RU2327748C1 - Трубная заготовка из шарикоподшипниковой стали - Google Patents

Трубная заготовка из шарикоподшипниковой стали Download PDF

Info

Publication number
RU2327748C1
RU2327748C1 RU2006133355/02A RU2006133355A RU2327748C1 RU 2327748 C1 RU2327748 C1 RU 2327748C1 RU 2006133355/02 A RU2006133355/02 A RU 2006133355/02A RU 2006133355 A RU2006133355 A RU 2006133355A RU 2327748 C1 RU2327748 C1 RU 2327748C1
Authority
RU
Russia
Prior art keywords
less
points
steel
silicates
mechanical properties
Prior art date
Application number
RU2006133355/02A
Other languages
English (en)
Other versions
RU2006133355A (ru
Inventor
хов Николай Александрович Шл (RU)
Николай Александрович Шляхов
Евгений Иванович Гонтарук (RU)
Евгений Иванович Гонтарук
Анатолий Адольфович Лехтман (RU)
Анатолий Адольфович Лехтман
В чеслав Иванович Фомин (RU)
Вячеслав Иванович Фомин
Михаил Викторович Бобылев (RU)
Михаил Викторович Бобылев
Original Assignee
Открытое акционерное общество "Оскольский электрометаллургический комбинат"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Оскольский электрометаллургический комбинат" filed Critical Открытое акционерное общество "Оскольский электрометаллургический комбинат"
Priority to RU2006133355/02A priority Critical patent/RU2327748C1/ru
Publication of RU2006133355A publication Critical patent/RU2006133355A/ru
Application granted granted Critical
Publication of RU2327748C1 publication Critical patent/RU2327748C1/ru

Links

Abstract

Изобретение относится к области металлургии, в частности к производству трубной заготовки диаметром от 80 до 180 мм из шарикоподшипниковой стали. Для повышения уровня потребительских свойств трубная заготовка выполнена из стали, содержащей в мас.%: С (0,95-1,05), Mn (0,15-0,30), Si (0,15-0,30), Al (0,005-0,025), V (0,005-0,03), Cr (0,27-0,50), N (0,005-0,010), As (0,0001-0,03), Sn (0,0001-0,02), Pb (0,0001-0,01), Zn (0,0001-0,005), железо и примеси - остальное, при следующем соотношении элементов: As+Sn+Pb+5×Zn<0,07; примеси: фосфор не более 0,027%, сера не более 0,020%, медь не более 0,25%, молибден не более 0,03%, кислород не более 0,0015%. Трубная заготовка имеет структуру зернистого перлита, размер действительного зерна 6-9 баллов. По макроструктуре - центральная пористость, точечная неоднородность, подусадочная ликвация не более 2 баллов по каждому виду, ликвационный квадрат, ликвационные полоски не более 0,5 балла. По неметаллическим включениям: сульфиды точечные, оксиды точечные, оксиды строчечные, силикаты хрупкие, силикаты пластичные, силикаты недеформированные не более 2,0 баллов по каждому виду включений. Трубная заготовка имеет минимальный уровень анизотропии механических свойств и повышенную стойкость к отпускной хрупкости. 3 з.п. ф-лы.

