RU2335439C1 - Способ термостатирования ракет-носителей газом высокого давления и система для его осуществления - Google Patents

Способ термостатирования ракет-носителей газом высокого давления и система для его осуществления Download PDF

Info

Publication number
RU2335439C1
RU2335439C1 RU2006142578/11A RU2006142578A RU2335439C1 RU 2335439 C1 RU2335439 C1 RU 2335439C1 RU 2006142578/11 A RU2006142578/11 A RU 2006142578/11A RU 2006142578 A RU2006142578 A RU 2006142578A RU 2335439 C1 RU2335439 C1 RU 2335439C1
Authority
RU
Russia
Prior art keywords
pressure
valve
compressed
lines
mpa
Prior art date
Application number
RU2006142578/11A
Other languages
English (en)
Other versions
RU2006142578A (ru
Inventor
Игорь Владимирович Бармин (RU)
Игорь Владимирович Бармин
Сергей Михайлович Михальченко (RU)
Сергей Михайлович Михальченко
Виктор Павлович Сборец (RU)
Виктор Павлович Сборец
Рудольф Леонидович Панков (RU)
Рудольф Леонидович Панков
Алексей Егорович Зверев (RU)
Алексей Егорович Зверев
Виктор Ефимович Пашков (RU)
Виктор Ефимович Пашков
Анатолий Матвеевич Павливкер (RU)
Анатолий Матвеевич Павливкер
Original Assignee
Федеральное Государственное Унитарное предприятие "Конструкторское бюро общего машиностроения имени В.П. Бармина"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное Государственное Унитарное предприятие "Конструкторское бюро общего машиностроения имени В.П. Бармина" filed Critical Федеральное Государственное Унитарное предприятие "Конструкторское бюро общего машиностроения имени В.П. Бармина"
Priority to RU2006142578/11A priority Critical patent/RU2335439C1/ru
Publication of RU2006142578A publication Critical patent/RU2006142578A/ru
Application granted granted Critical
Publication of RU2335439C1 publication Critical patent/RU2335439C1/ru

Links

Images

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

Изобретения относятся преимущественно к оборудованию и функционированию наземных стартовых комплексов. Предлагаемая система термостатирования содержит трубопроводы подачи сжатого воздуха (1) и сжатого азота (7), пневмощит управления и блок понижения давления. Пневмощит включает две пары параллельных линий с установленными в каждой из линий электропневмоклапаном (18, 19), сигнализатором давления (20, 21) и обратным клапаном (22, 23). Блок понижения давления содержит две параллельные линии (26) с установленными в каждой из них электропневмоклапаном (27), дроссельным клапаном (28), газовым редуктором (29), сигнализатором давления (31), предохранительным клапаном (32) и обратным клапаном (33). Предохранительный клапан (32) связан с дренажным трубопроводом (34), снабженным сигнализатором давления (35), электрически связанным с каждым электропневмоклапаном, и обратным клапаном (36). Согласно предлагаемому способу после заправки ракеты-носителя компонентами топлива сжатый воздух давлением до 40 МПа редуцируют до давления 8-10 МПа и не позднее чем за 15 мин до команды «Контакт подъема» перекрывают подачу сжатого воздуха и подают сжатый азот давлением до 40 МПа, который также редуцируют до давления 8-10 МПа. При срабатывании предохранительного клапана одной из линий блока понижения давления перекрывают подачу сжатого газа по данной линии и открывают подачу по параллельной линии этого блока. Также и при фиксации неисправности в одной из подающих линий пневмощита перекрывают подачу сжатого газа по данной линии и открывают его подачу по параллельной линии. Техническим результатом изобретений является повышение надежности и эксплуатационных характеристик на этапе подготовки к пуску и при пуске ракет-носителей. 2 н.п. ф-лы, 2 ил.

