RU2338924C2 - Импульсный способ преобразования энергии ветра в электрическую энергию - Google Patents

Импульсный способ преобразования энергии ветра в электрическую энергию Download PDF

Info

Publication number
RU2338924C2
RU2338924C2 RU2006128298/06A RU2006128298A RU2338924C2 RU 2338924 C2 RU2338924 C2 RU 2338924C2 RU 2006128298/06 A RU2006128298/06 A RU 2006128298/06A RU 2006128298 A RU2006128298 A RU 2006128298A RU 2338924 C2 RU2338924 C2 RU 2338924C2
Authority
RU
Russia
Prior art keywords
wind
electric energy
wind wheel
pulses
generator
Prior art date
Application number
RU2006128298/06A
Other languages
English (en)
Inventor
Сергей Юрьевич Белкин (RU)
Сергей Юрьевич Белкин
Original Assignee
Государственное образовательное учреждение высшего профессионального образования Иркутский государственный университет путей сообщения (ИрИИТ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования Иркутский государственный университет путей сообщения (ИрИИТ) filed Critical Государственное образовательное учреждение высшего профессионального образования Иркутский государственный университет путей сообщения (ИрИИТ)
Priority to RU2006128298/06A priority Critical patent/RU2338924C2/ru
Application granted granted Critical
Publication of RU2338924C2 publication Critical patent/RU2338924C2/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Control Of Eletrric Generators (AREA)

Abstract

Изобретение относится к области возобновляемых источников электроэнергии. Способ преобразования механической энергии ветроколеса в электрическую энергию аккумуляторной батареи заключается в том, что механическую энергию ветроколеса сначала преобразуют в электрическую энергию высоковольтных импульсов переменного тока с помощью генератора высоковольтных импульсов, которые поступают на разрядник, а затем, после выпрямления, заряжают батарею конденсаторов для формирования импульсов зарядного тока аккумуляторной батареи. Техническим результатом является обеспечение начала вращения ветроколеса при скорости ветра менее 0,5 м/с. 1 з.п. ф-лы, 3 ил.