Description

Изобретение относится к области металлургии, в частности к производству трубной заготовки диаметром от 80 до 180 мм из шарикоподшипниковой стали повышенного уровня потребительских свойств и пониженной склонности к различным видам хрупкого разрушения.
Наиболее близким аналогом к заявленному изобретению является известная трубная заготовка из шарикоподшипниковой стали, горячекатаная, отожженная, имеющая заданные параметры структуры, макроструктуры, неметаллических включений и механических свойств (Справочник. Современные материалы в автомобилестроении. - М.: Машиностроение, 1977, с.125-128).
Важнейшим требованием, предъявляемым к трубной заготовки из шарикоподшипниковой стали, является, с одной стороны, обеспечение однородности микро- и макроструктуры, низкого содержания неметаллических включений, с другой стороны - обеспечение повышенного комплекса потребительских свойств.
Задачей изобретения является обеспечение повышенного уровня потребительских свойств.
Для решения поставленной задачи известная трубная заготовка из шарикоподшипниковой стали, горячекатаная, отожженная со структурой зернистого перлита, имеющая заданные параметры неметаллических включений, структуры, механических свойств, согласно изобретению, выполнена из стали, содержащей следующее соотношение компонентов в мас.%:
углерод 0,95-1,05
марганец 0,15-0,30
кремний 0,15-0,30
алюминий 0,005-0,025
ванадий 0,005-0,03
хром 0,27-0,5
азот 0,005-0,010
мышьяк [As] 0,0001-0,03
олово[Sn] 0,0001-0,02
свинец[Pb] 0,0001-0,01
цинк [Zn] 0,0001-0,005
железо и
неизбежные примеси остальное,
при выполнении соотношении: (As+Sn+Pb+5×Zn)≤0,07; заготовка имеет размер действительного зерна перлита 6-9 балл, макроструктуру: центральная пористость, точечная неоднородность, подусадочная ликвация не более 2 балла по каждому виду, ликвационный квадрат, ликвационные полоски не более 0,5 балла, неметаллические включения: сульфиды точечные, оксиды точечные, оксиды строчечные, силикаты хрупкие, силикаты пластичные, силикаты недеформированные - не более 2,0 балл по каждому виду включений, механические свойства после отжига временное сопротивление разрыву 570-730 Н/мм2, предел текучести не менее 370-430 Н/мм2, относительное удлинение не менее 21%, относительное сужение не менее 45%, твердость 179-217 НВ.
В качестве дополнительных примесей сталь содержит в мас%: фосфор не более 0,027, сера не более 0,020, медь - не более 0,25, молибден не более 0,03, кислород не более 0,0015.
При содержании в мас.%: хром 0,27-0,50 и ванадий 0,001-0,01 заготовка имеет механические свойства после отжига: временное сопротивление разрыву 570-710 Н/мм2, предел текучести не менее 370-410 Н/мм2, относительное удлинение не менее 22%, относительное сужение не менее 47%,твердость 179-207 НВ.
При содержании в мас.%: хром 0,35-0,50 и ванадий 0,001-0,03 заготовка имеет механические свойства после отжига: временное сопротивление разрыву 590-730 Н/мм2, предел текучести не менее 390-430 Н/мм2, относительное удлинение не менее 21%, относительное сужение не менее 45%, твердость 191-217 НВ.
Приведенные сочетания легирующих элементов (п.1) позволяют получить в готовом изделии перлитную мелкодисперсную структуру с благоприятным сочетанием характеристик прочности и пластичности, повышенной прокаливаемости и повышенной сопротивляемости различным видам хрупкого разрушения.
Углерод вводится в композицию данной стали с целью обеспечения заданного уровня ее прочности и прокаливаемости. Верхняя граница содержания углерода (1,05%) обусловлена необходимостью обеспечения требуемого уровня пластичности стали, а нижняя - соответственно 0,95% - обеспечением требуемого уровня прочности и прокаливаемости данной стали.
Ванадий вводится в композицию данной стали с целью обеспечения мелкодисперсной, однородной зеренной структуры. При этом ванадий управляет процессами в нижней части аустенитной области (определяет склонность к росту зерна аустенита, стабилизирует структуру при термомеханической обработке, повышает температуру рекристаллизации и, как следствие, влияет на характер γ-α-превращения. Верхняя граница содержания ванадия - 0,03% обусловлена необходимостью обеспечения требуемого уровня пластичности стали, а нижняя - соответственно 0.005% - обеспечением требуемого уровня прочности данной стали.
Марганец и хром используются, с одной стороны, как упрочнители твердого раствора, с другой стороны, как элементы повышающие устойчивость переохлажденного аустенита стали. При этом верхний уровень содержания марганца 0,30% и хрома - 0,50% определяется необходимостью обеспечения требуемого уровня пластичности стали, а нижний, марганца 0,15% и хрома 0,27% соответственно, необходимостью обеспечить требуемый уровень прочности и прокаливаемости данной стали.
Кремний относится к ферритообразующим элементам. Нижний предел по кремнию 0,15% обусловлен технологией раскисления стали. Содержание кремния выше 0,30% неблагоприятно скажется на характеристиках пластичности стали.
Титан и алюминий сильные нитридообразователи и раскислители стали. Верхний предел содержания алюминия 0,025% и титана 0,01% обусловлен необходимостью получения заданного уровня пластичности и вязкости стали, а нижний 0,005 и 0,001% соответственно - вопросами технологичности производства.
Азот способствует образованию нитридов в стали. Верхний предел содержания азота 0,010% обусловлен необходимостью получения заданного уровня пластичности и вязкости стали, а нижний предел 0,005% вопросами технологичности производства.