Description

Предлагаемое изобретение относится к ракетно-космической технике и может быть использовано для обеспечения и автоматического поддержания необходимых режимов космических объектов в процессе их подготовки на наземных стартовых комплексах.
Известен способ воздушного термостатирования космических объектов, заключающийся в получении сжатого воздуха от источника воздухоснабжения, редуцировании, охлаждении и нагревании до заданных параметров. Устройство для воздушного термостатирования космических объектов (RU 2215951 С1, 10.11.2003), реализующее известный способ, содержит источник воздухоснабжения, трубопровод подачи с фильтром и управляемой арматурой, соединяющий источник воздухоснабжения через газовый редуктор с бортовым разъемным соединением, охладитель и электронагреватель.
Однако известные способ и устройство для воздушного термостатирования космических объектов не обеспечивают автоматическое переключение подачи с воздуха на азот и выдачу сжатого газа с заданными параметрами.
Известен способ воздушного термостатирования космических объектов и устройство для воздушного термостатирования космических объектов (RU 2184912 С2, 20.07.2000), осуществляющее известный способ, наиболее близкие по технической сущности и достигаемому эффекту к заявляемому техническому решению.
Способ для воздушного термостатирования космических объектов заключается в получении сжатого воздуха от источника воздухоснабжения, редуцировании, охлаждении и нагревании до заданных параметров и подаче его потребителю. При необходимости предусмотрена замена воздуха на азот, когда жидкий азот насосами через газификатор подается в нагреватель и далее потребителю. Устройство, осуществляющее известный способ, содержит источник воздухоснабжения, трубопровод подачи с фильтром и управляемой арматурой, соединяющей источник воздухоснабжения через газовый редуктор с бортовым разъемным соединением, емкость с жидким азотом, газификатор, охладитель и электронагреватели.
Однако известные способ и устройство для воздушного термостатирования космических объектов не обеспечивают автоматическую выдачу сжатых газов с заданным давлением, требуют громоздких емкостей для сжатого азота, насосов, дополнительного нагревателя подаваемого азота, а также усложняют и удорожают эксплуатацию всей системы в целом.
Техническим результатом изобретения является повышение надежности, эксплуатационных характеристик на этапе подготовки к пуску и при пуске ракет-носителей со стартовых комплексов.
Требуемый технический результат достигается тем, что в способе термостатирования ракет-носителей газом высокого давления, заключающемся в получении сжатого газа давлением до 40 МПа от источника газоснабжения, редуцировании, нагревании и охлаждении до заданных температур и подаче его потребителю, после заправки компонентами топлива сжатый воздух давлением до 40 МПа редуцируют до давления 8-10 МПа, далее не позднее чем за 15 мин до команды «Контакт подъема» перекрывают подачу сжатого воздуха и подают сжатый азот, который также редуцируют до давления 8-10 МПа, при этом при срабатывании предохранительного клапана одной из линий блока понижения давления перекрывают подачу сжатого газа по данной линии и открывают подачу по параллельной линии, а также при фиксации неисправности в одной из подающих линий управляемого устройства перекрывают подачу сжатого газа по данной линии и открывают подачу по параллельной линии.
Для осуществления данного способа термостатирования ракет-носителей газом высокого давления предложена система термостатирования ракет-носителей газом высокого давления, состоящая из трубопровода подачи сжатого воздуха с фильтром, управляемым и редуцирующим устройствами, электронагревателя и охладителя, при этом она снабжена трубопроводом подачи сжатого азота с фильтром и управляемым устройством, причем управляемые устройства выполнены в виде пневмощита управления, состоящего из двух пар параллельных линий, одна из которых соединена с трубопроводами подачи сжатого воздуха, а другая - с трубопроводом подачи сжатого азота посредством труб с установленными на них сигнализаторами давления и манометрами, при этом каждая из параллельных линий, снабженная последовательно установленными электропневмоклапаном, сигнализатором давления и обратным клапаном, сообщается со снабженным дренажным вентилем общим коллектором, соединенным общим трубопроводом с редуцирующим устройством, выполненным в виде блока понижения давления, состоящего из двух параллельных линий с последовательно установленными на каждой из них электропневмоклапаном, дроссельным клапаном, газовым редуктором с подсоединенным к нему манометром, сигнализатором давления, предохранительным клапаном и обратным клапаном, причем предохранительный клапан связан с дренажным трубопроводом, снабженным сигнализатором давления, электрически связанным с каждым электропневмоклапаном блока понижения давления, и обратным клапаном, а параллельные линии после обратных клапанов объединены в общий трубопровод подачи сжатого газа с установленными на нем вентилем для отбора проб, дренажным вентилем, дюзой и общим запорным вентилем.
Отличительные от прототипа признаки заключаются в том, что после заправки компонентами топлива сжатый воздух редуцируют до давления 8-10 МПа, далее не позднее чем за 15 мин до команды «Контакт подъема» перекрывают подачу сжатого воздуха и подают сжатый азот, который также редуцируют до давления 8-10 МПа, при этом при срабатывании предохранительного клапана одной из линий блока понижения давления перекрывают подачу сжатого газа по данной линии и открывают подачу по параллельной линии, а также при фиксации неисправности в одной из подающих линий управляемого устройства перекрывают подачу сжатого газа по данной линии и открывают подачу по параллельной линии.
