RU2345324C1 - Способ исследования деформаций и напряжений - Google Patents

Способ исследования деформаций и напряжений Download PDF

Info

Publication number
RU2345324C1
RU2345324C1 RU2007116182/28A RU2007116182A RU2345324C1 RU 2345324 C1 RU2345324 C1 RU 2345324C1 RU 2007116182/28 A RU2007116182/28 A RU 2007116182/28A RU 2007116182 A RU2007116182 A RU 2007116182A RU 2345324 C1 RU2345324 C1 RU 2345324C1
Authority
RU
Russia
Prior art keywords
coating
formaldehyde
deformations
examination
brittle
Prior art date
Application number
RU2007116182/28A
Other languages
English (en)
Inventor
ков Владимир Николаевич Перм (RU)
Владимир Николаевич Пермяков
Николай Андреевич Махутов (RU)
Николай Андреевич Махутов
Лариса Батыевна Хайруллина (RU)
Лариса Батыевна Хайруллина
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Тюменский государственный нефтегазовый университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Тюменский государственный нефтегазовый университет" filed Critical Государственное образовательное учреждение высшего профессионального образования "Тюменский государственный нефтегазовый университет"
Priority to RU2007116182/28A priority Critical patent/RU2345324C1/ru
Application granted granted Critical
Publication of RU2345324C1 publication Critical patent/RU2345324C1/ru

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

Изобретение относится к исследованию деформаций и напряжений и может быть использовано для исследования деформаций и напряжений в деталях, например в элементах металлических конструкций инженерных сооружений. Сущность: на исследуемую поверхность детали наносят хрупкое тензочувстительное покрытие. Дополнительно осуществляют установку модуля с датчиками преобразователей акустической эмиссии. В качестве хрупкого покрытия используют покрытие на основе искусственных смол, содержащее резорциноформальдегидную смолу СФ-282 с добавлением карбамидоформальдегидного концентрата КФК-85. В качестве отвердителя жидкого карбамидоформальдегидного концентрата - водный раствор формалина, этиленгликоля и карбоксиметилцеллюлозы и гексаметилентетрамин. Технический результат: повышается точность и оперативность исследования.

