RU2333868C2 - Снабженный крыльями космический аппарат - Google Patents

Снабженный крыльями космический аппарат Download PDF

Info

Publication number
RU2333868C2
RU2333868C2 RU2005133195/11A RU2005133195A RU2333868C2 RU 2333868 C2 RU2333868 C2 RU 2333868C2 RU 2005133195/11 A RU2005133195/11 A RU 2005133195/11A RU 2005133195 A RU2005133195 A RU 2005133195A RU 2333868 C2 RU2333868 C2 RU 2333868C2
Authority
RU
Russia
Prior art keywords
tail
spacecraft
sections
wings
wing
Prior art date
Application number
RU2005133195/11A
Other languages
English (en)
Other versions
RU2005133195A (ru
Inventor
Элберт Л. РУТАН (US)
Элберт Л. РУТАН
Original Assignee
Моуджейв Аэроспейс Венчерз, Ллс
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Моуджейв Аэроспейс Венчерз, Ллс filed Critical Моуджейв Аэроспейс Венчерз, Ллс
Publication of RU2005133195A publication Critical patent/RU2005133195A/ru
Application granted granted Critical
Publication of RU2333868C2 publication Critical patent/RU2333868C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/62Systems for re-entry into the earth's atmosphere; Retarding or landing devices
    • B64G1/625Landing devices; Undercarriages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/38Adjustment of complete wings or parts thereof
    • B64C3/44Varying camber
    • B64C3/50Varying camber by leading or trailing edge flaps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/04Aircraft not otherwise provided for having multiple fuselages or tail booms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C9/00Adjustable control surfaces or members, e.g. rudders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/002Launch systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/002Launch systems
    • B64G1/008Arrangement of launch rockets or boosters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/14Space shuttles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/62Systems for re-entry into the earth's atmosphere; Retarding or landing devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Mechanical Engineering (AREA)
  • Toys (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Vehicle Waterproofing, Decoration, And Sanitation Devices (AREA)
  • Automatic Cycles, And Cycles In General (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
  • Transmission Devices (AREA)

Abstract

Изобретение относится к крылатому космическому аппарату (КА), преимущественно суборбитальному, который преобразуется при возвращении из космоса в устойчивую плохообтекаемую конфигурацию и затем вновь возвращается в нормальную аэродинамическую конфигурацию для посадки на взлетно-посадочную полосу. Согласно изобретению КА содержит ракетный двигатель и крылья (17). Крылья имеют шарнирно закрепленные хвостовые секции (21, 22), которые могут подниматься, поворачиваясь вокруг линии (23) шарниров. От внешних концов этих секций простираются назад хвостовые балки (24, 25), на концах которых установлены рули (29). Каждая хвостовая балка несет горизонтальное хвостовое оперение с элероном (28). При дозвуковом полете крыло имеет нормальную аэродинамическую конфигурацию. При возвращении в плотные слои атмосферы хвостовые части крыла подняты вверх под значительным (до 65°) углом, обеспечивая устойчивое снижение КА с высоким аэродинамическим сопротивлением. Такое снижение уменьшает интегральные термические нагрузки на КА. Когда КА замедляется преимущественно до дозвуковой скорости, хвостовые секции крыла возвращают в опущенное положение. КА приобретает нормальную аэродинамическую конфигурацию для планирующего полета и горизонтальной посадки. 7 з.п. ф-лы, 9 ил.