Кроме того, система снабжена трубопроводом подачи сжатого азота с фильтром и управляемым устройством, причем управляемые устройства выполнены в виде пневмощита управления, состоящего из двух пар параллельных линий, одна из которых соединена с трубопроводом подачи сжатого воздуха, а другая - с трубопроводом подачи сжатого азота посредством труб с установленными на них сигнализаторами давления и манометрами, при этом каждая из параллельных линий, снабженная последовательно установленными электропневмоклапаном, сигнализатором давления и обратным клапаном, сообщается со снабженным дренажным вентилем общим коллектором, соединенным с редуцирующим устройством, выполненным в виде блока понижения давления, состоящего из двух параллельных линий с последовательно установленными на каждой из них электропневмоклапаном, дроссельным клапаном, газовым редуктором с подсоединенным к нему манометром, сигнализатором давления, предохранительным клапаном и обратным клапаном, причем предохранительный клапан связан с дренажным трубопроводом, снабженным сигнализатором давления, электрически связанным с каждым электропневмоклапаном блока понижения давления, и обратным клапаном, а параллельные линии после обратных клапанов объединены в общий трубопровод подачи сжатого газа с установленными на нем вентилем для отбора проб, дренажным вентилем, дюзой и общим запорным вентилем.
Авторам не известны технические решения с существенными признаками, приведенными в отличительной части формул.
Система, осуществляющая предлагаемый способ, поясняется чертежами, где на фиг.1 - изображены трубопроводы подачи сжатого воздуха и азота, пневмощит управления (ПЩУ) и блок понижения давления (БПД), общий трубопровод подачи сжатого газа к блоку ракеты-носителя (РН), нагреватель и охладитель, на фиг.2 - представлена циклограмма работы системы.
Система термостатирования ракет-носителей газом высокого давления (СТВД РН) состоит из трубопровода подачи сжатого воздуха 1 (фиг.1) с фильтром 2, управляемым 3 и редуцирующим 4 устройствами, электронагревателя 5 и охладителя 6 и снабжена дополнительно трубопроводом подачи сжатого азота 7 с фильтром 8 и управляемым устройством 9. Управляемые устройства 3 и 9 выполнены в виде пневмощита управления (ПЩУ), состоящего из двух пар параллельных линий 10, 11, соединенных соответственно с трубопроводами подачи сжатого воздуха 1 и сжатого азота 7 посредством труб 12, 13 с установленными на них сигнализаторами давления 14, 15 и манометрами 16, 17. Каждая из параллельных линий 10, 11 снабженная последовательно установленными электропневмоклапаном (ЭПК) 18 (19), сигнализатором давления (РД) 20 (21) и обратным клапаном (ОК) 22 (23), сообщается со снабженным дренажным вентилем 24 общим коллектором 25, соединенным с редуцирующим устройством 4, выполненным в виде блока понижения давления (БПД), состоящего из двух параллельных линий 26 с последовательно установленными на каждой из них ЭПК 27, дроссельным клапаном 28, газовым редуктором 29 с подсоединенным к нему манометром 30, сигнализатором давления 31, предохранительным клапаном (КП) 32 и обратным клапаном 33. КП 32 связан с дренажным трубопроводом 34, снабженным РД 35 и ОК 36, а параллельные линии 26 после обратных клапанов объединены в общий трубопровод подачи сжатого газа 37 с установленными на нем вентилем для отбора проб 38, дренажным вентилем 39, дюзой 40 и общим запорным вентилем 41.
Конкретный пример реализации предложенных способа и системы термостатирования ракет-носителей газом высокого давления рассмотрим при проведении работ по пуску РН с наземного стартового комплекса.
При подготовке к пуску с наземного стартового комплекса после заправки РН компонентами топлива (фиг.2) начинается термостатирование РН, заключающееся в получении сжатого воздуха высокого давления, редуцировании его до заданного давления, нагревании и охлаждении до заданных температур и подаче потребителю. Для чего сжатый воздух давлением 40 МПа из единой ресиверной сжатых газов (не показана) по трубопроводу подачи 1 (фиг.1) через фильтр 2, где происходит его очистка от различных механических примесей, и по трубе 12, параллельным линиям 10 поступает к ЭПК 18. До открытия ЭПК 18 проводится контроль давления сжатого воздуха посредством РД 14 и манометра 16. После открытия ЭПК 18 (при штатной работе воздух подается по одной из параллельных линий; другая предназначена на случай возможных неисправностей в первой линии) сжатый воздух через ОК 22 по общему коллектору 25 поступает в БПД. Открытие ЭПК 18 подтверждается РД 20. В случае отказа (несрабатывания) в работу включается параллельная линия. Сброс сжатого воздуха из ПЩУ производится через дренажный вентиль 24. В БПД сжатый воздух по параллельным линиям 26 и после открытия ЭПК 27 через дроссельный клапан 28 поступает в газовый редуктор 29, где редуцируется до заданного давления и далее через ОК 33, дюзу 40, общий запорный вентиль 41, общий трубопровод подачи 37 поступает в нагреватель 5 и охладитель 6. Дроссельный клапан 28 защищает газовый редуктор 29 от пневматического удара. Контроль выдаваемого после редуктора 29 сжатого воздуха осуществляется РД 31 и манометром 30, подсоединенным к выходной полости газового редуктора 29. При превышении давления после газового редуктора выше заданного («заброс» редуктора) происходит срабатывание КП 32 и РД 