RU2334873C2 - Способ обработки призабойной зоны пласта скважины и погружной генератор импульсов давления для его осуществления - Google Patents

Способ обработки призабойной зоны пласта скважины и погружной генератор импульсов давления для его осуществления Download PDF

Info

Publication number
RU2334873C2
RU2334873C2 RU2006115267/03A RU2006115267A RU2334873C2 RU 2334873 C2 RU2334873 C2 RU 2334873C2 RU 2006115267/03 A RU2006115267/03 A RU 2006115267/03A RU 2006115267 A RU2006115267 A RU 2006115267A RU 2334873 C2 RU2334873 C2 RU 2334873C2
Authority
RU
Russia
Prior art keywords
working agent
generator
pressure
pulse
working
Prior art date
Application number
RU2006115267/03A
Other languages
English (en)
Other versions
RU2006115267A (ru
Inventor
Ильгиз Фатыхович Садыков (RU)
Ильгиз Фатыхович Садыков
Александр Андреевич Марсов (RU)
Александр Андреевич Марсов
Раис Салихович Хисамов (RU)
Раис Салихович Хисамов
Илгиз Галимз нович Мигранов (RU)
Илгиз Галимзянович Мигранов
Владимир Алексеевич Губарь (RU)
Владимир Алексеевич Губарь
Хасан Шакирович Сибгатуллин (RU)
Хасан Шакирович Сибгатуллин
Original Assignee
Общество с ограниченной ответственностью "Нефтеимпульс"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Нефтеимпульс" filed Critical Общество с ограниченной ответственностью "Нефтеимпульс"
Priority to RU2006115267/03A priority Critical patent/RU2334873C2/ru
Publication of RU2006115267A publication Critical patent/RU2006115267A/ru
Application granted granted Critical
Publication of RU2334873C2 publication Critical patent/RU2334873C2/ru

Links

Images

Landscapes

  • Air Bags (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

Изобретение относится к области эксплуатации нефтяных, газовых и водозаборных скважин и направлено на образования микро и более глубоких трещин в призабойной зоне пласта для увеличения ее проницаемости. Обеспечивает повышение эффективности обработки призабойной зоны пласта, надежности и безопасность эксплуатации, а также упрощения конструкции устройства. Сущность изобретения: способ включает спуск в скважину погружного генератора импульсов давления, состоящего из корпуса с расположенными в нем рабочим агентом, элементом инициирования рабочего агента, разрывного элемента и сопловых отверстий, инициирование рабочего агента и проведение импульсной обработки интервала перфорации. Согласно изобретению в качестве рабочего агента используют газогенерирующий при сгорании композиционный материал на основе гранулированной аммиачной селитры и эпоксидного компаунда с массой, обеспечивающей генерирование газообразных продуктов не менее 800 л/кг, амплитуду импульсов 1,10-1,35 горного давления обрабатываемого пласта, продолжительность импульсов - до одной минуты и частоту импульсов за это время не менее 14-15. В случае недостижения рабочего давления в генераторе при сгорании рабочего агента предусматривают возможность безопасного сброса давления в корпусе генератора после его подъема на дневную поверхность. Устройство содержит корпус с расположенным в нем рабочим агентом и элементом инициирования рабочего агента, разрывной элемент и сопловые отверстия. Рабочий агент и элемент его инициирования выполнены в виде единого блока в непосредственном контакте элемента инициирования с поверхностью рабочего агента. Разрывной элемент выполнен в виде мембраны заданной толщины металлического листа круглой формы и закреплен посредством расположенного в нижней части корпуса генератора штуцера, в котором выполнены также сопловые отверстия и ввинтной шток с возможностью перемещения его в сторону мембраны, ее раскрытия и сброса давления газов в корпусе генератора после подъема устройства на дневную поверхность. При этом использован газогенерирующий при сгорании композиционный материал на основе гранулированной аммиачной селитры и эпоксидного компаунда. 2 н.п. ф-лы, 2 ил.

