RU2348828C1 - Ракетный двигатель малой тяги, работающий на несамовоспламеняющихся газообразном окислителе и жидком горючем, и способ его запуска - Google Patents

Ракетный двигатель малой тяги, работающий на несамовоспламеняющихся газообразном окислителе и жидком горючем, и способ его запуска Download PDF

Info

Publication number
RU2348828C1
RU2348828C1 RU2007142021/06A RU2007142021A RU2348828C1 RU 2348828 C1 RU2348828 C1 RU 2348828C1 RU 2007142021/06 A RU2007142021/06 A RU 2007142021/06A RU 2007142021 A RU2007142021 A RU 2007142021A RU 2348828 C1 RU2348828 C1 RU 2348828C1
Authority
RU
Russia
Prior art keywords
fuel
chamber
mixture
combustion
combustion chamber
Prior art date
Application number
RU2007142021/06A
Other languages
English (en)
Inventor
Александр Викторович Кочанов (RU)
Александр Викторович Кочанов
Александр Геннадьевич Клименко (RU)
Александр Геннадьевич Клименко
Original Assignee
Федеральное государственное унитарное предприятие "Исследовательский Центр имени М.В. Келдыша"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Исследовательский Центр имени М.В. Келдыша" filed Critical Федеральное государственное унитарное предприятие "Исследовательский Центр имени М.В. Келдыша"
Priority to RU2007142021/06A priority Critical patent/RU2348828C1/ru
Application granted granted Critical
Publication of RU2348828C1 publication Critical patent/RU2348828C1/ru

Links

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

Группа изобретений относится к ракетно-космической технике и может быть использована для разработки ракетных двигателей малой тяги (РДМТ), использующих газожидкостные несамовоспламеняющиеся компоненты ракетных топлив, с обеспечением многократного их включения в условиях эксплуатации на космических аппаратах, орбитальных пилотируемых космических станциях и средствах межорбитальной транспортировки, при отработке двигателей в стендовых условиях. РДМТ содержит камеру сгорания с соплом и смесительной головкой, предкамеру с воспламенительным устройством, трубопроводы подвода компонентов топлива. В смесительную головку двигателя подают жидкое горючее и затем газообразный окислитель. Весь расход горючего и большая часть расхода окислителя поступают в тангенциальные каналы, где смешиваются с образованием пусковой порции смеси с избытком горючего. Образовавшуюся топливную смесь закручивают и подают одновременно в камеру сгорания и в предкамеру. В предкамеру по отдельному каналу одновременно подают остальную часть расхода окислителя. Поступившую в предкамеру смесь компонентов топлива смешивают с окислителем до образования оптимального для воспламенения состава и воспламеняют. Образовавшийся факел продуктов сгорания поджигает топливную смесь в камере сгорания и двигатель запускается. Изобретение обеспечивает многократный запуск РДМТ в сочетании с высокой полнотой сгорания топлива или, соответственно, удельным импульсом тяги и малой массой конструкции двигателя. 2 н.п. ф-лы, 1 ил.

