтрольного блока 6 при отсутствии мерцания у других ярких объектов. При отсутствии мерцающего сигнала от ОО в изображении некоторого выделенного объема пространства в известном устройстве осуществляется последовательный просмотр выделяемых объемов пространства по дальностям с шагом по глубине, эквивалентной длительности затворных импульсов блока 12. Как было показано выше это требует значительного времени поиска ОО.
В данном устройстве лоцируемый объем 1 пространства дополнительно облучается импульсным излучением лазера 14 с «ножевой» диаграммой излучения на λ2 через второй объектив 15 с частотой следования импульсов выше кадровой частоты.
Отраженные сигналы с длиной волны λ2 через объектив 17 с интерференционным светофильтром на λ2 поступают на фотоприемник 18, который постоянно открыт, и преобразуются в напряжение, содержащее фоновую, диффузно-отраженную и световозвратную (если в зоне подсвета лазером 14 окажется OO) компоненты.
Особенность световозвратной составляющей OO состоит в значительно большей интенсивности сигнала ее по сравнению с диффузной составляющей, поступившей на фотоприемник 18 с той же дальности, где расположен ОО, т.е. в тот же момент времени. Фоновая составляющая ослабляется интерференционным светофильтром на λ2 объектива 17 тем сильнее, чем уже полоса светофильтра, при этом она является сравнительно медленно изменяющейся во времени величиной для выбранного направления. Эта особенность используется в блоке 19 выделения световозвратного сигнала OO для компенсации фоновой составляющей вычитанием отфильтрованной узкополосной составляющей сигнала фотоприемника 18 с последующей пороговой обработкой разностного сигнала.
Учитывая, что интенсивности диффузной составляющей в сигнале для ближней зоны могут оказаться больше интенсивностей световозвратного сигнала от OO с более удаленных расстояний (при длительностях их того же порядка), на выходе блока 19 могут возникнуть ложные сигналы помех (фиг.3).
Задача формирователя 16 импульсов запрета сформировать такие импульсы, которые не позволят появиться импульсам помех на выходе схемы И 20, пропуская сигналы OO, подаваемые далее на блок обработки 5, где вычисляется и запоминается код дальности OO (длительность временного интервала между импульсом запуска лазера 14 и импульсом на выходе схемы И 20) (фиг.3). В блоке обработки 5 запоминаются также значения кода азимута в соответствии с выходным сигналом электронного компаса 21 на момент поступления на блок обработки 5 импульса со схемы И 20.
Учитывая, что угловая скорость сканирования невелика (см. числовой пример, приведенный выше), то, при наличии сигнала OO в анализируемом направлении, будет оцифровано несколько значений временных интервалов, соответствующих одному и тому же OO. Целесообразно в этом случае в блоке обработки 5 запоминать усредненное значение временного интервала.
Может оказаться, что в пределах одного направления от устройства располагаются несколько OO. Блок обработки 5 должен позволять формирование кодов дальности для всех OO и их запоминать.
Дальнейший анализ пространства производится по телевизионному изображению на экране видеоконтрольного блока 6 следующим образом.
Блоком обработки 5 формируется интерфейс (см. фиг.4), замешиваемый в телевизионный сигнал фотоприемника 4.
Работа устройства с учетом вышеизложенного алгоритмически разбивается по времени на два этапа.
На первом этапе, обеспечиваемом работой блоков 14, 15, 16, 17, 18, 19, 20, 21, осуществляется: «просмотр» анализируемого пространства путем сканирования устройства в заданном секторе по азимуту; автоматическое выделение световозвратных сигналов OO, подсвеченных «ножевой» диаграммой зондирующего лазера 14 с длиной волны λ2; измерение соответствующих задержек выделенных сигналов ОО относительно зондирующих импульсов лазера 10 (дальности) и запоминание соответствующих кодов; запоминание направлений (кода азимута) обнаруженных ОО; формирование интерфейса на экране видеоконтрольного блока 6 с запомненной информацией об ОО.
Как было описано выше, при достаточно высокой частоте оптических импульсов лазера 14 на λ2 и автоматизации процесса время «просмотра» пространства определяется практически допустимой скоростью сканирования устройством по азимуту.
На втором этапе, обеспечиваемом работой блоков 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 с участием оператора, задача которого далее состоит в последовательном просмотре изображений пространства только тех объемов пространства, которые соответствуют запомненным направлениям и дальностям OO. Оператор с пульта управления устанавливает и анализирует на экране видеоконтрольного блока 6 последовательно эти варианты. Блок обработки 5 должен позволять осуществление обратного преобразования - запомненное значение кода дальности OO в длительность интервала между импульсом запуска лазера 10 на λ1 и передним фронтом строба на выходе блока 12 с учетом уменьшения интервала на длительность импульса лазера 10 на λ1.
Просмотр изображений на экране видеоконтрольного блока 6 позволит обнаружить OO на фоне изображений окружающих предметов и подстилающей поверхности и уточнить количественно его пространственное положение, пользуясь программным интерфейсом блока обработки 5, например, совмещая линию азимута на центре отметки изображения OO и считывая координаты соответствующего направления. Модулятор 9 позволяет создавать режим мерцания отметки OO на экране видеоконтрольного блока 6.
Разные длины волн лазеров λ1 и λ2 позволяют избежать перекрестных помех при одновременной совместной работе лазеров.
Пульт управления 13 позволяет оператору управлять режимами работы устройства, наблюдая на экране видеоконтрольного блока 6 установленные режимы или их параметры.