Description

Изобретение относится к области эксплуатации нефтяных, газовых и водозаборных скважин и направлено на повышение эффективности импульсной обработки скважин за счет образования микро и более глубоких трещин в призабойной зоне пласта и увеличения ее проницаемости.
Известен способ обработки призабойной зоны пласта скважины, включающий спуск в скважину генератора импульсов давления и последующую импульсную обработку интервала перфорации по отдельным участкам, причем на каждый участок предварительно производят воздействие импульсами с энергией 250-400 КДж и длительностью колебаний ударной волны до их полного затухания, а затем генерируют импульсы с энергией 6-8 КДж и частотой 10-15 Гц [см. патент РФ №2105874, кл. Е21В 43/25, опубл. 27.02.98, Бюл. №6]. В этом способе генератор в качестве рабочего агента заряжают газообразным азотом высокого давления на дневной поверхности непосредственно перед спуском его в скважину.
Недостатком способа является низкая эффективность обработки скважины из-за ее малой успешности, т.к. инертный газ не обладает теплотворной способностью, в частности, температурой, способствующей при импульсной обработке удалению из призабойной зоны пласта асфальтеносмолистых и парафиновых отложений. Способ связан, кроме того, с опасностью выполнения работ по заправке импульсного генератора газом высокого давления на дневной поверхности.
Известен способ обработки призабойной зоны пласта скважины, включающий спуск в скважину импульсного генератора давления, содержащий в корпусе рабочий агент в виде порохового заряда, а также выполненные в корпусе сопла, предназначенные для выхода образовавшихся в результате сгорания порохового заряда газов из полости корпуса в скважину. В исходном положении генератора сопловые отверстия загерметизированы [см. авт. свид. СССР №1089348, кл. Е21В 43/25, 1984 г.].
Недостатком вышеуказанного способа является низкая эффективность обработки призабойной зоны вследствие трудности осуществления одновременной разгерметизации всех сопловых отверстий. В случае разгерметизации части сопловых отверстий давление пороховых газов в полости генератора резко падает и часть отверстий может оказаться неразгерметизированными. В этом случае обработке подвергается только часть призабойной зоны пласта скважины, что снижает эффективность работы генератора и обработки скважины в целом. Другим недостатком этого способа и импульсного генератора для его осуществления является то, что пороховой заряд, используемый в качестве рабочего агента, представляет взрывчатое вещество, способное к детонации, что ввиду взрывоопасности снижает успешность и эффективность обработки скважин.
Наиболее близким к заявляемому изобретению является способ обработки призабойной зоны пласта скважины и погружной генератор для его осуществления [см. патент РФ №2147337, кл. 7 Е21В 43/25, опубл. 10.04.2004, бюл. №10].
Способ-прототип включает спуск в скважину погружного генератора импульсов давления, состоящего из корпуса с расположенным в нем рабочим агентом, элементом инициирования рабочего агента, разрывным элементом и сопловыми отверстиями. Затем осуществляют инициирование рабочего агента и проводят импульсную обработку интервала перфорации. В качестве рабочего агента генератора используют смесь азида щелочного металла (например, окись железа), образующую при сгорании газообразный азот. Последний аккумулируют в корпусе генератора и при достижении температуры азота 550-700°С и давлении 30-130 МПа подают газ в зону перфорации пласта скважины и осуществляют ее обработку в течение времени, не превышающем одну секунду.
Недостатком способа-прототипа является то, что используемая в качестве рабочего агента генератора смесь азида щелочного металла с окислом металла является взрывчатым веществом, способным к детонации (класс опасности 1.4 G по ГОСТ 19433-88), что из-за взрывоопасности, особенно при ударных воздействиях, снижает успешность и эффективность обработки скважин. Эта смесь, кроме того, обладает низкой газогенерирующей при сгорании способностью, выделяя 270 л/кг, что составляет 34% массы смеси. Вследствие низкой газогенерирующей способности смеси соответственно низок коэффициент полезного действия генератора и эффективность обработки скважин. При этом еще более существенным недостатком смеси азида щелочного металла и окисла металла является то, что при ее сгорании образуется около 66 мас.% высокотемпературных шлаков, особенно, расплавленного металла (железа), способных забивать отверстия в стакане, где располагается рабочий агент, а также прилипать к рабочим поверхностям деталей в полости корпуса генератора. Указанные недостатки приводят к нарушению работоспособности генератора и к низкой эффективности способа-прототипа. При этом следует отметить, что в способе не предусмотрена возможность безопасного сброса давления в корпусе генератора в случае несрабатывания клапанного узла (системы из поршня и рабочего болта). Не обоснованными являются также предлагаемые параметры подачи азота в зону перфорации пласта скважины, обусловленные по температуре пределами 550-700°С, по давлению в пределах 30-130 МПа и по времени обработки зоны перфорации, не превышающем 1 с. При подаче в зону перфорации газа даже с указанными пределами температуры, при коротком времени обработки пласта, не превышающем одну секунду, не может быть обеспечен нагрев, расплавление и удаление из перфорационных каналов отложений асфальтеносмолистых веществ. Создаваемые при импульсных воздействиях давления, которые могут привести к образованию трещин, прежде всего зависят от горного давления обрабатываемого пласта.