Description

Группа изобретений относится к ракетно-космической технике и может быть использована для разработки ракетных двигателей малой тяги (РДМТ), работающего на несамовоспламеняющемся газожидкостном топливе с обеспечением многократного включения РДМТ в условиях их эксплуатации на космических аппаратах, орбитальных пилотируемых космических станциях и средствах межорбитальной транспортировки, при отработке двигателей в стендовых условиях. Группа изобретений может быть использована также в авиационной технике и в агрегатах промышленной энергетики.
Известна конструкция ЖРД, работающего на несамовоспламеняющемся топливе, приведенная на рис.4.7, стр.77, в книге «Конструкции и проектирование жидкостных ракетных двигателей» /Под редакцией Г.Г.Гахуна [1]. Устройство включает основную камеру сгорания, предкамеру и раздельные линии подачи компонентов топлива в камеру сгорания и в предкамеру. Для воспламенения топлива в предкамере установлена электроискровая свеча.
Известен способ запуска ЖРД, реализованный в данном устройстве, который состоит в следующем. Пусковые порции окислителя и горючего поступают в предкамеру ЖРД. После смешения компонентов до заданного состава смесь воспламеняется от включенной электроискровой свечи. Образующаяся струя продуктов сгорания воспламеняет основной расход топлива, поступающий в камеру сгорания.
Применительно к ЖРД, расходы топлива, в которых значительные и составляют несколько килограмм в секунду, возможна организация раздельной подачи компонентов топлива в камеру сгорания и в предкамеру в количествах, позволяющих осуществлять воспламенение пусковой порции топлива с образованием факела с достаточной энергией для поджига основного расхода топлива в камере сгорания.
Недостатком такого устройства и способа запуска для РДМТ является то, что суммарные расходы компонентов топлива в РДМТ составляют граммы и доли грамма в секунду и раздельная подача такого малого расхода и, тем более, малых частей такого расхода с требуемым соотношением компонентов топлива в камеру сгорания и, особенно, в предкамеру крайне затруднительна. Кроме того, при многократных включениях с попаданием на свечу относительно крупных капель жидких компонентов топлива свеча загрязняется продуктами неполного сгорания топлива в предкамере. К недостаткам устройства следует отнести также наличие двух магистралей подачи в двигатель каждого из компонентов топлива.
Известна конструкция жидкостного ракетного двигателя малой тяги [2], включающая основную камеру сгорания и предкамеру с воспламенительным устройством. Подача газообразного окислителя осуществляется от одного трубопровода с разделением расхода во внутренних полостях смесительной головки для одновременной подачи в предкамеру и в камеру сгорания. Подача жидкого горючего в предкамеру и в камеру сгорания осуществляется по отдельным трубопроводам.
Известен способ запуска такого жидкостного ракетного двигателя малой тяги [2], включающий подачу газообразного окислителя в предкамеру и последующую подачу горючего в предкамеру с одновременным зажиганием компонентов топлива с последующим, после воспламенения пусковой порции топлива и установления определенного давления в камере сгорания, прекращением подачи горючего в предкамеру и подачей такого же расхода горючего в камеру сгорания двигателя.
Недостатком этих технических решений, принятых за прототип, является необходимость изменения в процессе работы двигателя порядка подачи горючего. К недостаткам способа следует отнести также подачу в предкамеру на первом этапе запуска двигателя всего расхода горючего, что может вызвать попадание на свечу крупных капель горючего, следствием чего будет «залив» свечи и незапуск двигателя. Кроме того, большой расход горючего и низкая полнота его сгорания в предкамере, в случае использования в качестве горючего углеводородов (например, керосина), вызовет интенсивное сажеобразование с отложением сажи на стенках предкамеры, на свече и на стенках газового тракта от предкамеры до камеры сгорания, что будет негативно влиять на процессы теплообмена продуктов сгорания со стенками конструкции и даже на геометрию проточной части. Недостатком конструкции двигателя является наличие двух трубопроводов и двух клапанов для подачи горючего в предкамеру и в камеру сгорания двигателя, что усложняет и утяжеляет конструкцию.
Технической задачей, на решение которой направлена группа изобретений, является обеспечение надежного многократного запуска и работы ракетного двигателя малой тяги (РДМТ) на несамовоспламеняющемся двухкомпонентном газожидкостном топливе в сочетании с высокой полнотой сгорания топлива или, соответственно, удельным импульсом тяги и малой массой конструкции двигателя.
Для решения этой задачи предлагается устройство - ракетный двигатель малой тяги (РДМТ) и способ его запуска.
РДМТ содержит камеру сгорания с соплом и смесительной головкой, предкамеру с воспламенительным устройством, трубопроводы подвода компонентов топлива. Смесительная головка включает в себя линии подачи горючего и окислителя и осуществляет смешение компонентов топлива и поступление смеси в камеру сгорания и в предкамеру. Линия подачи горючего, включающая входной трубопровод, кольцевой коллектор и питающие их каналы, осуществляет подачу всего расхода жидкого горючего в тангенциальные каналы - зону предварительного смешения, через отверстия в их боковой стенке. Линия подачи окислителя включает входной трубопровод, кольцевой коллектор и каналы и осуществляет подачу большей части расхода газообразного окислителя в тангенциальные каналы через их осевые отверстия и меньшей части расхода окислителя по отдельному каналу (каналам) в предкамеру. Тангенциальные каналы сообщаются с полостью закрутки топливной смеси, которая, с одной стороны, сообщается с камерой сгорания, с другой стороны - через осевой канал - с предкамерой.