Description

Изобретение относится к области возобновляемых источников электроэнергии.
Известен способ преобразования энергии ветра в электрическую энергию посредством прямого преобразования. При этом способе генератор электроэнергии гальванически связан с его нагрузкой [4, 5, патент RU 2239722 С2, F03D 7/04, 2004 г., 6 стр.].
Недостатком способа является то, что скорость вращения ветроколеса определяется равновесием между мощностью, развиваемой ветроколесом при данной скорости ветра, и мощностью, поглощаемой генератором, которая в свою очередь зависит от сопротивления нагрузки. Для преодоления этого сопротивления необходима большая скорость ветра. При таком способе преобразования ветроэлектрическая установка (ВЭУ) находится в прямой зависимости от случайного параметра - скорости ветра. По этой причине коэффициент полезного действия (КПД) у всех существующих ВЭУ непостоянен и низок. При незначительных скоростях ветра ВЭУ, созданные по этому способу, неработоспособны. Стремление сконструировать ВЭУ, работающую при малых скоростях ветра, неизбежно приводит к созданию низкооборотного генератора большой массы, для вращения которого необходимо ветроколесо большого диаметра. Конструкции ВЭУ, выполненные по этому способу преобразования, практически исчерпали возможность их дальнейшего совершенствования, что является сдерживающим фактором их широкого применения.
Наиболее близким, принятым за прототип, является ВЭУ типа АВЭС-0,1 ГМ, аналогичная по назначению, которой присущи все перечисленные недостатки (см.: «Техническое описание и инструкция по эксплуатации. Ветроэлектрический агрегат АВЭС-0,1ГМ». Министерство электротехнической промышленности. 1971 г.).
Предложен способ преобразования энергии ветра в электрическую энергию, который основан на получении высоковольтных импульсов переменного тока и поступлении их на схему накопления энергии, гальванически развязанную от генератора этих импульсов.
Сущность способа заключается в следующем. На Фиг.1 изображена принципиальная схема реализации способа, где
1 - генератор высоковольтных импульсов БСМ-9;
2 - искровой разрядник;
VD1, VD2 - диоды Д1005АОС;
VD3 - стабилитрон КС620;
VD4 - тиристор КУ202Н;
C1 - конденсатор БМТ-2,400 В, 0,1 мкФ;
C2n - конденсаторы МБГО-400 В, 10 мкФ;
R1 - резистор МЛТ-0,25, 68 Ом;
НКП-20У2 - никель-кадмиевая аккумуляторная батарея;
П1 - переключатель галетный 11П2Н.
Механическая энергия ветра передается ветроколесу, которое под действием этой энергии начинает вращаться. Вращающееся ветроколесо приводит во вращение генератор высоковольтных импульсов. За один оборот ветроколеса генератор вырабатывает девять импульсов переменного тока амплитудой 18 кВ, длительностью 4 мс, которые поступают на электрод разрядника. Вращающийся ротор генератора высоковольтных импульсов не создает значительного сопротивления вращению ветроколеса. Экспериментально полученная осциллограмма формы генерируемых импульсов при скорости вращения ветроколеса 30 об/мин представлена на Фиг.2.
Воздушный промежуток между электродами разрядника равен 8 мм. Под действием высокого напряжения в промежутке возникает несамостоятельный искровой разряд. При этом примерно 50% энергии импульса расходуется на разогрев воздуха, амплитуда импульса на втором электроде разрядника уменьшается до 2 кВ.
Со второго электрода импульсы амплитудой 2 кВ поступают на однополупериодный выпрямитель (VD1, VD2). После выпрямления импульсы постоянного тока амплитудой 380 В поступают на батарею параллельно включенных конденсаторов (C2n). Осциллограмма положительных импульсов представлена на Фиг.3.
Переключателем (П1) выбирается емкость конденсаторной батареи. Не имеет значения, от какого источника будет заряжаться конденсатор, но, накапливая заряд, он способен мгновенно разряжаться, при этом отдаваемая им мощность может достигать 106-107 Вт.
С целью формирования импульсов зарядного тока аккумуляторной батареи в цепь заряда конденсаторов включен стабилитрон (VD3), ограничивающий заряд конденсаторов на уровне 120 В. При достижении этого уровня напряжения на конденсаторах стабилитрон открывается и подает сигнал на управляющий электрод тиристора (VD4). Тиристор открывается и конденсаторы разряжаются, формируя импульс зарядного тока аккумуляторной батареи. Сила тока в импульсе определяется величиной емкости подключенных конденсаторов.
Импеданс (полное сопротивление) разряженных конденсаторов много меньше сопротивления стабилитрона в непроводящем состоянии, поэтому он не откроется от зарядных импульсов до тех пор, пока напряжение на конденсаторах не достигнет уровня напряжения его пробоя (120 В).
Резистор (R1) обеспечивает нормальный ток стабилитрона (10 мА), конденсатор (С1) блокирует ложные срабатывания тиристора от коротких всплесков напряжения, возникающих при переходном процессе от ключевого режима работы стабилитрона.
Пример выполнения способа.
Способ был проверен на конструкционной базе прототипа. Вместо штатного генератора 6АЮ 129.007 массой 20 кг был установлен генератор высоковольтных импульсов БСМ-9 (магнето от авиадвигателя АШ-62ИР) массой 3,6 кг с подключением по схеме (фиг.1).
Аэродинамические характеристики модернизированного прототипа изменились в лучшую сторону. Минимальная скорость ветра, необходимая для начала вращения ветроколеса, стала менее 0,5 м/с. У прототипа она равна 3,5 м/с. Если у прототипа номинальные параметры генератора обеспечиваются при скорости ветра 8 м/с и скорости вращения ротора генератора 600 об/мин, то после модернизации по предлагаемому способу электроэнергия вырабатывается сразу после начала вращения ветроколеса.
Так как на любой местности в течение года преобладают ветра с незначительной скоростью, то экспериментальный вариант ВЭУ работает практически непрерывно при наличии слабого ветра. Зависимость работы ВЭУ от случайного параметра (ветра) сократилась в 7 раз. За 18 месяцев эксперимента аккумуляторная батарея емкостью 20 А/ч, 12 В заряжалась только от ВЭУ при среднем разрядном токе 0,6 А/ч.
Технический результат предлагаемого способа заключается в следующем:
- зарядные импульсы вырабатываются при любой скорости вращения ветроколеса;
- ветроколесо начинает вращаться при скорости ветра менее 0,5 м/с;
- генератор высоковольтных импульсов имеет незначительную массу и размеры, простоту конструкции и меньшую (относительно всех прототипов) стоимость;
- ВЭУ может оснащаться ветроколесом любой конструкции;
- не требуется блок управления;
- возможно использовать практически любую аккумуляторную батарею на любое напряжение без замены генератора.
СПИСОК ЛИТЕРАТУРЫ
1. Толмачев В.Н. Эффективное использование энергии ветра в системах автономного энергообеспечения. - М.: Студенческая книга, 2002.
2. П.П.Безруких, Ю.Д.Арбузов и др. Ресурсы и эффективность использования возобновляемых источников энергии в России. - СПб.: Наука, 2002.
3. П.П.Безруких, Д.С.Стребков. Возобновляемая энергетика: стратегия, ресурсы, технологии. - М.: ГНУ ВИЭСХ, 2005.
4. АО «Новые и возобновляемые источники энергии». Оборудование нетрадиционной и малой энергетики: справочник - каталог. Второе издание. 2002.
5. Техническое описание и инструкция по эксплуатации. Ветроэлектрический агрегат АВЭС - 0,1ГМ. Министерство электротехнической промышленности. 1971 г.