Description

Изобретение относится к исследованию деформаций и напряжений с помощью акустико-эмиссионного (АЭ) способа и метода хрупкого тензочувствительного покрытия (ХП).
Известен акустико-эмиссионный способ контроля, включающий установку преобразователей акустической эмиссии (ПАЭ) на предварительно зачищенные контактные поверхности /Руководящий документ. РД 03 131-97. Акустико-эмисионный метод контроля. - С.8-11/. Способы крепления ПАЭ должны обеспечивать надежный акустический контакт с поверхностью. Соединительные кабели крепят с помощью магнитов, бандажей, прижимов таким образом, чтобы избежать их натяжения в процессе испытания. После установки ПАЭ проводят проверку работоспособности АЭ аппаратуры и настройку ее каналов с помощью калибраторов и имитаторов сигналов АЭ, выбираемых в зависимости от конкретных условий испытаний. АЭ контроль проводят при ступенчатом нагружении объекта контроля. Накопление, запись и оперативную обработку данных АЭ контроля проводят с помощью специального программного обеспечения, входящего в состав акустико-эмиссионных систем.
Основным недостатком этого метода является то, что сигналы АЭ малы по амплитуде и выделение полезного сигнала из помех представляет собой достаточно сложную задачу.
Известен способ для определения деформаций и напряжений в элементах металлических конструкций с помощью нанесения хрупких покрытий, включающий в себя нанесение тонкого слоя покрытия на исследуемую поверхность /Методические рекомендации. Метод хрупких покрытий для определения деформаций и напряжений в элементах магистральных трубопроводов. - М., 2005. - С.34, 41-43/. Выбор покрытия и методика нанесения зависят от состояния исследуемой конструкции и условий ее испытания. Наносят тонкий слой покрытия, применительно к требуемым характеристикам тензопокрытия, выбирают режим нагружения. В хрупком покрытии появляются картины трещин, которые фиксируются на чертеже, и отмечается нагрузка, при которой эти трещины возникли. В зонах трещинообразования хрупкого покрытия производят локализацию мест, в которых с применением характеристик тензочувствительности может быть произведена оценка значений главных напряжений и деформаций. Анализируя образующиеся в хрупком покрытии картины трещин, можно оценить нагруженность различных зон исследуемой конструкции, установить направления действия главных напряжений и определить уровень этих напряжений.
Недостатком известного способа является то, что для хорошей видимости трещин необходима фотосъемка, определенное освещение, и если требуется заснять большой участок поверхности, покрытие предварительно обрабатывается проникающими красителями. Сама методика обработки данных очень трудоемка. Использование возможностей хрупких тензочувствительных покрытий ограничено необходимостью наличия покрытия, имеющего соответствующие свойства.
Известен способ определения упругопластических деформаций в деталях, включающий нанесение на поверхность детали покрытия, содержащего эпоксидную смолу, фталевый ангидрид и дибутилфталат в соотношении 1:0,4:0,01, термическую обработку покрытия, нагружение детали и определение по образующимся трещинам зоны и направления пластических деформаций /SU 1669991 А1, МКИ5 C21D 7/02, G01B 11/20, опубл. 15.08.1991/.
Причиной, препятствующей достижению требуемого технического результата, является то, что при использовании этого способа необходимо соблюдать определенный режим термической обработки и режим термического отверждения покрытия.
Известен способ определения пластических деформаций в деталях, заключающийся в том, что на поверхность исследуемой детали наносят слой хрупкого тензочувствительного покрытия, нагружают деталь и по образующимся трещинам определяют зоны и направления пластических деформаций /SU 1265471 А1, МКИ4 G01B 11/20, опубл. 23.10.1986/. В качестве тензочувствительного покрытия используют слой полимера на основе композиции из эпоксидной смолы и фталевого ангидрида, взятых в мольном соотношении (1-1,05):(2-2,08).
Причиной, препятствующей достижению требуемого технического результата, является то, что данная композиция предварительно подвергается термообработке в течение 3-4 часов при температуре 110-140°С. Сама методика обработки данных очень трудоемка.
Задачей, на решение которой направлено техническое решение, является разработка способа определения напряжений и деформаций с помощью хрупких покрытий в сочетании с акустико-эмиссионным методом. Это изобретение - хрупко-акустический метод позволит на более ранних стадиях определять локальные повреждения металлических конструкций, контролировать образование возможных трещин.
При осуществлении технического решения поставленная задача решается за счет достижения технического результата, который заключается в повышении точности и оперативности за счет того, что перед АЭ контролем на исследуемую поверхность наносят слой хрупкого покрытия. Нанесение хрупкого тензочувствительного покрытия позволит повысить сверхчувствительность волн напряжения вследствие треска образующихся картин трещин. По наличию деформации покрытия определяют наличие дефектов. Оценка напряженно-деформированного состояния опасных объектов будет проводиться оперативнее. Предлагаемое техническое решение предусматривает дистанционное визуальное наблюдение за контролируемыми объектами.