Для запуска РДМТ предлагается способ запуска ракетного двигателя малой тяги, включающий разновременную подачу горючего и окислителя в зону смешения, воспламенение образовавшейся топливной смеси в зоне первоначального воспламенения с последующим воспламенением топливной смеси в области основного горения, при этом большую часть окислителя подают в зону смешения компонентов топлива после поступления туда полного расхода горючего, образовавшуюся смесь закручивают и подают одновременно в зону первоначального воспламенения компонентов топлива и в область основного горения, а меньшую часть окислителя подают в зону первоначального воспламенения.
Технический результат достигается подачей жидкого горючего в тангенциальные каналы и образованием после поступления в них газообразного окислителя газожидкостной смеси с избытком горючего с последующим истечением ее в полость закрутки, из которой основная часть закрученной топливной смеси поступает в камеру сгорания, а небольшая часть, состоящая преимущественно из смеси газообразного окислителя с парами и мелкодисперсными каплями горючего, как более легких компонент вихревого течения и располагающихся ближе к оси закрутки потока, попадает в предкамеру. Подача дополнительного небольшого расхода окислителя при перемешивании с поступившей из полости закрутки в предкамеру смесью с избытком горючего осуществляет плавное изменение состава смеси в предкамере с обеспечением благоприятной для воспламенения концентрации горючего в смеси компонентов топлива.
В дальнейшем после воспламенения топливной смеси в предкамере и распространения процесса горения из предкамеры через осевой канал и полость закрутки в основную камеру процесс горения в предкамере прекращается из-за прекращения поступления смеси из полости закрутки в предкамеру и формирования избыточного давления в предкамере за счет продолжающегося поступления в нее газообразного окислителя из коллектора.
Суть изобретения поясняется представленной на чертеже конструктивной схемой РДМТ.
РДМТ включает камеру сгорания 1 с соплом 2, предкамеру 3 с воспламенительным устройством 4, клапаны (не показаны) и трубопроводы подачи в камеру газообразного окислителя 5 и жидкого горючего 6 и смесительную головку 7. Линия подачи горючего, включающая кольцевой коллектор 8 с подводящим каналом 9 и каналы 10, осуществляет подачу всего расхода горючего в тангенциальные каналы 11. Линия подачи окислителя, включающая кольцевой коллектор 12 с радиальным каналом 13, осуществляет подачу большей части расхода газообразного окислителя в тангенциальные каналы 11 и меньшей части расхода окислителя по отдельному каналу 14 в предкамеру. Тангенциальные каналы 11 сообщаются с полостью закрутки 15, которая в свою очередь сообщается с камерой сгорания 1 и осевым отверстием 16 - с предкамерой 3.
Способ запуска РДМТ реализуется предложенным устройством в следующей последовательности действий.
До запуска во всех полостях камеры двигателя давление одинаковое и равно давлению окружающей среды, как правило, вакуумному.
При запуске жидкое горючее подается в смесительную головку по трубопроводу 6 и через подводящий канал 9, кольцевой коллектор 8 и каналы 10 поступает в тангенциальные каналы 11, при этом под действием вакуума часть поступившего горючего в тангенциальных каналах испаряется.
После этого в смесительную головку по трубопроводу 5 подается газообразный окислитель, который через радиальный канал 13 поступает в кольцевой коллектор 12, из которого основная часть его расхода подается в тангенциальные каналы 11 и небольшая часть расхода окислителя через канал 14 поступает в предкамеру.
В тангенциальных каналах происходит смешение окислителя с горючим с образованием пусковой порции двухфазной топливной смеси с избытком горючего, которая поступает в полость закрутки 15.
Под действием центробежной силы жидкая, преимущественно крупно - и среднедисперсная, фракция горючего заполняет периферийную часть вихревого потока, а пары и мелкодисперсная фракция горючего располагаются в приосевой области вихревого потока. За счет истечения относительно большого расхода топливной смеси в полости закрутки создается давление, которое в начальный период протекания процесса запуска больше, чем давление в предкамере, создаваемое окислителем, поступающим через канал 14. Под действием образовавшегося перепада давлений часть топливной смеси из приосевой области вихревого потока в полости закрутки поступает через отверстие 16 в предкамеру 3, а основная часть топливной смеси истекает в камеру сгорания 1.
По мере поступления в предкамеру смеси из полости закрутки 15 и окислителя по каналу 14 образуется смесь с необходимым для воспламенения составом, которая при срабатывании воспламенительного устройства 4 загорается.
Высокотемпературные продукты сгорания истекают через осевое отверстие 16 и полость закрутки 15 в камеру сгорания 1, в результате чего процесс горения распространяется на весь объем камеры сгорания и двигатель запускается.
По мере работы двигателя окислитель, поступающий по каналу 14 в предкамеру, создает в ней давление большее, чем давление в полости закрутки, и горючая смесь перестает поступать в предкамеру, в результате процесс горения в предкамере прекращается, а воспламенительное устройство 4 оказывается в проточной среде низкотемпературного окислителя, защищающего воспламенительное устройство от воздействия тепловых потоков, поступающих из камеры сгорания.
Заявляемые технические решения дают следующие преимущества по сравнению с прототипом:
- существенное уменьшение вероятности попадания на воспламенительное устройство крупных и средних капель жидкого горючего и, соответственно, достижение лучших условий для воспламенения смеси, большей надежности запуска двигателя и повышение живучести свечи;
- упрощение процедуры запуска двигателя, т.к. не требуется изменение порядка подачи компонентов топлива в процессе запуска двигателя;
- снижение массы конструкции двигателя за счет уменьшения количества трубопроводов и клапанов управления подачей компонентов топлива в двигатель;
- реализацию более высокой полноты сгорания топлива, поступившего в камеру за включение (импульс) РДМТ.
Последнее утверждение может быть обосновано следующими соображениями. Для сравнения совершенства процессов сгорания топлива в заявляемом устройстве и в прототипе воспользуемся сопоставлением величин полноты сгорания топлива φk за полный импульс тяги одного включения двигателя. Для сравниваемых вариантов запуска двигателя импульс тяги можно представить как сумму двух составляющих: импульса тяги, вырабатываемого в результате горения топлива в предкамере и заканчивающегося моментом начала горения в камере сгорания, и импульса тяги, вырабатываемого двигателем при самостоятельном процессе горения в камере сгорания.
Тогда полнота сгорания топлива за импульс составит:
Figure 00000001
где
Figure 00000002
- доля расходования топлива от общего за включение двигателя, φk - полнота сгорания топлива, индексы I к II относят параметры соответственно к 1-й и ко 2-й составляющим импульса тяги.
С достаточным основанием можно предположить, что полнота сгорания топлива в камере в обоих сравниваемых вариантах будут одинаковой, как и полнота сгорания топлива в предкамере. Количественно эти параметры можно характеризовать значениями φkI=0,7 и φkII=1,0 [2]. В этом случае определяющим при сравнении φk для заявляемого технического решения и для прототипа является распределение расходования топлива между 1-й и 2-й стадиями выработки импульса тяги.
Если записать выражение для
Figure 00000002
как
Figure 00000003
, где
Figure 00000004
и mΣ - секундный расход топлива и полный расход за импульс тяги, а τ - продолжительность процесса, и сопоставить входящие в это выражение параметры для двух сравниваемых ситуаций, то можно констатировать следующее. В заявляемом решении секундный расход топлива в предкамеру будет очевидно меньше, чем у прототипа, т.к. основная его часть поступает из полости закрутки в предкамеру под действием небольшого перепада давлений, а у прототипа в предкамеру поступает весь расход горючего и часть расхода окислителя под относительно большим давлением подачи топлива в двигатель. Входящую в выражение продолжительность процесса горения в заявляемом решении можно характеризовать как бесконечно малую, а у прототипа минимально возможная продолжительность подачи топлива в предкамеру ограничена инерционностью линии подачи горючего (включая время задержки срабатывания клапана) и может составлять несколько миллисекунд или десятков миллисекунд. Таким образом, у заявляемого технического решения относительные затраты топлива на воспламенение будут существенно меньше, чем у прототипа при соответственно большей составляющей топливных затрат на 2-ю часть импульса тяги, а с учетом соотношения φkIIkI средняя за импульс полнота сгорания топлива и, соответственно, удельный импульс тяги у заявляемого технического решения будет больше, чем у прототипа.
Анализ уровня техники на соответствие заявленных решений условию патентоспособности изобретения «изобретательский уровень» показал следующее.
Использование для многократного запуска РДМТ известных конструктивных решений и способов организации процесса запуска двигателя с инициированием процесса горения в предкамере требует применения раздельной подачи компонентов топлива в камеру сгорания и в предкамеру и наличия соответствующих агрегатов для реализации такой подачи, что усложняет конструкцию и снижает надежность работы.
В заявленном способе запуск РДМТ и последующая его работа осуществляются при однократном включении агрегатов подачи (электроклапанов) - одного для окислителя и второго для горючего. Плавное изменение соотношения компонентов топлива в предкамере при поступлении в нее топливной смеси с избытком горючего из полости закрутки и окислителя из коллектора, и небольшие расходы этих компонентов позволяют получать оптимальные условия воспламенения пусковой смеси при минимальных энергозатратах на воспламенение.
Как показала практика, в качестве воспламенителя в заявляемом устройстве может быть использован любой, рассматриваемый в настоящее время при разработке РДМТ тип свечи. При разработке экспериментальных образцов РДМТ в ФГУП «Центр Келдыша» и при проведении экспериментальных исследований для воспламенения топлива использовались свечи электроискрового, калильного или лазерного типа.
При характерных для РДМТ уровнях тяг и расходах компонентов топлива, таких как газообразный кислород с горючими: этиловый спирт или керосин, для запуска двигателя, осуществляемого с использованием заявляемого технического решения, достаточная мощность воспламенителя составляет около 4 Вт и 7 Вт соответственно. Этот результат подтверждается экспериментальными работами на стендах ФГУП «Центр Келдыша» с использованием в качестве воспламенителя серийной малогабаритной калильной свечи КС-2.
Таким образом, заявляемые технические решения удовлетворяют условию патентоспособности изобретения «изобретательский уровень».
Источники информации
1. «Конструкции и проектирование жидкостных ракетных двигателей». /Под редакцией Г.Г.Гахуна. М.: Машиностроение, 1989.
2. «Жидкостный ракетный двигатель малой тяги и способ запуска жидкостного ракетного двигателя малой тяги», патент Российской Федерации №2183761 от 11.05.2000.