Description

Область техники
Настоящее изобретение относится к крылатому космическому аппарату, который преобразуется при возвращении из космоса в устойчивую плохообтекаемую конфигурацию и затем вновь возвращается в нормальную аэродинамическую конфигурацию для посадки на взлетно-посадочную полосу. Изобретение предназначено преимущественно для суборбитального космического аппарата, но оно может быть применимо и для корабля, совершающего орбитальный полет.
Предшествующий уровень техники
Возвращение в плотные слои атмосферы возвращаемого космического аппарата является критической фазой полета вследствие высоких структурных и термических нагрузок. Современный космический аппарат с горизонтальной посадкой, предназначенный для посадки на взлетно-посадочную полосу, требует трехкоординатного управления и большей подъемной силы по сравнению с известными космическими аппаратами с затупленным корпусом (капсулы Меркурий, Джемени), которые при приземлении снижались на парашюте.
Краткое изложение существа изобретения
Согласно изобретению предложен космический аппарат, имеющий фюзеляж, а также правое и левое крылья с шарнирно закрепленными хвостовыми секциями, несущими хвостовые балки с вертикальным и горизонтальным оперением, имеющим рули и элероны. Подъемная система, расположенная между фюзеляжем и этими секциями, обеспечивает перевод секций и хвостовых балок из нормальной аэродинамической конфигурации в конфигурацию с высоким аэродинамическим сопротивлением для стабильного и управляемого возвращения в плотные слои атмосферы.
Краткое описание чертежей
Изобретение поясняется описанием предпочтительных вариантов его воплощения со ссылками на сопровождающие чертежи, где согласно изобретению:
фиг.1 изображает вид сбоку суборбитального космического аппарата, конфигурированного для посадки;
фиг.2 - вид спереди космического аппарата с убранным шасси;
фиг.3 - вид сверху космического аппарата;
фиг.4 - вид сбоку аппарата, реконфигурированного для возвращения в плотные слои атмосферы;
фиг.5 - общий вид сверху спереди реконфигурированного космического аппарата;
фиг.6 - общий вид сверху и сзади реконфигурированного космического аппарата;
фиг.7 - общий вид с частичным вырезом подъемной системы космического аппарата для подъема хвостовых секций крыльев и хвостовых балок;
фиг.8 - общий, более подробный вид подъемной системы;
фиг.9 - вид сбоку части подъемной системы на правой хвостовой секции крыла.
Подробное описание предпочтительного варианта воплощения изобретения
На фиг.1-3 показан суборбитальный космический аппарат 10 для ракетного полета в космос, для полета на дозвуковой скорости после возвращения в плотные слои атмосферы и для посадки. Космический аппарат показан на фиг.1 с задним шасси 11 и носовым полозковым шасси 12 в выпущенном положении для посадки, но на других чертежах эти элементы не показаны.
Космический аппарат содержит фюзеляж 13 с пилотской кабиной 14 на переднем конце. Хвостовая часть 15 фюзеляжа содержит и несет ракетный двигатель на гибридном топливе, хвостовое сопло 16 которого показано на чертежах. Крыло 17 имеет правую и левую передние секции 19 и 20, прикрепленные к фюзеляжу, и хвостовые правую и левую секции 21 и 22, которые соединены друг с другом и могут подниматься вверх вокруг линии 23 шарнирного поворота. Хвостовые секции 21 и 22 составляют около одной трети суммарной ширины или хорды крыла. К внешним концам хвостовых секций крыльев жестко прикреплены проходящие назад правая и левая хвостовые балки 24 и 25.
От внешних сторон каждой балки выступают наружу жестко прикрепленные к ним стабилизаторы хвостового оперения 27 с силовым приводом, каждое из которых несет шарнирно установленные элероны 28, которые могут независимо перемещаться пилотом для управления по осям тангажа и крена. К задним концам вертикальных хвостов на хвостовых балках с возможностью шарнирного движения установлены рули 29 для управления по курсу полета. Эта конфигурация обеспечивает хорошую устойчивость и управляемость при полете в атмосфере, и возможен достаточный диапазон подъема и планирования с трехкоординатным управлением для выравнивания и посадки.
Перед возвращением в плотные слои атмосферы из космического полета космический аппарат реконфигурируют (приводами, описанными ниже) в плохообтекаемую конфигурацию, в которой хвостовые секции крыльев и хвостовые балки перемещаются или наклоняются вокруг линии 23 шарнира. Это плохообтекаемое положение, показанное на фиг.4-6, называют "флюгерной" конфигурацией, в которой существует большой угол установки секций, составляющий около 65 градусов относительно нормально конфигурированного "нефлюгерного" крыла.
На фиг.7-9 показана подъемная система 32 для подъема и опускания хвостовых секций крыльев и хвостовых балок между флюгерным и нефлюгерным положениями. Система включает два пневматических привода 33 с цилиндрами 34 и подвижными поршнями 35. Нижний конец каждого цилиндра шарнирно прикреплен к кронштейну 36, который жестко прикреплен к фюзеляжу космического аппарата. Концы 37 поршней 35 шарнирно прикреплены к кронштейнам 38, жестко установленным на внутренних поверхностях 39 хвостовых секций крыльев. Приводы приводятся в действие цилиндром со сжатым воздухом (не показан), установленным в космическом аппарате.
Управляемая пилотом подача давления в приводы 33 перемещает хвостовые секции крыльев и хвостовые балки вверх и вниз. Для предотвращения непреднамеренного перемещения этих хвостовых частей космического аппарата и для снятия нагрузки с приводов 33 в течение нефлюгерного полета применена система 40 блокирования. Система 40 имеет пару из правого и левого пневматических приводов 41 с цилиндрами 42, нижние концы которых шарнирно прикреплены к кронштейнам 36. Из цилиндров 42 выступают поршни 43, концы которых шарнирно соединены с проходящими назад соединениями 44, соединенными жесткой поперечной балкой 45. Поперечная балка, в свою очередь, с возможностью вращения удерживается правым и левым кронштейнами 46, прикрепленными к фюзеляжу космического аппарата. С внешней стороны от каждого соединения 44 размещены проходящие вверх блокирующие элементы 48, прикрепленные к поперечной балке 45, причем каждый блокирующий элемент имеет проходящий вперед конец 49, входящий в зацепление с сопрягаемым с ним пальцем 50, прикрепленным к внутренней хвостовой кромке каждой хвостовой секции крыла, когда космический аппарат находится в нефлюгерной конфигурации.
Для разблокирования хвостовых секций крыльев в приводы 41 подают давление для втягивания поршней 43 и выведения их из выдвинутого положения, в результате чего поперечная балка 45 вращается и перемещает концы 49 блокирующих элементов назад, выводя их из зацепления с пальцами в разблокированное положение. Приведение в действие цилиндров 34 будет осуществлять перемещение хвостовых секций крыльев в поднятое флюгерное положение. Когда секции крыльев убраны после возвращения в плотные слои атмосферы, в приводы 41 вновь подается давление для выдвижения поршней 43 для повторного блокирования блокирующей системой.
Когда космический аппарат возвратился в плотные слои атмосферы во флюгерной конфигурации, корабль подобно волану будет стремиться занять и сохранить устойчивое положение по тангажу и крену при любых скоростях. Угол атаки в этом положении очень большой, его расчетная величина составляет около 54 градусов на сверхзвуковых скоростях в пределах М=3 и около 64 градусов на дозвуковых скоростях. Это приводит к необходимому высокому аэродинамическому сопротивлению, при этом сопротивление превышает подъемную силу приблизительно в два раза при низких конструкционных и термических нагрузках. Курсом космического аппарата можно также управлять в ходе возвращения в плотные слои атмосферы для коррекции направления вектора подъемной силы для коррекции траектории. Стрелкой 4 показан типичный вектор скорости космического аппарата при возвращении в плотные слои атмосферы.
После возвращения в плотные слои атмосферы, когда космический аппарат замедляется до дозвуковой скорости, его реконфигурируют в нефлюгерное состояние с коэффициентом планирования от семи до восьми. Например, если космический аппарат переводят в нефлюгерную конфигурацию на высоте около 16000 м, он может планировать к необходимому месту посадки на горизонтальное расстояние, превышающее 90 км. Когда трехкоординатное управление восстановлено, аппарат может быть легко повернут и выровнен для посадки на горизонтальную взлетно-посадочную полосу.