35, который электрически связан с каждым ЭПК. В данном случае выдается электрический сигнал на закрытие ЭПК 27 и открытие ЭПК параллельной линии. Во избежание перетекания дренируемого воздуха из одного дренажного трубопровода в другой они разделены ОК 36. В случае невыхода газового редуктора на заданный режим работы (давление на выходе ниже заданного) РД 31, электрически связанный с ЭПК 27, выдает сигнал на его закрытие и открытие ЭПК параллельной линии. Указанная работа проводится при проведении пусконаладочных работ, автономных и комплексных испытаний. В период штатной работы при падении давления ниже заданного вопрос о закрытии ЭПК 27 и открытие ЭПК параллельной линии решает руководитель работы при получении соответствующей информации от АСУ системы и бортовой системы управления. Перед началом штатных работ производится настройка газовых редукторов на заданное давление при закрытом общем запорном вентиле 41, проводится отбор проб для определения степени кондиционности сжатого воздуха (азота) посредством вентиля 38. Сброс воздуха из БПД осуществляется дренажным вентилем 38. Для обеспечения заданного расхода на общем трубопроводе подачи сжатого газа 37 установлена дюза 40. После требуемых нагрева и охлаждения сжатый воздух из электронагревателя 5 и охладителя 6 поступает непосредственно потребителю (блоки РН).
За 15 мин до «КП» (фиг.2) от руководителя работ на комплексе поступает команда на замену атмосферы (с воздуха на азот). Это производится для создания азотной атмосферы вокруг РН, препятствующей распространению возможных видов возгорания в отдельных блоках.
Для чего происходит закрытие ЭПК 18 (контроль РД 20) и открытие ЭПК 19, тогда сжатый азот давлением 40 МПа из единой ресиверной сжатых газов (на черт. не показана) по трубопроводу подачи 7 через фильтр 8, где также происходит его очистка от различных механических примесей, по трубе 13, параллельным линиям 11 и через ЭПК 19, OK 23 и общий коллектор 25 поступает в БПД. До открытия ЭПК 19 проводится контроль давления сжатого азота посредством РД 15 и манометра 17. При штатной работе азот также подается по одной из параллельных линий другая предназначена на случай возможных неисправностей в первой линии. Открытие ЭПК 19 подтверждается РД 21. Сброс сжатого азота, как и сжатого воздуха из ПЩУ производится через дренажный вентиль 24. В БПД сжатый азот по параллельным линиям 26, после открытия ЭПК 27, через дроссельный клапан 28 поступает в газовый редуктор 29, где редуцируется до заданного давления и далее через ОК 33, дюзу 40, общий запорный вентиль 41, общий трубопровод подачи 37 поступает в нагреватель 5 и охладитель 6. Дроссельный клапан 28 защищает газовый редуктор 29 от пневматического удара. Контроль выдаваемого после редуктора сжатого азота осуществляется РД 31 и манометром 30, подсоединенным к выходной полости газового редуктора 29. При превышении давления после газового редуктора выше заданного происходит срабатывание КП 32 и РД 33, который электрически связан с каждым ЭПК, выдается электрический сигнал на закрытие ЭПК 28 и открытие ЭПК параллельной линии. Во избежание перетекания дренируемого азота из одного дренажного трубопровода в другой они разделены ОК 36. При невыходе газового редуктора на заданный режим работы также происходит выдача сигнала РД 31 на закрытие ЭПК 27 и открытие ЭПК параллельной линии. Указанная работа также проводится при проведении пусконаладочных работ, автономных и комплексных испытаний. В период штатной работы при падении давления ниже заданного вопрос о закрытии ЭПК 27 и открытие ЭПК параллельной линии решает руководитель работы при получении соответствующей информации от АСУ системы и бортовой системы управления. Сброс азота из БПД осуществляется дренажным вентилем 39. После требуемых нагрева и охлаждения сжатый азот из электронагревателя 5 и охладителя 6 поступает непосредственно в блоки РН. Разброс давлений (8-10 МПа) настройки газовых редукторов (рабочее давление) выбран с учетом возможности запуска различных типов и классов РН с данного стартового комплекса. Основными параметрами СТВД РН являются температурный режим и расход газа. Чтобы не вводить дополнительные БПД с различными газовыми редукторами для соответствующих РН из-за изменения расхода сжатого газа, предполагается перенастройка газовых редукторов данного БПД на соответствующее рабочее давление с сохранением диаметра общего трубопровода подачи.
При отрыве РН от пускового устройства автоматически прекращается подача азота к блокам РН, для чего закрывается ЭПК 19, сигнал о закрытии выдает РД 21. При прохождении команды АВД (аварийное выключение двигателей) и переносе пуска на определенный срок штатная работа СТВД РН продолжается.
Таким образом, предлагаемые способ и система термостатирования ракет-носителей газом высокого давления обеспечивают высокую степень надежности работ на стартовых комплексах при автоматическом поддержании постоянного заданного давления выдаваемых сжатых газов благодаря введению параллельных линий подачи с установленными на них элементами электропневмоавтоматики в пневмощите управления и блоке понижения давления; упрощает и удешевляет эксплуатацию системы обслуживающим персоналом за счет исключения дорогостоящих емкостей для жидкого азота, газификаторов и насосов и введения единой ресиверной сжатых газов.
В настоящее время разрабатывается конструкторская рабочая документация по системе термостатирования высоким давлением ракет-носителей (СТВД РН), которую предполагается использовать на стартовом комплексе «Союз в Гвианском космическом центре».