Claims (2)

1. Ракетный двигатель малой тяги, работающий на несамовоспламеняющихся газообразном окислителе и жидком горючем, содержит камеру сгорания с соплом и смесительной головкой, предкамеру с воспламенительным устройством, трубопроводы подвода компонентов, отличающийся тем, что смесительная головка включает в себя линию подачи окислителя и линию подачи горючего, соединенных в тангенциальных каналах, сообщающихся с полостью закрутки топливной смеси, которая с одной стороны сообщается с камерой сгорания, с другой стороны - через осевой канал с предкамерой, линии подвода горючего и окислителя в тангенциальные каналы снабжены кольцевыми коллекторами с питающими их каналами, причем в линии подачи окислителя кольцевой коллектор снабжен по меньшей мере одним каналом подачи окислителя в предкамеру, а в линии подачи горючего коллектор сообщен с каналами ввода горючего в тангенциальные каналы.
2. Способ запуска ракетного двигателя малой тяги, включающий разновременную подачу горючего и окислителя в зону смешения, воспламенение образовавшейся топливной смеси в зоне первоначального воспламенения с последующим воспламенением топливной смеси в области основного горения, отличающийся тем, что большую часть окислителя подают в зону смешения компонентов топлива после поступления туда полного расхода горючего, образовавшуюся смесь закручивают и подают одновременно в зону первоначального воспламенения компонентов топлива и в область основного горения, а меньшую часть окислителя подают в зону первоначального воспламенения.
RU2007142021/06A 2007-11-15 2007-11-15 Ракетный двигатель малой тяги, работающий на несамовоспламеняющихся газообразном окислителе и жидком горючем, и способ его запуска RU2348828C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2007142021/06A RU2348828C1 (ru) 2007-11-15 2007-11-15 Ракетный двигатель малой тяги, работающий на несамовоспламеняющихся газообразном окислителе и жидком горючем, и способ его запуска

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2007142021/06A RU2348828C1 (ru) 2007-11-15 2007-11-15 Ракетный двигатель малой тяги, работающий на несамовоспламеняющихся газообразном окислителе и жидком горючем, и способ его запуска

Publications (1)

Publication Number Publication Date
RU2348828C1 true RU2348828C1 (ru) 2009-03-10

Family

ID=40528698

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007142021/06A RU2348828C1 (ru) 2007-11-15 2007-11-15 Ракетный двигатель малой тяги, работающий на несамовоспламеняющихся газообразном окислителе и жидком горючем, и способ его запуска

Country Status (1)