Claims (8)

1. Космический аппарат, содержащий фюзеляж, правое и левое крылья, выступающие из фюзеляжа и имеющие шарнирно закрепленные хвостовые секции, внешние концы которых несут простирающиеся назад хвостовые балки с вертикальным и горизонтальным хвостовым оперением, содержащим рули и элероны, причем между фюзеляжем и хвостовыми секциями крыльев установлена связанная с фюзеляжем и этими секциями подъемная система для перемещения секций из нормальной аэродинамической конфигурации в поднятое положение, создающее высокое аэродинамическое сопротивление для торможения космического аппарата при возвращении в плотные слои атмосферы после космического полета, причем данная подъемная система выполнена с возможностью возврата хвостовых секций крыльев в нормальную аэродинамическую конфигурацию для обеспечения управляемой посадки на горизонтальную взлетно-посадочную полосу.
2. Космический аппарат по п.1, выполненный с обеспечением его устойчивого положения в процессе возвращения в плотные слои атмосферы под крутым углом спуска при поднятых хвостовых секциях и горизонтальном положении фюзеляжа.
3. Космический аппарат по п.1, в котором шарнирно закрепленные хвостовые секции крыльев имеют ширину, составляющую около одной трети суммарной ширины крыла.
4. Космический аппарат по п.1, в котором хвостовые секции крыльев установлены с возможностью поворота вверх на угол приблизительно 65°.
5. Космический аппарат по п.1, в котором указанная подъемная система содержит пневматические приводы.
6. Космический аппарат по п.1, дополнительно содержащий управляемую пилотом блокирующую систему для блокирования указанных хвостовых секций крыльев в нормальной аэродинамической конфигурации, при этом блокирующая система выполнена с возможностью разблокирования перед приведением в действие подъемной системы.
7. Космический аппарат по п.6, в котором указанная блокирующая система содержит пневматические приводы.
8. Космический аппарат по п.1, дополнительно содержащий средство для жесткого соединения друг с другом хвостовых секций крыла.
RU2005133195/11A 2003-03-28 2004-03-29 Снабженный крыльями космический аппарат RU2333868C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US45869703P 2003-03-28 2003-03-28
US60/458,697 2003-03-28