Claims (2)

1. Способ преобразования механической энергии ветроколеса в электрическую энергию аккумуляторной батареи, заключающийся в том, что механическую энергию ветроколеса сначала преобразуют в электрическую энергию высоковольтных импульсов переменного тока с помощью генератора высоковольтных импульсов, которые поступают на разрядник, а затем после выпрямления заряжают батарею конденсаторов для формирования импульсов зарядного тока аккумуляторной батареи.
2. Способ по п.1, отличающийся тем, что ветроколесо начинает вращаться при скорости ветра менее 0,5 м/с.
RU2006128298/06A 2006-10-24 2006-10-24 Импульсный способ преобразования энергии ветра в электрическую энергию RU2338924C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2006128298/06A RU2338924C2 (ru) 2006-10-24 2006-10-24 Импульсный способ преобразования энергии ветра в электрическую энергию

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2006128298/06A RU2338924C2 (ru) 2006-10-24 2006-10-24 Импульсный способ преобразования энергии ветра в электрическую энергию

Publications (1)

Publication Number Publication Date
RU2338924C2 true RU2338924C2 (ru) 2008-11-20

Family

ID=40241522

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006128298/06A RU2338924C2 (ru) 2006-10-24 2006-10-24 Импульсный способ преобразования энергии ветра в электрическую энергию

Country Status (1)

Country Link
RU (1) RU2338924C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2443904C1 (ru) * 2010-07-06 2012-02-27 Государственное образовательное учреждение высшего профессионального образования Читинский государственный университет (ЧитГУ) Способ преобразования энергии ветра в электрическую энергию

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2443904C1 (ru) * 2010-07-06 2012-02-27 Государственное образовательное учреждение высшего профессионального образования Читинский государственный университет (ЧитГУ) Способ преобразования энергии ветра в электрическую энергию

Similar Documents

Publication Publication Date Title
US9263899B2 (en) Power conditioning system
Haruni et al. Dynamic operation and control of a hybrid wind-diesel stand alone power systems
JP2007045244A5 (ru)
CN101483333B (zh) 发电机的短路保护装置
RU99115749A (ru) Гибридное генераторное устройство
EP2479884B1 (en) Wind power generation device
RU2014106872A (ru) Гибридная электрическая система
JP2004502897A (ja) 緊急電力供給装置
CN105244899A (zh) 分布式发电系统中二元混合储能装置及分布式发电系统
Sayais et al. Power generation on highway by using vertical axis wind turbine & solar system
RU2338924C2 (ru) Импульсный способ преобразования энергии ветра в электрическую энергию
JP2013055867A (ja) 風力発電機の充電回路装置
Zeng et al. Virtual inertia control and short-term primary control for PMSG-based wind turbine using supercapcitor
JP4093814B2 (ja) 小型風力発電装置
Murray et al. Applications of supercapacitor energy storage for a wave energy converter system
CN103072488B (zh) 一种复合电源
CN101083404A (zh) 用于风力发电机变桨距控制系统的超级电容储能装置
CN103546053B (zh) 电能转换装置及其控制方法
CN105470992B (zh) 太阳能或风能并网发电余电利用系统
JP4684399B2 (ja) 風力発電装置
Carp et al. Monitoring system and intelligent control system used in the starting process of a LDH1250HP locomotive
Pragaspathy et al. Standalone battery storage unit for PMSG based variable speed wind turbine system
CN105429535A (zh) 一种用于小型风力发电机的转速控制方法及装置
AU2021104730A4 (en) Dual windmill in highway power generation
RU221854U1 (ru) Емкостное устройство зажигания

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20101025