Способ-прототип осуществляется с помощью погружного генератора, являющегося ближайшим аналогом заявляемого изобретения. Погружной генератор содержит корпус с расположенными в нем рабочим агентом, элементом инициирования, разрывным элементом и сопловыми отверстиями. Генератор снабжен также установленным в корпусе с возможностью перемещения поршнем, в исходном положении перекрывающим сопловые отверстия, а в конечном - имеющим возможность взаимодействия с установленным в корпусе демпфирующим элементом. Поршень закреплен в корпусе стаканом, предназначенным для аккумулирования полученной в результате инициирования рабочего агента газовой среды. В верхней и нижней частях стакана, кроме того, имеются по меньшей мере по одному отверстию, а стакан и поршень соединены разрывным элементом.
Недостатком погружного генератора импульсов давления-прототипа является низкая эффективность обработки этим устройством призабойной зоны пласта скважины. Это обусловлено, во-первых, тем, что элемент инициирования рабочего агента и сам рабочий агент отделены друг от друга пространством и двухрядной решеткой, проходя через которые газообразные продукты сгорания элемента инициирования охлаждаются и существенно снижают свою температуру и надежность инициирования рабочего агента. Сложным и ненадежным, во-вторых, является система разгерметизации сопловых отверстий. В исходном состоянии они перекрываются поршнем, возможность перемещения которого зависит от создания расчетного давления в области между нижней частью стакана и торцом этого поршня. Только затем после разрыва шейки болта поршень перемещаясь, открывает сопловые отверстия. В случае забивания шлаками отверстий в нижней части стакана, возможность чего, как показано выше, является наиболее вероятной, не будет создаваться рабочее давление на поршень и клапанный узел будет не работоспособным. Указанные недостатки резко снижают успешность и эффективность обработки скважин генератором-прототипом.
Задачей, решаемой заявляемым изобретением, является повышение эффективности способа, надежности и безопасности эксплуатации, а также упрощение конструкции погружного генератора импульсов давления для обработки призабойной зоны пласта скважины.
Поставленная задача решается тем, что в способе обработки призабойной зоны пласта скважины, включающем спуск в скважину погружного генератора импульсов давления, состоящего из корпуса с расположенным в нем рабочим агентом, элементом инициирования рабочего агента, разрывного элемента и сопловых отверстий; инициирование рабочего агента и проведение импульсной обработки интервала перфорации, в изобретении в качестве рабочего агента используют газогенерирующий при сгорании композиционный материал на основе гранулированной аммиачной селитры и эпоксидного компаунда с газогенерирующей способностью только газообразных продуктов сгорания не менее 800 л/кг, такой, что при обработке скважины импульсами давления наибольшая амплитуда импульсов составляет 1,1-1,35 горного давления обрабатываемого пласта с продолжительностью импульсов до одной минуты и частотой за это время не менее 14-15 импульсов. На случай нештатной ситуации, т.е. при недостижении рабочего давления в генераторе при сгорании рабочего агента предусматривают возможность безопасного сброса давления в корпусе генератора после подъема его на дневную поверхность.
В качестве рабочего агента в предлагаемом способе используется газогенерирующий при сгорании композиционный материал на основе гранулированной аммиачной селитры и эпоксидного компаунда, например, состав по патенту РФ №2075597, кл. Е21В 43/25 от 20.03.97, следующего содержания компонентов, мас.%:
Аммиачная селитра гранулированная марки Б 72
Бихромат калия технический 5
Эпоксидная смола марки ЭД-20
с отвердителем ПЭПА в соотношении 10:1 23
Указанный состав при сгорании генерирует практически только газообразные продукты в объеме 800 л/кг, состоящие из СО2, СО, Н2О, Н2 и N2, в то время как смесь в качестве рабочего агента по способу-прототипу выделяет 270 л/кг (34% массы смеси), а остальные 66% продуктов сгорания являются твердыми шлаками. Высокая газогенерирующая способность предлагаемого рабочего агента позволяет значительно повысить коэффициент полезного действия рабочего агента и, в конечном итоге, эффективность обработки скважины за счет создания более высоких параметров импульсного воздействия, в частности, таких, что наибольшая амплитуда импульсов составляет 1,1-1,35 горного давления обрабатываемого пласта с продолжительностью импульсов до 1 минуты и частотой за это время не менее 14-15 импульсов. Указанные параметры импульсов давления обусловлены тем, что микротрещины при импульсной обработке пласта образуются, как известно, даже при давлениях, составляющих 1,1-1,2 горного давления пласта, а более глубокие и протяженные трещины в пласте - при давлениях, равных 1,3-1,5 горного