Publications (2)

Publication Number Publication Date
RU2005133195A RU2005133195A (ru) 2006-03-10
RU2333868C2 true RU2333868C2 (ru) 2008-09-20

Family

ID=33299650

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005133195/11A RU2333868C2 (ru) 2003-03-28 2004-03-29 Снабженный крыльями космический аппарат

Country Status (10)

Country Link
US (1) US7195207B2 (ru)
EP (1) EP1608555B1 (ru)
JP (1) JP4220521B2 (ru)
KR (1) KR100743583B1 (ru)
CN (1) CN100347042C (ru)
AT (1) ATE388084T1 (ru)
CA (1) CA2519871C (ru)
DE (1) DE602004012239T2 (ru)
RU (1) RU2333868C2 (ru)
WO (1) WO2004092013A2 (ru)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8073967B2 (en) 2002-04-15 2011-12-06 Fisher-Rosemount Systems, Inc. Web services-based communications for use with process control systems
US7720727B2 (en) 2001-03-01 2010-05-18 Fisher-Rosemount Systems, Inc. Economic calculations in process control system
JP4690766B2 (ja) * 2005-05-09 2011-06-01 富士重工業株式会社 無人航空機
FR2907422B1 (fr) * 2006-10-20 2009-12-18 Astrium Sas Aeronef a vol mixte aerodynamique et spatial, et procede de pilotage associe.
US20100044494A1 (en) * 2008-04-17 2010-02-25 Teacherson George A Space launcher
FR2959208B1 (fr) 2010-04-22 2012-05-25 Eurl Jmdtheque Engin gyropendulaire a propulsion compensatoire et collimation de gradient fluidique multi-milieux multimodal a decollage et atterrissage vertical
FR2961179B1 (fr) * 2010-06-14 2012-07-27 Astrium Sas Module reutilisable simplifie pour lanceur
FR2981911B1 (fr) 2011-10-27 2014-04-25 Jean Marc Joseph Desaulniers Exosquelette geometrique actif a carenage annulaire pseudo-rhomboedrique pour engin gyropendulaire
RU2503592C1 (ru) * 2012-10-08 2014-01-10 Николай Евгеньевич Староверов Космолет староверова (варианты) и алгоритм его работы
US8727264B1 (en) 2013-06-11 2014-05-20 Elbert L. Rutan Dynamic tow maneuver orbital launch technique
US8960590B2 (en) 2013-07-18 2015-02-24 Elbert L. Rutan Pressure-equalizing cradle for booster rocket mounting
US10279903B2 (en) * 2014-05-20 2019-05-07 Sikorsky Aircraft Corporation In-flight reconfigurable aircraft tail
CN104986358B (zh) * 2015-06-24 2017-01-04 西北工业大学 一种增稳充气式再入飞行器
FR3066125B1 (fr) * 2017-05-09 2020-05-29 Delair Drone a voilure fixe comportant un ensemble empennage de nouvelle configuration
US20220315250A1 (en) 2019-06-07 2022-10-06 Arianegroup Sas Space aircraft with optimised design and architecture
CN112078789B (zh) * 2019-06-14 2024-04-09 陶德泉 高超音速飞行器
US11851160B2 (en) * 2021-03-02 2023-12-26 The Boeing Company Actuation apparatus for control of thin wing aircraft surfaces
US11970293B2 (en) * 2022-03-26 2024-04-30 Epazz, Inc. Drone with extendable and rotatable wings and multiple accessory securing panel
US11834149B2 (en) * 2022-04-22 2023-12-05 Baxter Aerospace Llc Aircraft with articulatable tail section
US11834150B2 (en) 2022-04-22 2023-12-05 Baxter Aerospace Llc Aircraft rotor with variable collective blade angle
US20240002076A1 (en) * 2022-06-29 2024-01-04 Whisper Aero Inc. Ultra-quiet drone

