RU2336317C1 - Трубная заготовка из низколегированной стали - Google Patents

Трубная заготовка из низколегированной стали Download PDF

Info

Publication number
RU2336317C1
RU2336317C1 RU2006145121/02A RU2006145121A RU2336317C1 RU 2336317 C1 RU2336317 C1 RU 2336317C1 RU 2006145121/02 A RU2006145121/02 A RU 2006145121/02A RU 2006145121 A RU2006145121 A RU 2006145121A RU 2336317 C1 RU2336317 C1 RU 2336317C1
Authority
RU
Russia
Prior art keywords
less
steel
points
silicates
point
Prior art date
Application number
RU2006145121/02A
Other languages
English (en)
Other versions
RU2006145121A (ru
Inventor
Михаил Викторович Бобылев (RU)
Михаил Викторович Бобылев
Евгений Иванович Гонтарук (RU)
Евгений Иванович Гонтарук
Анатолий Адольфович Лехтман (RU)
Анатолий Адольфович Лехтман
Андрей Алексеевич Угаров (RU)
Андрей Алексеевич Угаров
В чеслав Иванович Фомин (RU)
Вячеслав Иванович Фомин
хов Николай Александрович Шл (RU)
Николай Александрович Шляхов
Original Assignee
Открытое акционерное общество "Оскольский электрометаллургический комбинат"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Оскольский электрометаллургический комбинат" filed Critical Открытое акционерное общество "Оскольский электрометаллургический комбинат"
Priority to RU2006145121/02A priority Critical patent/RU2336317C1/ru
Publication of RU2006145121A publication Critical patent/RU2006145121A/ru
Application granted granted Critical
Publication of RU2336317C1 publication Critical patent/RU2336317C1/ru

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

Изобретение относится к области металлургии, в частности к производству трубной заготовки диаметром от 80 до 160 мм. Техническим результатом изобретения является обеспечение благоприятного соотношения прочности, пластичности и вязкости, минимального уровня анизотропии механических свойств. Для реализации технического результата заготовка выполнена непрерывнолитой, горячекатаной из стали, содержащей следующее соотношение компонентов, в мас.%: углерод 0,16-0,24, марганец 1,10-1,60, кремний 0,12-0,17, хром 0,005-0,30, ванадий 0,08-0,14, алюминий 0,02-0,04, медь 0,005-0,30, никель 0,005-0,30, азот 0,005-0,015, железо и неизбежные примеси - остальное, а в качестве примесей сталь содержит (мас.%): ниобий не более 0,02, титан не более 0,03, молибден не более 0,10, сера не более 0,030, фосфор не более 0,030. Заготовка имеет феррито-перлитную структуру, размер действительного зерна 5-8 баллов, по макроструктуре - центральную пористость, точечную неоднородность, ликвационный квадрат, подусадочную ликвацию - не более 2 баллов по каждому виду, ликвационные полоски - не более 1 балла, по неметаллическим включениям - сульфиды, оксиды точечные, оксиды строчечные, силикаты хрупкие, силикаты пластичные, силикаты недеформированные - не более 4,5 баллов по каждому виду включений. Механические свойства - временное сопротивление разрыву не менее 450 Н/мм2, предел текучести не менее 350 Н/мм2, относительное удлинение не менее 18%, ударная вязкость при комнатной температуре KCU - не менее 30 Дж/см2. 1 з.п. ф-лы.