давления. Более высокие интенсивность (частота до 14-15 импульсов) и продолжительность импульсных давлений до 1 минуты способствует раскрытию и развитию создаваемых и имеющихся трещин в призабойной зоне пласта, а также нагреву, расплавлению и выносу из трещин и пор призабойной зоны пласта отложений асфальтеносмолистых и парафиновых веществ, повышая тем самым коллекторские свойства пласта. При выходе газообразных продуктов горения материала рабочего агента из сопловых отверстий генератора температура газов составляет 650-700°С и при взаимодействии со скважинной жидкостью она не превышает температуры кипения этой жидкости. Последняя в условиях скважинного давления 10-15 МПа составляет 300-350°С, что вполне достаточна для нагрева и расплавления асфальтеносмолистых и парафиновых отложений в течение 1 минуты, т.к. температура плавления этих отложений не превышает 60-70°С. Следует отметить, что более высокая газогенерирующая способность и более высокие параметры импульсного воздействия предлагаемым способом обеспечиваются за счет использования массы примерно в три раза меньшей, чем массы рабочего агента по способу-прототипу.
Другим отличием используемого в качестве рабочего агента генератора газогенерирующего при сгорании композиционного материала является то, что он не способен к детонационному взрывчатому превращению (класс опасности 9113 по ГОСТ 19433-88), что существенно повышает безопасность эксплуатации генератора, успешность и эффективность обработки скважин.
Способ осуществляется посредством погружного генератора импульсов давления, содержащего корпус с расположенным в нем рабочим агентом и элементом инициирования рабочего агента, разрывной элемент и сопловые отверстия. Новым в изобретении является то, что рабочий агент и элемент его инициирования выполнены в виде единого блока, а разрывной элемент выполнен в виде мембраны заданной толщины металлического листа круглой формы и закреплен посредством располагаемого в нижней части корпуса генератора штуцера, в котором выполнены также сопловые отверстия и ввинтной шток с возможностью перемещения его в сторону мембраны, ее раскрытия и сброса давления газов в корпусе генератора на дневной поверхности.
Погружной генератор, изображенный на фиг.1, выполнен в виде герметичного корпуса 1 с расположенным в нем единым блоком рабочим агентом 2 и элементом его инициирования 3. Разрывной элемент, рассчитанный на заданное усилие разрыва, в виде мембраны 4 калиброванной толщины металлического листа круглой формы закреплен посредством располагаемого в нижней части корпуса генератора штуцера 5. В последнем располагаются также сопловые отверстия 6 и ввинтной шток 7, который при перемещении в сторону мембраны раскрывает ее и тем самым имеется возможность безопасного сброса давления газов в корпусе генератора на дневной поверхности при нештатной ситуации.
Выполнение рабочего агента и элемента его инициирования в виде единого блока обеспечивает надежность инициирования, т.к. элемент инициирования, располагаясь в непосредственном контакте с поверхностью рабочего агента, сохраняет при воспламенении максимальную температуру сгорания и без потерь поджигает его. При этом используется шашка воспламенителя (элемента инициирования) в несколько раз меньшей массы, чем элемент инициирования в устройстве-прототипе.
В предлагаемом генераторе открытие сопловых отверстий зависит непосредственно от работы только одного разрывного элемента, выполненного в виде мембраны заданной толщины металлического листа круглой формы. В качестве мембраны используется листовой металл, например дюралюминий марки Д-16, выпускаемый промышленностью в виде точно калиброванной на заданное давление толщины листа. Мембрана закрепляется посредством располагаемого в нижней части корпуса генератора штуцера, где также имеются сопловые отверстия и ввинтной шток с возможностью перемещения его в сторону мембраны, ее раскрытия и, таким образом, сброса давления газов в корпусе генератора на дневной поверхности. Этим самым предусматривается возможность безопасного сброса давления в генераторе в случае создания при сгорании рабочего агента давления, ниже необходимого для разрыва мембраны.
Предлагаемый способ обработки призабойной зоны пласта скважины осуществляется следующим образом.
Один или несколько генераторов импульса давления, как и по способу-прототипу, спускают на кабель-тросе в скважину в интервал обработки призабойной зоны пласта. С пульта управления подают электрический импульс, который приводит в действие один, несколько или все размещенные в генераторах элементы инициирования 3 рабочих агентов (фиг.1). В результате воспламенения и сгорания рабочего агента 2 образуются только газообразные продукты. Давление газов в корпусе 1 генератора повышается и в конце сгорания рабочего агента достигает расчетной величины, благодаря чему происходит раскрытие мембраны 4 и нагретые газы под высоким давлением выбрасываются через сопловые отверстия 6 в пространство обработки пласта скважины, создавая достаточно длительные и многократные воздействия давлением и теплом на перфорационные каналы в призабойной зоне.