Указанный технический результат достигается тем, что способ исследования деформаций и напряжений в деталях, например в элементах металлических конструкций инженерных сооружений, с помощью хрупко-акустического метода предусматривает проведение следующих действий: нанесение хрупкого тензочувстительного покрытия на исследуемую поверхность детали, отверждение покрытия. Дополнительно осуществляют установку модуля с датчиками преобразователей акустической эмиссии, а в качестве покрытия используют покрытие на основе искусственных смол, содержащее резорциноформальдегидную смолу СФ-282 с добавлением карбамидоформальдегидного концентрата КФК-85, в качестве отвердителя жидкого карбамидоформальдегидного концентрата - водный раствор формалина, этиленгликоля и карбоксиметилцеллюлозы и гексаметилентетрамин, при этом на 100 массовых частей резорциноформальдегидной смолы компоненты взяты в следующем соотношении, %: карбамидоформальдегидный концентрат КФК-85 - 35-50, отвердитель - 22-25, гексаметилентетрамин - 3-6.
В тонком слое хрупкого тензочувствительного покрытия на основе фенолформальдегидной смолы при деформации наблюдается картина трещин, отражающих поле наибольших главных напряжений, возникающих в исследуемой детали (конструкции) в процессе ее нагружения. Анализируя картины трещин можно оценить не только нагруженность различных зон исследуемой конструкции, но и определить уровень этих напряжений с применением характеристик тензочувствительности хрупкого покрытия.
Полученная информация после обработки используется для выявления и локализации (местонахождения) возможных дефектов (трещин или зон пластической деформации) в деталях (конструкциях) при их разрушении, которые могут привести к катастрофе и человеческим жертвам.
Определение деформаций и напряжений методом хрупких тензочувствительных покрытий с использованием АЭ измерительного комплекса обеспечивает:
- возможность обнаружения и регистрации локальных развивающихся дефектов на ранних стадиях их образования и развития;
- классифицирование дефектов по размеру и опасности;
- выявление дефектов и наблюдение механизма образования и развития в рабочих условиях;
- контроль всего объекта в целом, используя один или несколько модулей с датчиками ПАЭ, неподвижно установленных на поверхности объекта;
- проведение постоянного дистанционного мониторинга;
- моделирование возможных повреждений рабочих поверхностей деталей (конструкций).
Хрупкое тензочувствительное покрытие позволит повысить сверхчувствительность волн напряжения вследствие треска образующихся картин трещин, появится возможность обнаружения дефектов на ранних стадиях образования и развития, проводить постоянный дистанционный мониторинг за механизмом образования и развития дефектов в рабочих условиях, обеспечить контроль всего объекта в целом. Используя программное обеспечение, вся полученная информация отображается на мониторе в виде графического и текстового представления, что облегчает последующую обработку полученных данных.
Заявляемый способ был опробован на деталях, металлических образцах (длина - 285 мм, ширина - 20 мм, толщина - 5,9 мм). Использовался акустико-измерительный комплекс Лель / А-Line 32D (DDM)/.
Способ осуществляется следующим образом.
На поверхность исследуемой детали кистью нанесли тонкий слой хрупкого тензочувствительного покрытия. Использовали покрытие на основе искусственных смол, содержащее резорциноформальдегидную смолу СФ-282 с добавлением карбамидоформальдегидного концентрата КФК-85, отвердитель жидкий - водной раствор формалина, этиленгликоля и карбоксиметилцеллюлозы и гексаметилентетрамин, при этом на 100 массовых частей резорциноформальдегидной смолы компоненты взяты в следующем соотношении, %: карбамидоформальдегидный концентрат КФК-85 - 35-50, отвердитель - 22-25, гексаметилентетрамин - 3-6.
В состав покрытия входят 4 компонента. На 100 массовых частей резорциноформальдегидной смолы СФ вводят 35-50% карбамидоформальдегидного концентрата КФК-85, 22-25% отвердителя жидкого карбамидоформальдегидного концентрата (ОЖ) и 3-6% гексаметилентетрамина (ГМТА). Весовой состав трех последних компонентов можно изменять в соответствующих пределах, т.к. они используются для отверждения покрытия и для сшивания резорциновых новолаков.
Резорциноформальдегидная смола СФ-282 (ТУ 6-07-402-90) является продуктом поликонденсации резорцина с формальдегидом в среде этилового спирта, этиленгликоля и водного раствора щелочи.
Карбамидоформальдегидный концентрат КФК-85 (ТУ 2181-032-00203803-2003) используется для приготовления лаковых покрытий, представляет собой водный раствор формальдегида и низкомолекулярных производных конденсации карбамида с формальдегидом.
Отвердитель жидкого карбамидоформальдегидного концентрата ОЖ ТИ №74 (производитель г.Тюмень, завод Пластмасс) является водным раствором формалина, этиленгликоля и карбоксиметилцеллюлоза.