Claims (1)

  1. Устройство для обнаружения оптических и оптоэлектронных объектов, содержащее последовательно размещенные объектив с интерференционным светофильтром на λ1, электронно-оптический преобразователь (ЭОП) и фотоприемник с объективом на входе, выход которого подключен к первому входу блока обработки, видеоконтрольный блок, пульт управления и синхрогенератор, первый выход которого через последовательно соединенные делитель кадровой частоты и модулятор подключен к управляющему входу частотно-импульсного лазера на λ1, на выходе которого размещен первый объектив, при этом второй выход синхрогенератора через блок затворных импульсов соединен с управляющим входом ЭОП, третий выход подключен к второму входу фотоприемника с объективом на входе, четвертый выход подсоединен к второму входу модулятора, пятый выход соединен с вторым входом блока обработки, а вход синхронизатора соединен с пультом управления, отличающееся тем, что в него введены лазер с «ножевой» диаграммой излучения на λ2, на выходе которого размещен второй объектив, последовательно размещенные объектив с интерференционным светофильтром на λ2 и фотоприемник, выход которого через введенные последовательно соединенные блок выделения световозвратного сигнала обнаруживаемого объекта и схему И подсоединен к третьему входу блока обработки, а также формирователь импульсов запрета, выход которого подключен к второму входу схемы И, при этом входы формирователя импульсов запрета и лазера с ножевой диаграммой излучения на λ2 объединены и подсоединены к шестому выходу синхрогенератора, четвертый вход блока обработки соединен с введенным электронным компасом, а выход блока обработки подключен к входу видеоконтрольного блока.
RU2007106605/28A 2007-02-22 2007-02-22 Устройство для обнаружения оптических и оптоэлектронных приборов RU2349929C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2007106605/28A RU2349929C2 (ru) 2007-02-22 2007-02-22 Устройство для обнаружения оптических и оптоэлектронных приборов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2007106605/28A RU2349929C2 (ru) 2007-02-22 2007-02-22 Устройство для обнаружения оптических и оптоэлектронных приборов

Publications (2)

Publication Number Publication Date
RU2007106605A RU2007106605A (ru) 2008-08-27
RU2349929C2 true RU2349929C2 (ru) 2009-03-20

Family

ID=40545521

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007106605/28A RU2349929C2 (ru) 2007-02-22 2007-02-22 Устройство для обнаружения оптических и оптоэлектронных приборов

Country Status (1)

Country Link
RU (1) RU2349929C2 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120012761A1 (en) * 2010-07-15 2012-01-19 Electronics And Telecommunications Research Institute High-power pulse-signal radiation system
RU2494415C2 (ru) * 2011-12-01 2013-09-27 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Способ обнаружения пассивного космического объекта при сближении с ним активного космического аппарата
RU2524450C1 (ru) * 2013-02-05 2014-07-27 Открытое акционерное общество "Национальный центр лазерных систем и комплексов "Астрофизика" Способ обнаружения оптических и оптико-электронных средств наблюдения и устройство для его осуществления
RU2540154C2 (ru) * 2013-04-05 2015-02-10 Открытое акционерное общество "Швабе - Исследования" Устройство обнаружения оптических и оптико-электронных приборов

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120012761A1 (en) * 2010-07-15 2012-01-19 Electronics And Telecommunications Research Institute High-power pulse-signal radiation system
RU2494415C2 (ru) * 2011-12-01 2013-09-27 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Способ обнаружения пассивного космического объекта при сближении с ним активного космического аппарата
RU2524450C1 (ru) * 2013-02-05 2014-07-27 Открытое акционерное общество "Национальный центр лазерных систем и комплексов "Астрофизика" Способ обнаружения оптических и оптико-электронных средств наблюдения и устройство для его осуществления
RU2540154C2 (ru) * 2013-04-05 2015-02-10 Открытое акционерное общество "Швабе - Исследования" Устройство обнаружения оптических и оптико-электронных приборов

Also Published As

Publication number Publication date
RU2007106605A (ru) 2008-08-27

Similar Documents

Publication Publication Date Title
CN104756165B (zh) 房间占用感测装置和方法
KR100770805B1 (ko) 3차원 거리측정 이미지를 기록하기 위한 방법 및 장치
US7834985B2 (en) Surface profile measurement
CN102105815A (zh) 驾驶通过扫描系统
US10352863B1 (en) Method for optimizing detection of inelastically scattered light from a distant target by measuring the target distance using inelastically scattered light
RU2349929C2 (ru) Устройство для обнаружения оптических и оптоэлектронных приборов
WO2019109094A1 (en) Dual waveform systems for three-dimensional imaging systems and methods thereof
CN101726357A (zh) 烟检测装置
CN112904357B (zh) 处理激光信号的方法、驱动车辆的方法
WO2008018061B1 (en) A method and system for designating a target and generating target-related action
KR102056957B1 (ko) 장거리, 소형 타겟 거리측정
CN107003408B (zh) 距离测量设备及确定距离的方法
JP7115390B2 (ja) 測距装置
CN109791109A (zh) 荧光寿命传感器模块和使用传感器模块确定荧光寿命的方法
CN105974429A (zh) 光波测距仪
CN110095780B (zh) 基于tof相机模组的抗干扰方法及设备
US7817270B2 (en) Nanosecond flash photolysis system
Grollius et al. Probability of unrecognized LiDAR interference for TCSPC LiDAR
JP2003518346A (ja) ユーザーと電子装置との間におけるインターフェースユニット
JP2003065956A (ja) 蛍光ピーク検出方法及び分光蛍光光度計
JP2002171519A (ja) 赤外線カラー画像形成装置
JPH0643962B2 (ja) 物質の螢光減衰特性計測装置
WO2020249359A1 (en) Method and apparatus for three-dimensional imaging
RU2278399C2 (ru) Способ обнаружения оптических и оптоэлектронных средств наблюдения и устройство для его осуществления
CN114660571A (zh) 非视域目标多角度探测联合定位装置及方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20110223