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3125313A (en) 1964-03-17 Aircraft control means
USRE26380E (en) 1968-04-23 Flexible wing vehicle configurations
US3065937A (en) 1960-04-18 1962-11-27 Lockheed Aircraft Corp Collapsible spacecraft
US3160366A (en) 1960-07-08 1964-12-08 Avien Inc Outer space vehicle with means controlling its rate of entering the atmosphere of a planet
US3204892A (en) 1963-08-01 1965-09-07 Lockheed Aircraft Corp Aerospace vehicle
US3390853A (en) 1966-05-23 1968-07-02 North American Rockwell Variable geometry re-entry vehicle
GB1187016A (en) * 1966-06-29 1970-04-08 British Aircraft Corp Ltd Improvements relating to Space Vehicles.
US3534924A (en) 1967-09-07 1970-10-20 Nasa Variable geometry manned orbital vehicle
DE2136129C3 (de) * 1971-07-20 1981-09-17 Erno Raumfahrttechnik Gmbh, 2800 Bremen Raumfahrzeug mit abdeckbaren Triebwerken
US4047680A (en) 1974-08-16 1977-09-13 Kaniut Herbert M Swingtail for spacecraft and for fast aircraft
US4703905A (en) 1985-09-05 1987-11-03 Grumman Aerospace Corporation Manned entry vehicle system
US4896847A (en) 1988-11-02 1990-01-30 General Dynamics Corporation, Convair Division Aerodynamic braking system for recovering a space vehicle
JP2680705B2 (ja) 1989-11-27 1997-11-19 三菱重工業株式会社 宇宙往還航空機の垂直尾翼折りたたみ装置
US5029773A (en) 1990-01-24 1991-07-09 Grumman Aerospace Corporation Cable towed decoy with collapsible fins
US5169095A (en) 1991-02-15 1992-12-08 Grumman Aerospace Corporation Self-righting gliding aerobody/decoy
US5863013A (en) * 1991-11-20 1999-01-26 Freewing Aerial Robotics Corporation STOL/VTOL free wing aircraft with improved shock dampening and absorbing means
US5769359A (en) 1993-01-22 1998-06-23 Freewing Aerial Robotics Corporation Active feedback loop to control body pitch in STOL/VTOL free wing aircraft
US5941478A (en) 1998-04-28 1999-08-24 Freewing Aerial Robotics Corporation STOL/VTOL free wing aircraft with modular wing and tail
US6502785B1 (en) 1999-11-17 2003-01-07 Lockheed Martin Corporation Three axis flap control system

Also Published As

Publication number Publication date
CN100347042C (zh) 2007-11-07
CN1767977A (zh) 2006-05-03
EP1608555A2 (en) 2005-12-28
JP2006514594A (ja) 2006-05-11
KR20060003337A (ko) 2006-01-10
EP1608555B1 (en) 2008-03-05
US7195207B2 (en) 2007-03-27
CA2519871A1 (en) 2004-10-28
DE602004012239T2 (de) 2009-03-19
WO2004092013A2 (en) 2004-10-28
EP1608555A4 (en) 2007-05-16
US20060108479A1 (en) 2006-05-25
ATE388084T1 (de) 2008-03-15
DE602004012239D1 (de) 2008-04-17
RU2005133195A (ru) 2006-03-10
KR100743583B1 (ko) 2007-07-27
CA2519871C (en) 2008-11-18
WO2004092013A3 (en) 2005-03-10
JP4220521B2 (ja) 2009-02-04

Similar Documents

Publication Publication Date Title
RU2333868C2 (ru) Снабженный крыльями космический аппарат
US12019439B2 (en) Free wing multirotor with vertical and horizontal rotors
EP3604124B1 (en) Combination flight and ground apparatus for a vehicle
US6227487B1 (en) Augmented wing tip drag flap
RU2440916C1 (ru) Самолет интегральной аэродинамической компоновки
EP0680436B1 (en) Stol/vtol free wing aircraft with articulated tail boom
CN106927022B (zh) 基于自展开折叠翼技术的超大展弦比飞机
WO2018171089A1 (zh) 基于自展开折叠翼技术的超大展弦比飞机
WO2017184270A2 (en) Rotating wing assemblies for tailsitter aircraft
US20200055595A1 (en) Cruise efficient vertical and short take-off and landing aircraft
US5495999A (en) Retractable canard wing surfaces for airplanes
US2925233A (en) Aircraft wing fold system
US9561844B2 (en) System and method for an air vehicle
WO2007117260A2 (en) Aircraft with belly flaps
WO2006022813A2 (en) High-lift, low-drag dual fuselage aircraft
US20220177115A1 (en) High-lift device
CN114945509A (zh) 包括中央翼和两个可旋转侧翼的电动推进飞行器
RU2321526C1 (ru) Многоразовый ускоритель ракеты-носителя
US3880384A (en) Direct lift control of aircraft
IL303139A (en) drone
Toll Variable sweep wing aircraft Patent

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20210330