RU2329618C1 - Лабораторная камера микроволнового нагрева - Google Patents

Лабораторная камера микроволнового нагрева Download PDF

Info

Publication number
RU2329618C1
RU2329618C1 RU2007100648/09A RU2007100648A RU2329618C1 RU 2329618 C1 RU2329618 C1 RU 2329618C1 RU 2007100648/09 A RU2007100648/09 A RU 2007100648/09A RU 2007100648 A RU2007100648 A RU 2007100648A RU 2329618 C1 RU2329618 C1 RU 2329618C1
Authority
RU
Russia
Prior art keywords
microwave
resonator
chamber
radius
coaxial line
Prior art date
Application number
RU2007100648/09A
Other languages
English (en)
Inventor
В чеслав В чеславович Комаров (RU)
Вячеслав Вячеславович Комаров
Original Assignee
Государственное образовательное учреждение высшего профессионального образования Саратовский государственный технический университет (СГТУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования Саратовский государственный технический университет (СГТУ) filed Critical Государственное образовательное учреждение высшего профессионального образования Саратовский государственный технический университет (СГТУ)
Priority to RU2007100648/09A priority Critical patent/RU2329618C1/ru
Application granted granted Critical
Publication of RU2329618C1 publication Critical patent/RU2329618C1/ru

Links

Images

Landscapes

  • Constitution Of High-Frequency Heating (AREA)

Abstract

Изобретение относится к области микроволновой техники и может быть использовано для нагрева образцов жидких диэлектрических сред энергией электромагнитного поля, например в СВЧ-химии, СВЧ-биологии, СВЧ-реологии и т.д. Техническим результатом является упрощение, повышение коэффициента заполнения и снижение КВС. Резонаторная камера прямоугольной формы высотой Н содержит металлическое прямоугольное ребро, соединенное с помощью индуктивного штыря с 50-омной коаксиальной линией. Радиус (r1) внутреннего проводника коаксиальной линии в два раза больше радиуса (r2) индуктивного штыря, расположенного под углом 90° в центре широкой стенки резонатора на расстоянии q=0.3042H от нижней металлической стенки резонатора. Облучаемый СВЧ-энергией образец прямоугольной формы (стеклянная кювета с жидким диэлектриком) размещается с помощью фторопластовых держателей между металлическим ребром резонатора и его боковой стенкой. Математическое моделирование S-параметров данного СВЧ-узла позволило установить, что при относительных размерах камеры: b/a=0.4863; t/a=0.1639; d/b=0.5; R/r1=2.3; r2/r1=0.5; q/H=0.3042, u/a=0.1366, где а - размер широкой стенки резонатора вдоль оси X); b - размер узкой стенки резонатора вдоль оси Y; t - ширина металлического ребра; d - расстояние между металлическим ребром и стенкой резонатора (емкостной зазор); R - радиус внешнего проводника коаксиальной линии; u - размер стеклянной кюветы в плоскости XY - в системе обеспечивается КСВ≤3 при вариациях диэлектрических свойств образца: 40≤ε'≤81; 1.2≤ε''≤20.4, где ε' - диэлектрическая проницаемость; ε'' - коэффициент потерь на частоте 2.45 ГГц. 3 ил.