На случай нештатной ситуации, т.е. несрабатывания мембраны, например, при недостижении расчетного давления в корпусе генератора, после подъема его на дневную поверхность с помощью торцевого ключа производят перемещение ввинтного штока 7 в сторону мембраны, раскрывают ее и тем самым выполняют безопасный сброс остаточного давления в генераторе. Таким образом, использование в предлагаемом способе в качестве рабочего агента генератора импульсов давления газогенерирующего при сгорании композиционного материала на основе гранулированной аммиачной селитры с газогенерирующей способностью только газообразных продуктов сгорания не менее 800 л/кг позволяет:
- повысить эффективность обработки скважины импульсами давления за счет создания наибольшей амплитуды импульсов в пределах 1,10-1,35 горного давления обрабатываемого пласта с продолжительностью импульсов до одной минуты и частотой за это время не менее 14-15 импульсов;
- повысить надежность и упростить конструкцию генератора импульсов давления за счет совмещения рабочего агента с элементом его инициирования в виде единого блока и выполнения разрывного элемента в виде мембраны заданной толщины круглого металлического листа с закреплением ее штуцером, где также располагаются сопловые отверстия;
- повысить безопасность эксплуатации генератора за счет использования рабочего агента, не способного к детонационному взрывному превращению, и возможности безопасного сброса давления в корпусе генератора после подъема его на дневную поверхность.
Возможность осуществления предлагаемого способа и работоспособность генератора импульсов давления подтверждены результатами опытно-промыслового испытания на действующей скважине №23262 Азнакаевской площади ОАО «Татнефть». Продуктивный пласт 5′′ скважины находится в интервале глубин 1673-1676 м под горным давлением 163 атм (16,3 МПа). Текущий дебит по нефти составлял 7 т/с.
Опытный натурный образец погружного генератора импульсов давления соответствует по конструкции фиг.1 и состоит из загерметизированного с торцов крышками корпуса, где расположен в едином блоке рабочий агент с элементом его инициирования. Свободный объем корпуса генератора внутренним диаметром 70 мм и высотой 950 мм составляет 3,6 литра.
Рабочий агент диаметром 60 мм, высотой 280 мм и массой 1,0 кг представляет газогенерирующий при сгорании композиционный, уплотненный до плотности 1,48 кг/см3, материал на основе аммиачной селитры и эпоксидного компаунда при следующем соотношении компонентов, мас.%:
Аммиачная селитра гранулированная марки Б 72
Бихромат калия технический 5
Эпоксидная смола марки ЭД-20
с отвердителем ПЭПА в соотношении 10:1 23
Элемент инициирования в блоке заделывается в тело торцевой части рабочего агента в виде нихромовой спирали диаметром проволоки 0,1-0,15 мм и длиной 80-100 мм.
Разрывной элемент в виде мембраны толщиной 2 мм и диаметром 30 мм представляет алюминиевый сплав марки Д-16 (ГОСТ 21631-76) и закреплен в нижней части корпуса штуцером с внутренним отверстием диаметром 10 мм, от которого отходят сопловые отверстия диаметром 8 мм. Мембрана оттарирована на давление срабатывания, равное 1000 атм (100 МПа). По оси в нижней части штуцера располагается ввинтной шток, служащий для сброса давления газов после подъема генератора на дневную поверхность.
Погружной генератор в собранном виде был спущен на кабель-тросе в интервал обработки призабойной зоны скважины так, чтобы сопловые отверстия находились в 0,5 м от подошвы пласта. На кабель-тросе предварительно был закреплен скважинный манометр автономного действия на расстоянии 2-х метров выше сопловых отверстий генератора. С пульта управления на устье скважины через кабель-трос был подан электрический импульс на элемент инициирования рабочего агента генератора. В результате сгорания рабочего агента и создания расчетного давления газообразных продуктов сгорания, произошло раскрытие мембраны. Нагретые газы под высоким давлением (100 МПа) через сопловые отверстия создали в зоне обработки многократные импульсы. Данные записи скважинного манометра, представленные на фиг.2, свидетельствуют, что при газоимпульсной обработке зоны перфорации предлагаемым способом с использованием генератора наибольшая амплитуда импульсов составляет 1,35 горного давления подвергнутого обработке пласта с продолжительностью создаваемых импульсов не менее одной минуты, при этом частота импульсов составляет не менее 14-15. Осмотр генератора после подъема его на устье скважины показал, что рабочий агент сгорел полностью с образованием только газообразных продуктов, следов твердых продуктов сгорания не обнаружено. Мембрана раскрылась полностью, и в связи с этим, необходимость в сбросе давления газов с использованием ввинтного штока не было. Как показывают дополнительные исследования возможностей способа и генератора, выполненных в стендовых условиях, величина амплитуды импульсов может регулироваться в ту или другую сторону путем использования различной массы рабочего агента и величины давления срабатывания мембраны генератора.
После освоения скважины дебит ее составил 16 т/с, т.е. произошло повышение производительности скважины в 2,3 раза по сравнению с дебитом до обработки предлагаемым способом. Результаты опытно-промысловых испытаний подтверждают работоспособность и эффективность предлагаемого способа и генератора импульсов давления для его осуществления.