Мышьяк, олово, свинец и цинк цветные примеси, определяющие общий уровень пластичности стали и ее склонность к проявлению обратимой отпускной хрупкости при последующей термической обработке готовых изделий из рассматриваемой трубной заготовки. Нижний предел по мышьяку, олову, свинцу и цинку (0,0001% по каждому элементу соответственно) обусловлен технологией производства стали, а верхний - (0,03%, 0,02%, 0,01% и 0,005% соответственно) определяет повышенную склонность стали к обратимой отпускной хрупкости.
Соотношение As+Sn+Pb+5×Zn≤0,07 определяет пониженную склонность стали к проявлению обратимой отпускной хрупкости.
Сопоставительный анализ с прототипом позволяет сделать вывод, что заявляемый состав отличается от известного введением новых компонентов - и соотношениями: As+Sn+Pb+5×Zn≤0,07.
Анализ патентной и научно-технической информации не выявил решений, имеющих аналогичную совокупность признаков, которой достигался бы сходный эффект - повышение уровня потребительских свойств, при обеспечении благоприятного соотношения прочности, пластичности и вязкости, минимальном уровне анизотропии механических свойств, пониженной склонности к обратимой отпускной хрупкости, низкого содержания неметаллических включений, однородной макро и микроструктуры проката.
Ниже даны примеры осуществления предлагаемого изобретения, не исключая других в объеме формулы изобретения. Выплавку двух составов исследуемой стали и получение трубной заготовки (химический состав в мас.% осуществляют следующим образом:
Пример 1: углерод - 1,01, марганец - 0,21, кремний - 0,19, хром - 0,31, ванадий - 0,009, алюминий - 0,014, титан - 0,007, азот - 0,007, мышьяк - 0,010, олово - 0,009, свинец - 0,008, цинк - 0,002.
Пример 2: углерод - 1,00, марганец - 0,27, кремний - 0,21, хром - 0,49, ванадий - 0,02, алюминий - 0,015, титан - 0,009, азот - 0,008, мышьяк - 0,007, олово - 0,008, свинец - 0,006, цинк - 0,001 производится в 150-ти тонных дуговых сталеплавильных печах с использованием в шихте 100% металлизованных окатышей, что обеспечивает получение массовой доли азота перед выпуском из ДСП не более 0,003%, а также низкое содержание цветных примесей. Предварительное легирование металла по марганцу и кремнию производится в ковше при выпуске из ДСП. После выпуска производилась продувка металла аргоном через донный продувочный блок, во время которой сталь раскисляется алюминием. После этого металл поступает на агрегат комплексной обработки стали (АКОС), на котором имеется возможность нагрева металла до необходимой температуры, продувки его аргоном через донный продувочный блок, дозированной присадки необходимых ферросплавов и обработки стали порошковой проволокой с различными наполнителями. На АКОСе производится наведение рафинировочного шлака присадкой извести и плавикового шпата, раскисление шлака гранулированным алюминием, легирование металла алюминием до содержания 0,050%, доводка металла по содержанию марганца, нагрев до температуры, обеспечивающей дальнейшую обработку. После обработки на АКОС металл подвергается вакуумной обработке на порционном вакууматоре. Во время вакуумирования производится окончательная корректировка по химическому составу. После вакуумирования металл обрабатывается силикокальцием и передается на разливку. Разливка производится на четырехручьевых УНРС радиального типа в слиток размерами 300×360 мм со скоростью вытягивания 0,6÷0,7 м/мин, с защитой металла от окисления путем использования покровных шлаковых смесей в промежуточном ковше и кристаллизаторе, защитных труб, погружных стаканов и подачей аргона. Это также обеспечивает получение низкого содержания азота и кислорода и чистоту металла по неметаллическим включениям. После разливки и пореза на мерную длину полученные непрерывнолитые заготовки охлаждались в печах контролируемого охлаждения. Горячую прокатку сортового проката начинают при температуре 900-950°С, и заканчивают при температуре 740-850°С, при деформации в последних проходах не менее 20%. После завершения прокатки заготовки отжигают и в результате получают трубную заготовку ⌀ 140 мм, длиной - 7200 мм, которая выполнена:
по примеру 1: структура зернистого перлита, балл действительного зерна - 7. Макроструктура: центральная пористость - 1 балл, точечная неоднородность - 1 балл, ликвационный квадрат - 1 балл, подусадочная ликвация - 1 балл, ликвационные полоски - 0,5 балла. Неметаллические включения: сульфиды точечные - 2 балла, оксиды точечные - 1 балл, оксиды строчечные - 1 балл, силикаты хрупкие - 1 балл, силикаты пластичные - 1 балл, силикаты недеформирующие - 1 балл. Механические свойства после отжига: временное сопротивление разрыву 591 Н/мм2, предел текучести 394 Н/мм2, относительное удлинение 23%, относительное сужение 48%, твердость 187. As+Sn+Pb+5×Zn=0,034;
по примеру 2: структура зернистого перлита, балл действительного зерна - 7. Макроструктура: центральная пористость - 0.5 балл, точечная неоднородность - 1 балл, ликвационный квадрат - 1 балл, подусадочная ликвация - 1 балл, ликвационные полоски - 1 балла. Неметаллические включения: сульфиды точечные - 2 балла, оксиды точечные - 1 балл, оксиды строчечные - 1 балл, силикаты хрупкие - 2 балла, силикаты пластичные - 2 балла, силикаты недеформирующие - 1 балл. Механические свойства после отжига: временное сопротивление разрыву 697 Н/мм2, предел текучести 409 Н/мм2, относительное удлинение 21%, относительное сужение 46%, твердость 207. As+Sn+Pb+5×Zn=0,037.
Внедрение в производство трубной заготовки из шарикоподшипниковой стали обеспечивает благоприятное соотношение прочности, пластичности и вязкости, минимальный уровень анизотропии механических свойств, пониженную склонность к обратимой отпускной хрупкости, повышенную прокаливаемость, однородную макро- и микроструктуры проката.