Description

Изобретение относится к сверхвысокочастотным (СВЧ) устройствам для проведения научных исследований процессов взаимодействия электромагнитных (ЭМ) волн с поглощающими средами, например химическими или биологическими растворами.
Разработка специализированного оборудования, выпускаемого отечественными (ГНПП «Торий») и зарубежными (СЕМ, MileStone, Prolabo) производителями лабораторных СВЧ-систем для научных исследований, ведется по двум основным направлениям: многомодовые СВЧ-печи и одномодовые волноводно-резонаторные камеры прямоугольной или цилиндрической конфигурации. Многомодовые системы позволяют исследовать сразу несколько образцов, но для выравнивания ЭМ-полей и компенсации отраженной мощности в них используются дополнительные конструктивные элементы (роторные, ферритовые и др.), что оказывает влияние на их массогабаритные показатели. Одномодовые устройства предназначены для нагрева, как правило, одного образца, но и здесь возникают проблемы низкой энергетической эффективности системы и неравномерности тепловыделения в области взаимодействия.
Известны конструкции одномодовых резонаторов, используемых для облучения СВЧ-энергией образцов твердых и жидких диэлектрических материалов. Например, для катализа реакций жидких химических растворов в патенте [1] предложен прямоугольный резонатор, соединенный посредством стандартного волновода с магнетронным генератором, а для компенсации отраженной от нагрузки мощности предусмотрен вращающийся дефлектор в виде овальной металлической рамки, размещенный на стыке волновода и резонатора. Другая конструкция представляет собой цилиндрический резонатор, в котором с помощью коаксиального штыря возбуждается тип колебаний E012, а образец помещается вдоль центральной оси резонатора в максимум электрического поля [2]. Еще одна конструкция одномодового цилиндрического резонатора с керамической втулкой и двумя коаксиальными источниками описана в [3].
Недостатком указанных конструкций является невозможность обеспечить высокую интенсивность ЭМ-поля в области взаимодействия, а также значительный уровень отраженной от нагрузки мощности, что требует привлечения обязательного элемента подстройки, компенсирующего отраженную волну.
В качестве прототипа предлагаемого изобретения была выбрана лабораторная камера, выполненная на цилиндрическом резонаторе с боковыми металлическими вставками, предназначенными для выравнивания и одновременной интенсификации электрического поля в области взаимодействия [4]. Возбуждение данного резонатора осуществляется посредством петлевого элемента, являющегося продолжением коаксиальной линии. Для подстройки резонансной частоты при вариациях комплексной диэлектрической проницаемости нагреваемого образца в рабочем интервале температур в конструкции [4] предусмотрены коаксиальные шлейфы.
Недостатком прототипа является его низкая энергетическая эффективность, составляющая примерно 25÷35% [4], что соответствует значению КСВ≈5÷7, а также низкая величина коэффициента заполнения (η), определяемая как отношение объема образца (Vs) к объему камеры (Vc): η=Vs/Vc≈0.06 [4]. Кроме того, еще одним недостатком прототипа является сложность его конструкции: резонаторная камера снабжена механизмом перемещения боковых стенок.
Задачей изобретения является создание лабораторной СВЧ-камеры более простой конструкции с коэффициентом заполнения, в два раза превышающим η прототипа и обеспечивающем КСВ≤3 на частоте 2.45 ГГц в диапазоне вариаций: 40≤ε'≤81; 1.2≤ε''≤20.4, где ε' - диэлектрическая проницаемость; ε'' - коэффициент потерь образца.
Поставленная задача достигается применением резонаторной камеры, состоящей из отрезка прямоугольного волновода с металлическим ребром, соединенным с помощью элемента возбуждения с 50-омной коаксиальной линией. В качестве элемента возбуждения применен индуктивный штырь. Металлическое ребро прямоугольной формы состыковано с коаксиальной линией под прямым углом на расстоянии от короткозамкнутой нижней стенки резонатора, равном q=0.3042Н, где Н - высота камеры, причем радиус индуктивного штыря в два раза меньше радиуса внутреннего проводника коаксиальной линии. Образец нагреваемого материала прямоугольной конфигурации размещается с помощью фторопластовых держателей вертикально между металлическим ребром и одной из стенок камеры перпендикулярно оси индуктивного штыря.