Claims (2)

1. Способ обработки призабойной зоны пласта скважины, включающий спуск в скважину погружного генератора импульсов давления, состоящего из корпуса с расположенными в нем рабочим агентом, элементом инициирования рабочего агента, разрывного элемента и сопловых отверстий; инициирование рабочего агента и проведение импульсной обработки интервала перфорации, отличающийся тем, что в качестве рабочего агента используют газогенерирующий при сгорании композиционный материал на основе гранулированной аммиачной селитры и эпоксидного компаунда с массой, обеспечивающей генерирование газообразных продуктов не менее 800 л/кг, амплитуду импульсов 1,10-1,35 горного давления обрабатываемого пласта, продолжительность импульсов - до одной минуты и частоту импульсов за это время - не менее 14-15, причем в случае недостижения рабочего давления в генераторе при сгорании рабочего агента предусматривают возможность безопасного сброса давления в корпусе генератора после его подъема на дневную поверхность.
2. Погружной генератор импульсов давления, содержащий корпус с расположенным в нем рабочим агентом и элементом инициирования рабочего агента, разрывной элемент и сопловые отверстия, отличающийся тем, что рабочий агент и элемент его инициирования выполнены в виде единого блока в непосредственном контакте элемента инициирования с поверхностью рабочего агента, разрывной элемент выполнен в виде мембраны заданной толщины металлического листа круглой формы и закреплен посредством расположенного в нижней части корпуса генератора штуцера, в котором выполнены также сопловые отверстия и ввинтной шток с возможностью перемещения его в сторону мембраны, ее раскрытия и сброса давления газов в корпусе генератора после подъема устройства на дневную поверхность, при этом использован газогенерирующий при сгорании композиционный материал на основе гранулированной аммиачной селитры и эпоксидного компаунда с массой, обеспечивающей генерирование газообразных продуктов не менее 800 л/кг, амплитуду импульсов - 1,10-1,35 горного давления обрабатываемого пласта, продолжительность импульсов - до одной минуты и частоту импульсов за это время - не менее 14-15.
RU2006115267/03A 2006-05-03 2006-05-03 Способ обработки призабойной зоны пласта скважины и погружной генератор импульсов давления для его осуществления RU2334873C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2006115267/03A RU2334873C2 (ru) 2006-05-03 2006-05-03 Способ обработки призабойной зоны пласта скважины и погружной генератор импульсов давления для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2006115267/03A RU2334873C2 (ru) 2006-05-03 2006-05-03 Способ обработки призабойной зоны пласта скважины и погружной генератор импульсов давления для его осуществления