Claims (4)

1. Трубная заготовка из шарикоподшипниковой стали, горячекатаная, отожженная со структурой зернистого перлита, имеющая заданные параметры неметаллических включений, структуры, механических свойств, отличающаяся тем, что она выполнена из стали, содержащей следующее соотношение компонентов, мас.%:
углерод 0,95-1,05 марганец 0,15-0,30 кремний 0,15-0,30 алюминий 0,005-0,025 ванадий 0,005-0,03 хром 0,27-0,5 азот 0,005-0,010 мышьяк (As) 0,0001-0,03 олово (Sn) 0,0001-0,02 свинец (Pb) 0,0001-0,01 цинк(Sn) 0,0001-0,005 железо и неизбежные примеси остальное
при выполнении соотношении
(As+Sn+Pb+5·Zn)≤0,07,
при этом имеет размер действительного зерна перлита 6-9 баллов, макроструктуру: центральная пористость, точечная неоднородность, подусадочная ликвация не более 2 баллов по каждому виду, ликвационный квадрат, ликвационные полоски не более 0,5 балла, неметаллические включения: сульфиды точечные, оксиды точечные, оксиды строчечные, силикаты хрупкие, силикаты пластичные, силикаты недеформированные - не более 2,0 баллов по каждому виду включений, механические свойства после отжига: временное сопротивление разрыву 570-730 Н/мм2, предел текучести не менее 370-430 Н/мм2, относительное удлинение не менее 21%, относительное сужение не менее 45%, твердость 179-217НВ.
2. Трубная заготовка по п.1, отличающаяся тем, что в качестве неизбежных примесей сталь дополнительно содержит, мас.%: фосфор не более 0,027, сера не более 0,020, медь не более 0,25, молибден не более 0,03, кислород не более 0,0015.
3. Трубная заготовка по п.1 или 2, отличающаяся тем, что при содержании, мас.%: хрома 0,27-0,50 и ванадия 0,005-0,01 она имеет механические свойства после отжига: временное сопротивление разрыву 570-710 Н/мм2, предел текучести не менее 370-410 Н/мм2, относительное удлинение не менее 22%, относительное сужение не менее 47%,твердость 179-207 НВ.
4. Трубная заготовка по п.1 или 2, отличающаяся тем, что при содержании, мас.%: хрома 0,35-0,50 и ванадия 0,01-0,03 она имеет механические свойства после отжига: временное сопротивление разрыву 590-730 Н/мм2, предел текучести не менее 390-430 Н/мм2, относительное удлинение не менее 21%, относительное сужение не менее 45%, твердость 191-217 НВ.
RU2006133355/02A 2006-09-19 2006-09-19 Трубная заготовка из шарикоподшипниковой стали RU2327748C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2006133355/02A RU2327748C1 (ru) 2006-09-19 2006-09-19 Трубная заготовка из шарикоподшипниковой стали