Отличительные признаки являются существенными, так как позволяют достичь поставленной задачи и получить технический эффект. Конструкция заявляемой камеры более простая, чем у прототипа, так как резонатор на прямоугольном волноводе с металлическим ребром (ПВ) имеет фиксированные размеры и у него отсутствует механизм перемещения боковых стенок, а кроме того, вместо петли в качестве элемента возбуждения применяется индуктивный штырь. Размещение этого штыря на расстоянии q=0.3042H от нижней металлической стенки камеры, а также поперечные размеры камеры позволяют обеспечить КСВ≤3 в диапазоне вариаций комплексной диэлектрической проницаемости (КДП) облучаемого материала: 40≤ε'≤81; 1.2≤ε''≤20.4, что соответствует повышению энергетической эффективности СВЧ-системы примерно до 70%. Наконец, коэффициент заполнения заявляемой камеры в два раза превышает аналогичный параметр прототипа.
Предлагаемое изобретение поясняется чертежами. На фиг.1 представлена трехмерная конфигурация заявляемой лабораторной СВЧ-камеры. На фиг.2 показано сечение камеры в плоскости XY в том месте, где размещается образец, а на фиг.3 дано сечение камеры в плоскости XY в месте стыка внутреннего проводника коаксиальной линии, индуктивного штыря и металлического ребра.
Заявляемая СВЧ-камера состоит из отрезка ПВ 1 с короткозамкнутой металлической стенкой 2 и коаксиально-волноводного перехода 3. Нагреваемый образец 4 размещается внутри камеры между фторопластовыми держателями 5, как показано на фиг.1. Коаксиальная линия с внешним проводником 6 и внутренним проводником 7 стыкуется с металлическим ребром камеры с помощью индуктивного штыря 8, радиус которого в два раза меньше радиуса внутреннего проводника 7 коаксиальной линии. Индуктивный штырь размещается на расстоянии q=0.3042H от нижней металлической стенки камеры.
Оптимизация численной модели данной лабораторной СВЧ-камеры, проведенная с помощью метода конечных разностей во временной области и метода сопряженных градиентов показала, что при относительных размерах камеры: b/a=0.4863; t/a=0.1639; d/b=0.5; u/a=0.1366; R/r1=2.3; r2/r1=0.5; q/H=0.3042, где Н - высота камеры; q - расстояние от нижней стенки камеры до оси штыря (Фиг.1); a - размер широкой стенки резонатора (вдоль оси X); b - размер узкой стенки резонатора (вдоль оси Y); t - ширина металлического ребра; d - расстояние между металлическим ребром и стенкой резонатора (емкостной зазор); u - размер стеклянной кюветы в плоскости XY (Фиг.2); R - радиус внешнего проводника коаксиальной линии; r1 - радиус внутреннего проводника коаксиальной линии; r2 - радиус индуктивного штыря (Фиг.3) и размерах образца: X×Y×Z=10×10×75 мм, на частоте 2.45 ГГц в системе обеспечивается КСВ≤3 при вариациях КДП образца: 40≤ε'≤81; 1.2≤ε''≤20.4, а также достигается напряженность электрического поля в образце воды
Figure 00000002
, что примерно в 2.5 раза выше чем у прототипа. При этом за счет увеличения резонансной частоты удается снизить габаритные размеры камеры и увеличить коэффициент заполнения до η=0.13.
Данная микроволновая система может быть использована для проведения научных исследований процессов взаимодействия ЭМ-волн с диссипативными жидкими диэлектриками, например в области СВЧ-химии, СВЧ-биологии, СВЧ-реологии.
Литература
1. US Patent №6614010 B2. Microwave heating apparatus / M.Fagrell, O.G.Risman. Published 2.09.2003.
2. Microwave processing and diagnostics of chemically reacting materials in a single-mode cavity applicator / Jow J., Hawley M.C., Finzel M. et al // IEEE Trans. 1987. Vol. MTT-35. N12. P.1435-1443.
3. US Patent №6933482 B2. Microwave heating apparatus / M.Fagrell, O.G.Risman. Published 23.08.2005.
4. A re-entrant cavity for microwave enhanced chemistry / S.Kalhori, N.Elander, J.Svennebrink, S.Stone-Elander // International Journal of Microwave Power and Electromagnetic Energy. 2003. Vol.38. N2. P.125-135.