Гексаметилентетрамин ГМТА (уротропин) получают из формальдегида и аммиака, в водных растворах хорошо гидролизуется. Используются для сшивания новолаков.
Резорциноформальдегидная смола относится к новолачным смолам, которые получают конденсацией фенола с формальдегидом в кислой среде (рН от 1 до 4), обычно при мольном соотношении формальдегида и фенола (0,75-0,85):1. Новолаки представляют собой термопластичные, т.е. растворимые и плавкие, низкомолекулярные смолы, преимущественно линейного строения с метиленовыми группами между фенольными ядрами. Резорциноформальдегидная смола отверждается только при помощи ГМТА.
Данный состав смешивается при нормальных условиях, в весовых частях. Последовательность приготовления лакового покрытия: отмеряется необходимое количество СФ-282, затем, перемешивая, добавляется требуемое количество КФК-85, ОЖ и ГМТА (уротропин), который предварительно необходимо растворить в этиловом спирте.
Хрупкое тензочувствительное покрытие готовят перед нанесением на исследуемую поверхность при комнатной температуре. Отверждается покрытие в течение 20 часов при температуре от 10°С до 32°С, влажности от 40% до 78%.
После отверждения покрытия устанавливают модули с датчиками преобразователей акустической эмиссии (ПАЭ) согласно известной методике /Паспорт. Акустико-измерительного комплекса Лель / A-Line 32D (DDM)/. - 22 с./. Для чего поверхность исследуемой детали в месте установки модуля или модулей с датчиками ПАЭ зачищают от нанесенного покрытия. Затем наносят контактную смазку и устанавливают датчики на исследуемой детали к предполагаемому месту прогиба и в местах образования трещин. Первый датчик устанавливают в начале - ближе к месту закрепления конца исследуемой детали (балки), второй - через определенное расстояние, например на образце исследуемой детали 210 мм.
Соединяют модуль или модули между собой и с компьютером для передачи и обработки данных. Подготавливают к работе программное обеспечение и компьютер, входящий в измерительный комплекс. В работе используют операционную систему Windows 9X и программу сбора и обработки данных А-Line
Проводят процесс нагружения исследуемой детали, испытание на прогиб путем закрепления конца детали. Вследствие треска хрупкого тензочувствительного покрытия в момент нагружения в местах деформаций и напряжений образуются сигналы аустико-эмиссионные. Каждый датчик принимает сигналы и программа осуществляет графическое и текстовое представление полученных данных на мониторе по ходу эксперимента: амплитуда (дБ), суммарная амплитуда (дБ), интенсивность, суммарная активность, количество событий, накопление событий, энергия, длительность (мкс), время нарастания (мкс), выбросы, уровень шума (дБ).
В программе предусмотрены два основных режима работы системы: режим сбора данных и режим постообработки. В режиме сбора данных при осуществлении измерения скорости распространения АЭ сигнала, спектрального анализа формы АЭ сигнала программа осуществляет графическое и текстовое представление данных на экране монитора по ходу эксперимента. В ходе эксперимента мы наблюдаем локационные графики, отображающие результаты локации дефектов и соответствующие им распределения амплитуды источников АЭ по координатам, гистограммы измерения скорости и затухания АЭ сигналов.
В хрупко-акустическом методе при нагружении детали начинает работать само покрытие. Благодаря своим свойствам покрытие издает треск, который улавливается АЭ сигналом, и на мониторе графическое изображение отображает локации дефектов на участке исследуемой детали, где появился сигнал и наблюдается деформация металлической конструкции.
Хрупкое тензочуствительное покрытие предшествует появлению дефекта, т.е. в месте образования деформации или трещины за счет треска покрытия появляется АЭ сигнал на несколько порядков раньше, чем бы он появился на исследуемой детали без покрытия. В зонах уже существующих деформаций и дефектов покрытие указывает на степень опасности. Таким образом, хрупкое тензочуствительное покрытие повышает чувствительность АЭ сигнала.
При нанесении хрупкого тензочувствительного покрытия на сильноповрежденную деталь (конструкцию) большой площади при невысоких безопасных уровнях нагрузки выявляются зоны повреждения. При дистанционном наблюдении на мониторе появляются АЭ сигналы, характеризующие дефекты по степени опасности. Это позволяет проводить постоянный контроль на стадии образования и разрушения детали (конструкции). Хрупкое тензочувствительное покрытие на основе искусственных смол можно использовать в углеводородных средах.
Таким образом, предлагаемое техническое решение обеспечивает определение общих и локальных упругопластических деформаций и дефектов на всех стадиях их образования и развития, дает оценку существующим дефектам и осуществляет мониторинг за источниками акустико-эмиссионных сигналов контролируемых объектов металлических конструкций - резервуаров и сосудов давления, трубопроводов, буровых платформ, атомных и химических реакторов и других инженерных сооружений, а также обеспечивает безопасность проведения постоянного мониторинга неразрушающего контроля и технического состояния опасных объектов.