Description

Изобретение относится к области металлургии, в частности к производству трубной заготовки диаметром от 80 до 160 мм из низколегированной стали.
Наиболее близким аналогом к предлагаемому изобретению является известная трубная заготовка из низколегированной стали, содержащей мас.%: углерод 0,05-0,30, марганец 0,35-1,50, кремний 0,15-1,0, хром 0,005-0,5, никель 0,005-0,50, медь 0,005-0,50, сера не более 0,015, фосфор не более 0,020, алюминий 0,01-0,05, ниобий 0,01-0,06, железо и неизбежные примеси, трубная заготовка выполнена горячекатаной, имеет заданные параметры по неметаллическим включениям и определенную микроструктуру (RU 2221875 C2, 20.01.2004, С21С 5/52).
Важнейшим требованием, предъявляемым к трубной заготовке из низколегированной стали, является, с одной стороны, обеспечение заданной структуры, улучшение параметров металлургического качества: однородности микро- и макроструктуры при низком содержании неметаллических включений, с другой стороны - обеспечение повышенного комплекса потребительских свойств.
Техническим результатом изобретения является обеспечение повышенного уровня потребительских свойств при обеспечении благоприятного соотношения прочности, пластичности и вязкости, минимальном уровне анизотропии механических свойств, низкого содержания неметаллических включений, однородной макро- и микроструктуры проката.
Технический результат достигается тем, что в известной трубной заготовке из низколегированной стали непрерывнолитой, горячекатаной, имеющей заданные параметры неметаллических включений, структуры, размера действительного зерна и механических свойств, сталь содержит следующее соотношение компонентов, мас.%:
углерод 0,16-0,24
марганец 1,10-1,60
кремний 0,12-0,17
хром 0,005-0,30
ванадий 0,08-0,14
алюминий 0,02-0,04
медь 0,005-0,30
никель 0,005-0,30
азот 0,005-0,015
железо и неизбежные примеси - остальное,
трубная заготовка имеет феррито-перлитную структуру, размер действительного зерна 5-8 балл, по макроструктуре: центральная пористость, точечная неоднородность, ликвационный квадрат, подусадочная ликвация не более 2 балла по каждому виду, ликвационные полоски - не более 1 балла, по неметаллическим включениям: сульфиды, оксиды точечные, оксиды строчечные, силикаты хрупкие, силикаты пластичные, силикаты недеформирующие - не более 4,5 балла по каждому виду включений. В качестве неизбежных примесей сталь содержит, мас.%: ниобий не более 0,020; титан не более 0,030; молибден не более 0,10; сера не более 0,030; фосфор не более 0,030. Механические свойства после нормализации - временное сопротивление разрыву не менее 450 Н/мм2, предел текучести не менее 350 Н/мм2, относительное удлинение не менее 18%, ударная вязкость при комнатной температуре KCU - не менее 30 Дж/см2.
Приведенные сочетания легирующих элементов позволяют получить в готовом изделии феррито-перлитную мелкодисперсную структуру с благоприятным сочетанием характеристик прочности и пластичности.
Углерод вводят в композицию данной стали с целью обеспечения заданного уровня ее прочности и прокаливаемости. Верхняя граница содержания углерода (0,24%) обусловлена необходимостью обеспечения требуемого уровня пластичности стали, а нижняя - соответственно (0,16%) - обеспечения требуемого уровня прочности и прокаливаемости данной стали.
Ванадий вводят в композицию данной стали с целью обеспечения мелкодисперсной, однородной зеренной структуры. При этом он управляет процессами в нижней части аустенитной области: определяет склонность к росту зерна аустенита, стабилизирует структуру при термомеханической обработке, повышает температуру рекристаллизации и, как следствие, влияет на характер γ-α-превращения. Верхняя граница содержания ванадия - 0,14% обусловлена необходимостью обеспечения требуемого уровня пластичности стали, а нижняя - соответственно 0,08% - обеспечения требуемого уровня прочности данной стали.
Марганец и хром используют, с одной стороны, как упрочнители твердого раствора, с другой стороны, как элементы, повышающие устойчивость переохлажденного аустенита стали. При этом верхний уровень содержания марганца - 1,60% и хрома - 0,30% определяется необходимостью обеспечения требуемого уровня пластичности стали, а нижний, марганца - 1,10% и 0,005% хрома соответственно - необходимостью обеспечить требуемый уровень прочности и прокаливаемости данной стали.
Кремний относится к ферритообразующим элементам. Нижний предел по кремнию - 0.12% обусловлен технологией раскисления стали. Содержание кремния выше 0.17% неблагоприятно сказывается на пластичности стали.
Алюминий используют в качестве раскислителя стали и элемента, обеспечивающего формирование мелкодисперсной зеренной структуры. Верхний предел (0,040%) обусловлен необходимостью получения заданного уровня пластичности и вязкости стали, а нижний (0,020%) - вопросами технологичности производства, а также обеспечением однородной зеренной структуры стали.
Азот способствует образованию нитридов в стали. Верхний предел содержания азота - 0,015% обусловлен необходимостью получения заданного уровня пластичности и вязкости стали, а нижний предел - 0,005% вопросами технологичности производства.