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2006133355/02A RU2327748C1 (ru) 2006-09-19 2006-09-19 Трубная заготовка из шарикоподшипниковой стали

Publications (2)

Publication Number Publication Date
RU2006133355A RU2006133355A (ru) 2008-03-27
RU2327748C1 true RU2327748C1 (ru) 2008-06-27

Family

ID=39680067

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006133355/02A RU2327748C1 (ru) 2006-09-19 2006-09-19 Трубная заготовка из шарикоподшипниковой стали

Country Status (1)

Country Link
RU (1) RU2327748C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108486468A (zh) * 2018-05-02 2018-09-04 本钢板材股份有限公司 一种高碳低合金轴承钢套圈及其热处理工艺方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Справочник. Современные материалы в автомобилестроении. - М.: Машиностроение, 1977, с.80-96. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108486468A (zh) * 2018-05-02 2018-09-04 本钢板材股份有限公司 一种高碳低合金轴承钢套圈及其热处理工艺方法

Also Published As

Publication number Publication date
RU2006133355A (ru) 2008-03-27

Similar Documents

Publication Publication Date Title
RU2338793C2 (ru) Сортовой прокат из среднелегированной стали для холодной объемной штамповки
RU2330895C2 (ru) Трубная заготовка из низкоуглеродистой микролегированной стали
RU2327748C1 (ru) Трубная заготовка из шарикоподшипниковой стали
RU2330896C2 (ru) Трубная заготовка из низкоуглеродистой низколегированной стали
RU2337151C1 (ru) Трубная заготовка из легированной борсодержащей стали
RU2336335C2 (ru) Трубная заготовка из среднеуглеродистой среднелегированной стали
RU2310690C1 (ru) Сортовой прокат круглый из легированной пружинной стали
RU2336320C1 (ru) Трубная заготовка из микролегированной стали
RU2338797C2 (ru) Трубная заготовка из шарикоподшипниковой стали
RU2333968C1 (ru) Трубная заготовка из легированной стали
RU2337152C1 (ru) Трубная заготовка из среднеуглеродистой низколегированной стали
RU2336316C2 (ru) Сортовой прокат круглый из борсодержащей стали для холодной объемной штамповки
RU2336330C1 (ru) Трубная заготовка из легированной теплостойкой стали
RU2330893C2 (ru) Трубная заготовка из низколегированной стали
RU2336333C2 (ru) Трубная заготовка из низкоуглеродистой молибденсодержащей стали
RU2336328C1 (ru) Трубная заготовка из микролегированной стали
RU2333967C1 (ru) Трубная заготовка из легированной, молибденсодержащей стали
RU2333260C2 (ru) Сортовой прокат горячекалиброванный из пружинной стали
RU2338796C2 (ru) Трубная заготовка из низкоуглеродистой теплостойкой стали
RU2333970C1 (ru) Трубная заготовка из низколегированной стали
RU2336332C2 (ru) Трубная заготовка из низкоуглеродистой молибденсодержащей стали
RU2336326C1 (ru) Трубная заготовка из микролегированной, марганецсодержащей стали
RU2336331C2 (ru) Трубная заготовка из среднеуглеродистой марганецсодержащей стали
RU2336322C1 (ru) Трубная заготовка из микролегированной стали
RU2330894C2 (ru) Трубная заготовка из среднеуглеродистой легированной стали

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20120920

NF4A Reinstatement of patent

Effective date: 20131010