Claims (2)

1. Способ термостатирования ракет-носителей газом высокого давления, заключающийся в получении сжатого газа давлением до 40 МПа от источника газоснабжения, редуцировании, нагревании и охлаждении до заданных температур и подаче его потребителю, отличающийся тем, что после заправки ракеты-носителя компонентами топлива сжатый воздух редуцируют до давления 8-10 МПа и не позднее чем за 15 мин до команды «Контакт подъема» перекрывают подачу сжатого воздуха и подают сжатый азот, который также редуцируют до давления 8-10 МПа, причем при срабатывании предохранительного клапана одной из линий блока понижения давления перекрывают подачу сжатого газа по данной линии и открывают подачу по параллельной линии этого блока, а также при фиксации неисправности в одной из подающих линий управляемого устройства перекрывают подачу сжатого газа по данной линии и открывают его подачу по параллельной линии этого устройства.
2. Система термостатирования ракет-носителей газом высокого давления, содержащая трубопровод подачи сжатого воздуха с фильтром, управляемым и редуцирующим устройствами, электронагреватель и охладитель, отличающаяся тем, что она снабжена трубопроводом подачи сжатого азота с фильтром и управляемым устройством, причем оба управляемых устройства выполнены в виде пневмощита управления, содержащего две пары параллельных линий, соединенные посредством труб с установленными в них сигнализаторами давления и манометрами - одна с трубопроводом подачи сжатого воздуха, а другая с трубопроводом подачи сжатого азота, при этом каждая из параллельных линий, снабженная последовательно установленными электропневмоклапаном, сигнализатором давления и обратным клапаном, сообщена с общим коллектором, снабженным дренажным вентилем и соединенным с редуцирующим устройством, которое выполнено в виде блока понижения давления, состоящего из двух параллельных линий с последовательно установленными в каждой из них электропневмоклапаном, дроссельным клапаном, газовым редуктором с подсоединенным к нему манометром, сигнализатором давления, предохранительным клапаном и обратным клапаном, причем предохранительный клапан связан с дренажным трубопроводом, снабженным сигнализатором давления, электрически связанным с каждым электропневмоклапаном блока понижения давления, и обратным клапаном, а параллельные линии после установленных в них обратных клапанов объединены в общий трубопровод подачи сжатого газа с установленными в нем вентилем для отбора проб, дренажным вентилем, дюзой и общим запорным вентилем.
RU2006142578/11A 2006-12-01 2006-12-01 Способ термостатирования ракет-носителей газом высокого давления и система для его осуществления RU2335439C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2006142578/11A RU2335439C1 (ru) 2006-12-01 2006-12-01 Способ термостатирования ракет-носителей газом высокого давления и система для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2006142578/11A RU2335439C1 (ru) 2006-12-01 2006-12-01 Способ термостатирования ракет-носителей газом высокого давления и система для его осуществления