Никель в заданных пределах влияет на характеристики прокаливаемости и вязкости стали. При этом нижний уровень содержания никеля - 0,005% обусловлен необходимостью обеспечения заданного уровня вязкости стали, а верхний - 0,30% - необходимостью получения мартенситной структуры при закалке стали (так как никель является аустенитизатором).
Медь определяет характеристики горячей пластичности стали. При этом нижний уровень ее содержания - 0,005% определяется требованиями обеспечения заданного уровня пластичности стали. Верхний уровень - 0,30% обусловлен необходимостью обеспечить заданный уровень прокаливаемости стали.
Пример получения трубной заготовки.
Выплавку исследуемой стали (химический состав в мас.%): углерод - 0,18, марганец - 1,32, кремний - 0,15, хром - 0,10, ванадий - 0,11, алюминий - 0,037, медь - 0,12, никель - 0,14, азот - 0,010 производят в 150-ти тонных дуговых сталеплавильных печах - ДСП с использованием в шихте 100% металлизованных окатышей, что обеспечивает получение массовой доли азота перед выпуском из ДСП не более 0,003, а также низкое содержание цветных примесей: ниобий не более 0,020, титан не более 0,030, молибден не более 0,10, сера не более 0,030, фосфор не более 0,030.
Предварительное легирование металла по марганцу и кремнию производят в ковше при выпуске из ДСП. После выпуска производят продувку металла аргоном через донный продувочный блок, во время которой сталь раскисляется алюминием. После этого металл поступает на агрегат комплексной обработки стали (АКОС), на котором имеется возможность нагрева металла до необходимой температуры, продувки его аргоном через донный продувочный блок, дозированной присадки необходимых ферросплавов и обработки стали порошковой проволокой с различными наполнителями. На АКОСе производят наведение рафинировочного шлака присадкой извести и плавикового шпата, раскисление шлака гранулированным алюминием, легирование металла алюминием до содержания 0,050%, доводку металла по содержанию марганца, нагрев до температуры, обеспечивающей дальнейшую обработку. После обработки на АКОС металл подвергают вакуумной обработке на порционном вакууматоре. Во время вакуумирования производят окончательную корректировку по химическому составу. После вакуумирования металл обрабатывают силикокальцием и передают на разливку. Разливку производят на четырехручьевых УНРС радиального типа в слиток размерами 300×360 мм со скоростью вытягивания 0,6÷0,7 м/мин, с защитой металла от окисления путем использования покровных шлаковых смесей в промежуточном ковше и кристаллизаторе, защитных труб, погружных стаканов и подачей аргона. Это также обеспечивает получение низкого содержания азота и кислорода и чистоту металла по неметаллическим включениям. После разливки и пореза на мерную длину полученные непрерывнолитые заготовки охлаждают в печах контролируемого охлаждения. Горячую прокатку непрерывнолитой заготовки начинают при температуре 1080-1090°С и заканчивают при температуре 840-950°С. Трубную заготовку для определения механических свойств подвергают нормализации.
Механические характеристики при комнатной температуре определяют на образцах тип I, ГОСТ 1497-84 на испытательной машине "INSTRON-1185" с тензометрической регистрацией деформации. Скорость нагружения образца - 5 мм/мин. Определяют характеристики прочности σb и σ0.2 и пластичности - δ. Характеристики ударной вязкости при комнатной температуре определяют на образцах тип I, ГОСТ 9454-78 на механическом копре МК-30. Величину вязкой составляющей в изломах ударных образцов определяют визуально.
Средние значения характеристик подсчитывают по результатам испытаний не менее трех образцов на точку. Значимость различий средних значений анализируемых величин оценивают с использованием критерия Стьюдента, вычисляемого следующим образом:
Figure 00000001
где: M1 и М2 - средние значения сравниваемых величин; S12 и S22 - дисперсии среднего; tkr0.05(α) - критическое значение критерия Стьюдента при уровне значимости 0.95 и числе степеней свободы - α.
Макроструктуру контролируют в соответствии с ТУ 14-1-5212-93 и ГОСТ 10243-75.
В результате горячей прокатки получают трубную заготовку ⌀110 мм, длиной - 11800 мм. Структура феррито - перлитная, балл действительного зерна - 7. Макроструктура: центральная пористость - 1 балл, точечная неоднородность - 1 балл, ликвационный квадрат - 1 балл, подусадочная ликвация - 1 балл, ликвационные полоски - 0,3 балла. Неметаллические включения: сульфиды - 2 балла, оксиды точечные - 1 балл, оксиды строчечные - 1 балл, силикаты хрупкие - 1 балл, силикаты пластичные - 1 балл, силикаты недеформирующие - 1,5 балла. Механические свойства, полученные на нормализованных от температуры 890°С образцах: временное сопротивление разрыву 475 Н/мм2; предел текучести 385 Н/мм2; относительное удлинение 21%; ударная вязкость KCU - 85 Дж/см2.
Внедрение предложенной трубной заготовки из низколегированной стали обеспечивает повышенный уровень потребительских свойств проката при обеспечении благоприятного соотношения прочности, пластичности и вязкости, минимальном уровне анизотропии механических свойств, низком содержания неметаллических включений, однородной макро- и микроструктуры проката.