Claims (1)

  1. Способ исследования деформаций и напряжений в деталях, включающий нанесение на поверхность детали хрупкого тензочувствительного покрытия, отверждение покрытия, нагружение детали и определение по образующимся трещинам зоны и направления пластических деформаций, отличающийся тем, что дополнительно осуществляют установку модуля с датчиками преобразователей акустической эмиссии, а в качестве хрупкого тензочувствительного покрытия используют покрытие на основе искусственных смол, которое содержит резорциноформальдегидную смолу СФ-282 с добавлением карбамидо-формальдегидного концентрата КФК-85, отвердитель жидкий - водный раствор формалина, этиленгликоля и карбоксиметилцеллюлозы, и гексаметилентетрамин, при этом на 100 мас.ч. резорциноформальдегидной смолы компоненты взяты в следующем соотношении, %:
    карбамидо-формальдегидный концентрат КФК-85 35-50 отвердитель жидкий 22-25 гексаметилентетрамин 3-6.
RU2007116182/28A 2007-04-27 2007-04-27 Способ исследования деформаций и напряжений RU2345324C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2007116182/28A RU2345324C1 (ru) 2007-04-27 2007-04-27 Способ исследования деформаций и напряжений

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2007116182/28A RU2345324C1 (ru) 2007-04-27 2007-04-27 Способ исследования деформаций и напряжений

Publications (1)

Publication Number Publication Date
RU2345324C1 true RU2345324C1 (ru) 2009-01-27

Family

ID=40544320

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007116182/28A RU2345324C1 (ru) 2007-04-27 2007-04-27 Способ исследования деформаций и напряжений

Country Status (1)

Country Link
RU (1) RU2345324C1 (ru)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2454663C1 (ru) * 2010-11-30 2012-06-27 Институт проблем нефти и газа Сибирского отделения Российской академии наук Способ создания хрупкого покрытия на поверхности изделий из светостабилизированного полиэтилена
RU2492463C1 (ru) * 2012-01-30 2013-09-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тюменский государственный нефтегазовый университет" (ТюмГНГУ) Способ исследования деформаций и напряжений
RU2492438C1 (ru) * 2012-01-30 2013-09-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тюменский государственный нефтегазовый университет" (ТюмГНГУ) Хрупкое покрытие для исследования деформаций и напряжений на основе карамели
RU2502061C2 (ru) * 2008-09-14 2013-12-20 Нуово Пиньоне С.п.А. Способ определения склонности к образованию трещин при повторном нагревании
RU2505779C1 (ru) * 2012-07-17 2014-01-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тюменский государственный нефтегазовый университет" (ТюмГНГУ) Способ регистрации трещин в хрупких тензоиндикаторах
RU2505780C1 (ru) * 2012-07-17 2014-01-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тюменский государственный нефтегазовый университет" (ТюмГНГУ) Способ исследования деформации и напряжений в хрупких тензоиндикаторах
RU2592889C1 (ru) * 2015-03-10 2016-07-27 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тюменский индустриальный университет" (ТИУ) Хрупкое покрытие для исследования деформаций и напряжений
RU2595876C1 (ru) * 2015-04-30 2016-08-27 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тюменский индустриальный университет" (ТИУ) Механобиологический способ диагностики материалов и конструкций
RU2712773C1 (ru) * 2019-03-18 2020-01-31 Сергей Яковлевич Самохвалов Оптоволоконный акустико-эмиссионный способ с многослойным покрытием оптического волокна веществами с различной хрупкостью