Country Link
RU (1) RU2348828C1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2468240C1 (ru) * 2011-11-03 2012-11-27 Государственный научный центр Российской Федерации - федеральное государственное унитарное предприятие "Исследовательский Центр имени М.В. Келдыша" Камера жидкостного ракетного двигателя или газогенератора с лазерным устройством воспламенения компонентов топлива и способ ее запуска
RU2505749C1 (ru) * 2012-07-27 2014-01-27 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения им. П.И. Баранова" Камера сгорания газотурбинного двигателя и способ ее работы
RU2513527C1 (ru) * 2012-12-20 2014-04-20 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения им. П.И. Баранова" Камера сгорания газотурбинного двигателя и способ ее работы
RU2638418C1 (ru) * 2016-07-05 2017-12-13 Акционерное общество "Конструкторское бюро химавтоматики" Камера сгорания жрд с электроплазменным зажиганием
RU175861U1 (ru) * 2017-03-21 2017-12-21 Публичное акционерное общество "Научно-производственное объединение "Сатурн" Камера сгорания жидкостного ракетного двигателя

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2468240C1 (ru) * 2011-11-03 2012-11-27 Государственный научный центр Российской Федерации - федеральное государственное унитарное предприятие "Исследовательский Центр имени М.В. Келдыша" Камера жидкостного ракетного двигателя или газогенератора с лазерным устройством воспламенения компонентов топлива и способ ее запуска
RU2505749C1 (ru) * 2012-07-27 2014-01-27 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения им. П.И. Баранова" Камера сгорания газотурбинного двигателя и способ ее работы
RU2513527C1 (ru) * 2012-12-20 2014-04-20 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения им. П.И. Баранова" Камера сгорания газотурбинного двигателя и способ ее работы
RU2638418C1 (ru) * 2016-07-05 2017-12-13 Акционерное общество "Конструкторское бюро химавтоматики" Камера сгорания жрд с электроплазменным зажиганием
RU175861U1 (ru) * 2017-03-21 2017-12-21 Публичное акционерное общество "Научно-производственное объединение "Сатурн" Камера сгорания жидкостного ракетного двигателя

Similar Documents

Publication Publication Date Title
RU2400644C1 (ru) Ракетный двигатель малой тяги, работающий на несамовоспламеняющихся газообразном окислителе и жидком горючем, и способ его запуска
US6912857B2 (en) Torch igniter
RU2348828C1 (ru) Ракетный двигатель малой тяги, работающий на несамовоспламеняющихся газообразном окислителе и жидком горючем, и способ его запуска
CN102095584B (zh) 富氢/富氧燃气气气燃烧试验装置及其试验方法
US4382771A (en) Gas and steam generator
KR101562083B1 (ko) 폭발을 발생시키기 위한 방법 및 장치
US8024918B2 (en) Rocket motor having a catalytic hydroxylammonium (HAN) decomposer and method for combusting the decomposed HAN-based propellant
US9273635B2 (en) Hypergolic hybrid motor igniter
RU2326263C1 (ru) Способ воспламенения компонентов топлива в камере сгорания ракетного двигателя и устройство для его осуществления (варианты)
CN106134417B (zh) 小推力火箭发动机
FR2478740A1 (fr) Procede et dispositif d'amorcage de combustion par reaction thermochimique de l'hydrogene et de l'oxygene
CN109630314B (zh) 一种吸气式发动机冷启动系统及冷启动方法
US11408376B2 (en) Thrust augmentation of an additively manufactured hybrid rocket system using secondary oxidizer injection
US5224344A (en) Variable-cycle storable reactants engine
CN109653903A (zh) 一种用于固液火箭发动机的可重复点火器
RU2468240C1 (ru) Камера жидкостного ракетного двигателя или газогенератора с лазерным устройством воспламенения компонентов топлива и способ ее запуска
US5010728A (en) Solid fuel turbine engine
RU2477383C1 (ru) Способ работы камеры ракетного двигателя малой тяги
JP2017218899A (ja) ロケットエンジン、飛しょう体、および、ロケットエンジンの動作方法
RU2369766C1 (ru) Камера ракетного двигателя малой тяги (рдмт), работающего на двухкомпонентном несамовоспламеняющемся газообразном топливе (варианты)
RU2623134C1 (ru) Интегральный прямоточный воздушно-реактивный двигатель на твердом горючем
RU2334916C1 (ru) Газодинамический воспламенитель
US20050138933A1 (en) Pulse detonation engine and method for initiating detonations
RU2448268C1 (ru) Камера ракетного двигателя малой тяги, работающего на двухкомпонентном несамовоспламеняющемся газообразном топливе
US2992528A (en) Liquid propellant gas generator for liquid propellant type rockets