Claims (2)

1. Трубная непрерывнолитая заготовка из низколегированной стали, горячекатаная с заданными параметрами неметаллических включений, структуры, размера действительного зерна и механических свойств, отличающаяся тем, что она выполнена из стали, содержащей компоненты в следующем соотношении, мас.%:
углерод 0,16-0,24 марганец 1,10-1,60 кремний 0,12-0,17 хром 0,005-0,30 ванадий 0,08-0,14 алюминий 0,02-0,04 медь 0,005-0,30 никель 0,005-0,30 азот 0,005-0,015 железо и неизбежные примеси остальное,
при этом имеет феррито-перлитную структуру, размер действительного зерна 5-8 баллов, макроструктуру вида: центральная пористость, точечная неоднородность, ликвационный квадрат, подусадочная ликвация не более 2 баллов по каждому виду, ликвационные полоски не более 1 балла, неметаллические включения вида: сульфиды, оксиды точечные, оксиды строчечные, силикаты хрупкие, силикаты пластичные, силикаты недеформированные не более 4,5 баллов по каждому виду включений, механические свойства: временное сопротивление разрыву не менее 450 Н/мм2, предел текучести не менее 350 Н/мм2, относительное удлинение не менее 18%, ударная вязкость при комнатной температуре KCU не менее 30 Дж/см2.
2. Трубная заготовка по п.1, отличающаяся тем, что в качестве неизбежных примесей сталь содержит следующие компоненты, мас.%: ниобий не более 0,020, титан не более 0,030, молибден не более 0,10, сера не более 0,030, фосфор не более 0,030.
RU2006145121/02A 2006-12-18 2006-12-18 Трубная заготовка из низколегированной стали RU2336317C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2006145121/02A RU2336317C1 (ru) 2006-12-18 2006-12-18 Трубная заготовка из низколегированной стали

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2006145121/02A RU2336317C1 (ru) 2006-12-18 2006-12-18 Трубная заготовка из низколегированной стали

Publications (2)

Publication Number Publication Date
RU2006145121A RU2006145121A (ru) 2008-06-27
RU2336317C1 true RU2336317C1 (ru) 2008-10-20

Family

ID=39679549

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006145121/02A RU2336317C1 (ru) 2006-12-18 2006-12-18 Трубная заготовка из низколегированной стали

Country Status (1)

Country Link
RU (1) RU2336317C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2480532C1 (ru) * 2011-11-07 2013-04-27 Открытое акционерное общество "Металлургический завод имени А.К. Серова" Трубная заготовка из легированной стали

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2480532C1 (ru) * 2011-11-07 2013-04-27 Открытое акционерное общество "Металлургический завод имени А.К. Серова" Трубная заготовка из легированной стали

Also Published As

Publication number Publication date
RU2006145121A (ru) 2008-06-27

Similar Documents

Publication Publication Date Title
RU2338793C2 (ru) Сортовой прокат из среднелегированной стали для холодной объемной штамповки
RU2336320C1 (ru) Трубная заготовка из микролегированной стали
RU2336317C1 (ru) Трубная заготовка из низколегированной стали
RU2330895C2 (ru) Трубная заготовка из низкоуглеродистой микролегированной стали
RU2333968C1 (ru) Трубная заготовка из легированной стали
RU2337151C1 (ru) Трубная заготовка из легированной борсодержащей стали
RU2336321C1 (ru) Трубная заготовка из низкоуглеродистой стали
RU2341567C2 (ru) Трубная заготовка из низколегированной стали
RU2310690C1 (ru) Сортовой прокат круглый из легированной пружинной стали
RU2336335C2 (ru) Трубная заготовка из среднеуглеродистой среднелегированной стали
RU2333969C1 (ru) Трубная заготовка из хромомолибденсодержащей стали
RU2333967C1 (ru) Трубная заготовка из легированной, молибденсодержащей стали
RU2336327C1 (ru) Трубная заготовка из низкоуглеродистой стали
RU2336328C1 (ru) Трубная заготовка из микролегированной стали
RU2343210C2 (ru) Трубная заготовка из низкоуглеродистой микролегированной стали
RU2330896C2 (ru) Трубная заготовка из низкоуглеродистой низколегированной стали
RU2336330C1 (ru) Трубная заготовка из легированной теплостойкой стали
RU2337150C1 (ru) Трубная заготовка из борсодержащей стали
RU2336323C1 (ru) Трубная заготовка из среднеуглеродистой микролегированной стали
RU2338797C2 (ru) Трубная заготовка из шарикоподшипниковой стали
RU2337152C1 (ru) Трубная заготовка из среднеуглеродистой низколегированной стали
RU2336326C1 (ru) Трубная заготовка из микролегированной, марганецсодержащей стали
RU2333970C1 (ru) Трубная заготовка из низколегированной стали
RU2338796C2 (ru) Трубная заготовка из низкоуглеродистой теплостойкой стали
RU2327748C1 (ru) Трубная заготовка из шарикоподшипниковой стали