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2502061C2 (ru) * 2008-09-14 2013-12-20 Нуово Пиньоне С.п.А. Способ определения склонности к образованию трещин при повторном нагревании
RU2454663C1 (ru) * 2010-11-30 2012-06-27 Институт проблем нефти и газа Сибирского отделения Российской академии наук Способ создания хрупкого покрытия на поверхности изделий из светостабилизированного полиэтилена
RU2492463C1 (ru) * 2012-01-30 2013-09-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тюменский государственный нефтегазовый университет" (ТюмГНГУ) Способ исследования деформаций и напряжений
RU2492438C1 (ru) * 2012-01-30 2013-09-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тюменский государственный нефтегазовый университет" (ТюмГНГУ) Хрупкое покрытие для исследования деформаций и напряжений на основе карамели
RU2505779C1 (ru) * 2012-07-17 2014-01-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тюменский государственный нефтегазовый университет" (ТюмГНГУ) Способ регистрации трещин в хрупких тензоиндикаторах
RU2505780C1 (ru) * 2012-07-17 2014-01-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тюменский государственный нефтегазовый университет" (ТюмГНГУ) Способ исследования деформации и напряжений в хрупких тензоиндикаторах
RU2592889C1 (ru) * 2015-03-10 2016-07-27 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тюменский индустриальный университет" (ТИУ) Хрупкое покрытие для исследования деформаций и напряжений
RU2595876C1 (ru) * 2015-04-30 2016-08-27 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тюменский индустриальный университет" (ТИУ) Механобиологический способ диагностики материалов и конструкций
RU2712773C1 (ru) * 2019-03-18 2020-01-31 Сергей Яковлевич Самохвалов Оптоволоконный акустико-эмиссионный способ с многослойным покрытием оптического волокна веществами с различной хрупкостью

Similar Documents

Publication Publication Date Title
RU2345324C1 (ru) Способ исследования деформаций и напряжений
Tang et al. An experimental study of acoustic emission methodology for in service condition monitoring of wind turbine blades
US8640544B2 (en) Method for analyzing structure safety
US8316712B2 (en) Quantitative acoustic emission non-destructive inspection for revealing, typifying and assessing fracture hazards
CN109253921A (zh) 一种检测混凝土试块强度评价方法
Lima et al. On crack tip localisation in quasi-statically loaded, adhesively bonded double cantilever beam specimens by acoustic emission
Sarr et al. Nondestructive evaluation of FRP-reinforced structures bonded joints using acousto-ultrasonic: Towards diagnostic of damage state
Agarwal et al. Concrete structural health monitoring in nuclear power plants
Barbosh et al. Time–frequency decomposition-assisted improved localization of proximity of damage using acoustic sensors
RU2492463C1 (ru) Способ исследования деформаций и напряжений
US8874384B1 (en) Method and devices to standardize ultrasonic porosity measurements
Saranya et al. Structural Health Monitoring Using Sensors with Application of Wavelet Analysis
Muravin et al. Guide for development of acoustic emission application for examination of metal structure
Mangalgiri Corrosion issues in structural health monitoring of aircraft
Gan et al. Real-time monitoring system for defects detection in wind turbine structures and rotating components
RU2611597C1 (ru) Комбинированный способ исследования деформаций и напряжений
TWI612302B (zh) 水泥基質結構物聲學的火害判別方法
RU2609185C1 (ru) Способ исследования деформаций и напряжений с помощью газоанализатора
Tang et al. Structural health monitoring methodology for wind turbine blades using acoustic emission
KR20200141768A (ko) 전기전도성 페인트를 이용하여 건물 균열을 진단하는 장치와 방법
Soejima et al. Investigation of the Probability of Detection of our SHM System
Krampikowska et al. Acoustic emission for diagnosing cable way steel support towers
Ralph et al. Acoustic emission detection of BGA components in spherical bend
RU2816129C1 (ru) Способ дифференциальной оценки стадий поврежденности изделия, выполненного из композитного материала
JP2003222571A (ja) 光ファイバセンサを用いた材料の損傷評価方法及び装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20090428