Publications (2)

Publication Number Publication Date
RU2006142578A RU2006142578A (ru) 2008-06-10
RU2335439C1 true RU2335439C1 (ru) 2008-10-10

Family

ID=39581119

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006142578/11A RU2335439C1 (ru) 2006-12-01 2006-12-01 Способ термостатирования ракет-носителей газом высокого давления и система для его осуществления

Country Status (1)

Country Link
RU (1) RU2335439C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2493414C2 (ru) * 2011-11-24 2013-09-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный технический университет" Способ моделирования процесса газификации остатков жидкого компонента ракетного топлива в условиях пониженного давления и устройство для его реализации
RU2638141C1 (ru) * 2016-08-23 2017-12-11 Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный технический университет" Способ моделирования процессов тепло- и массообмена с окружающей средой элемента конструкции летательного аппарата и устройство для его реализации

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2493414C2 (ru) * 2011-11-24 2013-09-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный технический университет" Способ моделирования процесса газификации остатков жидкого компонента ракетного топлива в условиях пониженного давления и устройство для его реализации
RU2638141C1 (ru) * 2016-08-23 2017-12-11 Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный технический университет" Способ моделирования процессов тепло- и массообмена с окружающей средой элемента конструкции летательного аппарата и устройство для его реализации

Also Published As

Publication number Publication date
RU2006142578A (ru) 2008-06-10

Similar Documents

Publication Publication Date Title
US20230228381A1 (en) Valve unit, on-tank valve and gas pressure tank system, in particular for fuel cell systems, and method for detecting a leakage
CN103712056B (zh) 具有主动式增压能力的深冷液体输送及增压系统和方法
US20060231144A1 (en) Method of discharging high pressure storage vessels
CN113574308B (zh) 海上船舶中的燃料箱装置和从液态氢燃料箱装置中释放氢气的方法
CN110985881A (zh) 一种气体加注系统以及加注方法
CN211600219U (zh) 一种气体加注系统
CN108027105B (zh) 用于压力容器系统的维保设备和维保方法
JP2008528391A (ja) 流体を接続および輸送するキットおよび装置ならびに前記装置の使用方法
RU2335439C1 (ru) Способ термостатирования ракет-носителей газом высокого давления и система для его осуществления
US11371657B2 (en) Hydropack system
KR20230128568A (ko) 기체 연료 공급 시스템
RU2335438C1 (ru) Способ термостатирования космической головной части воздухом высокого давления и система для его осуществления
US9732704B2 (en) Gas engine assembly
US9916908B2 (en) Gas supply apparatus and air or nitrogen supply apparatus of nuclear plant
RU2270929C2 (ru) Способ продувки двигателей ракет-носителей и система продувки двигателей ракет-носителей
RU2159348C1 (ru) Система наддува топливных баков двигательной установки космического летательного аппарата
RU2339835C2 (ru) Система наддува топливных баков
RU2267023C2 (ru) Способ заправки гелием бортовых баллонов ракет-носителей и космических аппаратов и система заправки гелием бортовых баллонов ракет-носителей и космических аппаратов
RU2215235C1 (ru) Устройство выдачи сжатого газа
RU2111373C1 (ru) Стенд для испытаний жидкостных ракетных двигателей
RU2305224C2 (ru) Способ заправки транспорта сжатым природным газом (варианты) и передвижная газозаправочная станция для его осуществления
RU2533592C1 (ru) Система подачи топлива двигательной установки космического аппарата
RU2240523C2 (ru) Устройство для испытаний на герметичность системы наддува топливных баков горючего и окислителя космического летательного аппарата
SU1676929A1 (ru) Судова топливна система Савиновского В.Г.
SU1700332A1 (ru) Установка дл газоснабжени транспорных средств

Legal Events

Date Code Title Description
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20110908

MM4A The patent is invalid due to non-payment of fees

Effective date: 20111202

NF4A Reinstatement of patent

Effective date: 20131110

PD4A Correction of name of patent owner