Claims (1)

  1. Резонаторная камера, состоящая из отрезка прямоугольного волновода с металлическим ребром, соединенным с помощью элемента возбуждения с 50-омной коаксиальной линией, отличающаяся тем, что в качестве элемента возбуждения используется индуктивный штырь, а металлическое ребро прямоугольной формы состыковано с коаксиальной линией под прямым углом на расстоянии от короткозамкнутой нижней стенки резонатора, равном q=0,3042H, где Н - высота камеры, причем радиус индуктивного штыря в два раза меньше радиуса внутреннего проводника коаксиальной линии, кроме того, введены фторопластовые держатели, которые установлены в камере для размещения образца нагреваемого материала прямоугольной конфигурации между металлическим ребром и одной из стенок камеры перпендикулярно оси индуктивного штыря.
RU2007100648/09A 2007-01-09 2007-01-09 Лабораторная камера микроволнового нагрева RU2329618C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2007100648/09A RU2329618C1 (ru) 2007-01-09 2007-01-09 Лабораторная камера микроволнового нагрева

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2007100648/09A RU2329618C1 (ru) 2007-01-09 2007-01-09 Лабораторная камера микроволнового нагрева

Publications (1)

Publication Number Publication Date
RU2329618C1 true RU2329618C1 (ru) 2008-07-20

Family

ID=39809311

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007100648/09A RU2329618C1 (ru) 2007-01-09 2007-01-09 Лабораторная камера микроволнового нагрева

Country Status (1)

Country Link
RU (1) RU2329618C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116193659A (zh) * 2023-04-24 2023-05-30 河北科技大学 微波条件加热效果评价方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116193659A (zh) * 2023-04-24 2023-05-30 河北科技大学 微波条件加热效果评价方法

Similar Documents

Publication Publication Date Title
EP2244529B1 (en) Device for Heating a Sample by Microwave Radiation
JP4719870B2 (ja) 3つのデカップルされた発振器を含むマイクロ波又は無線波装置
Barroso et al. Gyrotron coaxial cylindrical resonators with corrugated inner conductor: Theory and experiment
US7528353B2 (en) Microwave heating device
Rajpurohit et al. Design optimization of two input multimode applicator for efficient microwave heating
RU2329618C1 (ru) Лабораторная камера микроволнового нагрева
Singh et al. Multimode behavior of a 42GHz, 200kW gyrotron
Hu et al. Effective optimization of temperature uniformity and power efficiency in two-ports microwave ovens
Taeb et al. A low cost and sensitive sensor based on the Whispering Gallery Mode at D-band
Luo Analyses of multimode forming process in a microwave-heating cavity
Xu et al. Electromagnetic Black Hole for Efficiency Microwave Heating Based on Gradient-Index Metamaterials in Multimode Cavities
Glyavin et al. The design of the 394.6 Ghz continuously tunable coaxial gyrotron for DNP spectroscopy
Reszke Split energy delivery to material heating at RF and microwave frequencies
Sklavounos et al. Permittivity measurements of liquids at millimeter-wave frequencies using an overmoded cavity resonator
Galaydych et al. Mathematical model of an excitation by electron beam of “whispering gallery” modes in cylindrical dielectric resonator
Jain Design and analysis of metallic photonic band gap cavity for a gyrotron
Shimozuma et al. A 120 GHz high-power whispering-gallery mode gyrotron
Vezinet et al. Plane wave in vitro exposure of biological samples, geometries considerations
RU130178U1 (ru) Камера для сверхвысокочастотного нагрева диэлектриков
JP2005509249A (ja) マイクロ波アプリケータシステム
Bondarenko et al. Microwave irregular resonant structures
Vorobyov et al. Particularities of transformation of surface electromagnetic waves into spatial radiation waves upon periodic metal dielectric structures
EP1521501A1 (en) Microwave heating device
Chang et al. A new applicator for efficient uniform heating using a circular cylindrical geometry
Neshat et al. Mode-selective dielectric resonator coupled to dielectric image waveguide for sensing applications

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20100110