Publications (2)

Publication Number Publication Date
RU2006115267A RU2006115267A (ru) 2007-11-27
RU2334873C2 true RU2334873C2 (ru) 2008-09-27

Family

ID=38959802

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006115267/03A RU2334873C2 (ru) 2006-05-03 2006-05-03 Способ обработки призабойной зоны пласта скважины и погружной генератор импульсов давления для его осуществления

Country Status (1)

Country Link
RU (1) RU2334873C2 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2469180C2 (ru) * 2010-11-10 2012-12-10 Ильгиз Фатыхович Садыков Способ перфорации и обработки призабойной зоны скважины и устройство для его осуществления
WO2015044787A3 (en) * 2013-09-25 2015-08-20 Megat Ltd. Steam-impulse pressure generator for the treatment of oil wells
RU2569389C1 (ru) * 2014-12-19 2015-11-27 Общество с ограниченной ответственностью "Научно-производственная компания "Спецхимпродукт" Способ разрыва пласта и устройство для осуществления способа

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2469180C2 (ru) * 2010-11-10 2012-12-10 Ильгиз Фатыхович Садыков Способ перфорации и обработки призабойной зоны скважины и устройство для его осуществления
WO2015044787A3 (en) * 2013-09-25 2015-08-20 Megat Ltd. Steam-impulse pressure generator for the treatment of oil wells
RU2569389C1 (ru) * 2014-12-19 2015-11-27 Общество с ограниченной ответственностью "Научно-производственная компания "Спецхимпродукт" Способ разрыва пласта и устройство для осуществления способа

Also Published As

Publication number Publication date
RU2006115267A (ru) 2007-11-27

Similar Documents

Publication Publication Date Title
US8522863B2 (en) Propellant fracturing system for wells
US5355802A (en) Method and apparatus for perforating and fracturing in a borehole
US20090078420A1 (en) Perforator charge with a case containing a reactive material
US20150362297A1 (en) Energetic material applications in shaped charges for perforation operations
WO2011079742A1 (zh) 可控脉冲气能压裂器
US20190153845A1 (en) System and method of delivering stimulation treatment by means of gas generation
RU2334873C2 (ru) Способ обработки призабойной зоны пласта скважины и погружной генератор импульсов давления для его осуществления
US20240133662A1 (en) Big hole charge for plug and abandonment
WO2002070339A2 (en) System for lifting water from gas wells using a propellant
RU2329374C2 (ru) Устройство для обработки призабойной зоны скважины и способ обработки призабойной зоны скважины
RU2469180C2 (ru) Способ перфорации и обработки призабойной зоны скважины и устройство для его осуществления
RU2495999C1 (ru) Способ и устройство для интенсификации работы нефтегазовых скважин (варианты)
CN106437666A (zh) 一种用于油气储层内爆炸压裂专用炸药的引爆新技术
US20150083388A1 (en) Steam-impulse pressure generator for the treatment of oil wells
RU2394983C2 (ru) Способ обработки призабойной зоны пласта скважины
CN104265224B (zh) 一种油井卡钻物体定向爆燃冲击破坏分离的快速解卡装置
RU2633883C1 (ru) Способ перфорации и обработки призабойной зоны скважины и устройство для его осуществления
RU2459946C2 (ru) Способ обработки призабойной зоны пласта жидким горюче-окислительным составом
RU106305U1 (ru) Заряд для гидроразрыва пласта
RU2178065C1 (ru) Способ перфорации и обработки призабойной зоны скважины и устройство для его осуществления
RU140599U1 (ru) Устройство для обработки призабойной зоны скважины
RU2147337C1 (ru) Способ обработки призабойной зоны пласта скважины и погружной генератор для его осуществления
RU2162514C1 (ru) Способ перфорации и обработки призабойной зоны скважины и устройство для его осуществления
RU2092682C1 (ru) Способ обработки пласта жидким горюче-окислительным составом
WO2012150906A1 (en) Thermo-pulse generator

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20090504