RU2315810C2 - METHOD FOR PREPARING L-THREONINE OR L-LYSINE USING MICROORGANISM BELONGING TO Escherichia GENUS WHEREIN nac GENE IS INACTIVATED - Google Patents

METHOD FOR PREPARING L-THREONINE OR L-LYSINE USING MICROORGANISM BELONGING TO Escherichia GENUS WHEREIN nac GENE IS INACTIVATED Download PDF

Info

Publication number
RU2315810C2
RU2315810C2 RU2006104648/13A RU2006104648A RU2315810C2 RU 2315810 C2 RU2315810 C2 RU 2315810C2 RU 2006104648/13 A RU2006104648/13 A RU 2006104648/13A RU 2006104648 A RU2006104648 A RU 2006104648A RU 2315810 C2 RU2315810 C2 RU 2315810C2
Authority
RU
Russia
Prior art keywords
strain
gene
coli
bacterium
nac
Prior art date
Application number
RU2006104648/13A
Other languages
Russian (ru)
Other versions
RU2006104648A (en
Inventor
Дмитрий Владимирович Филиппов
Эльвира Борисовна Ворошилова
Михаил Маркович Гусятинер
Original Assignee
Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) filed Critical Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ)
Priority to RU2006104648/13A priority Critical patent/RU2315810C2/en
Publication of RU2006104648A publication Critical patent/RU2006104648A/en
Application granted granted Critical
Publication of RU2315810C2 publication Critical patent/RU2315810C2/en

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

FIELD: biotechnology, microbiology, amino acids.
SUBSTANCE: invention proposes a method for preparing such L-amino acids as L-threonine or L-lysine using a microorganism belonging to Escherichia genus that is modified and nac gene is inactivated in this microorganism. Invention provides preparing L-threonine or L-lysine with high degree of effectiveness.
EFFECT: improved preparing method.
3 cl, 3 tbl, 2 dwg, 11 ex

Description

Область техникиTechnical field

Настоящее изобретение относится к микробиологической промышленности, в частности к способу получения L-аминокислоты с использованием бактерии, принадлежащей к роду Escherichia, модифицированной таким образом, что ген nac в указанной бактерии инактивирован.The present invention relates to the microbiological industry, in particular to a method for producing an L-amino acid using a bacterium belonging to the genus Escherichia, modified in such a way that the nac gene in the bacterium is inactivated.

Описание предшествующего уровня техникиDescription of the Related Art

Белок Nac (Nitrogen Assimilation Control) относится к семейству LysR. Этот белок-регулятор участвует в контроле экспрессии нескольких генов, вовлеченных в утилизацию гистидина и ассимиляцию азота. Белок Nac выступает как репрессор гена asnC и оперона gabDTPC в ответ на ограниченное количество азота. Рост в условиях ограничения по азоту ведет к острой нехватке глутамина. Посредством сложного каскада реакций нехватка глутамина у бактерии Klebsiella aerogenes приводит к фосфорилированию (и активации) белка-регулятора транскрипции NtrC. Фосфорилированный белок NtrC активирует РНК-полимеразу, несущую σ54, что приводит к транскрипции ряда генов, одним из которых является ген nac, кодирующий белок Nac. Белок Nac, в свою очередь, активирует РНК-полимеразу, несущую σ70, что приводит к транскрипции ряда оперонов, продукты экспрессии которых могут снабдить клетку солями аммония или глутаматом, используя альтернативные источники органических веществ. Белок Nac также подавляет экспрессию тех оперонов, функцией которых является ассимиляция солей аммония в том случае, когда они присутствуют в больших количествах. Опероны, активируемые белком Nac в бактерии К. aerogenes, включают в себя опероны hutUH, putP и ureDABCEFG, кодирующие ферменты, необходимые для катаболизма гистидина, пролина и мочевины соответственно. Опероны, подавляемые белком Nac, включают в себя опероны gdhA (глутаматдегидрогеназа [GDH]), gItBD (глутаматсинтаза) и собственно nac (Schwacha, A. and Bender, R.A., J. Bacteriol., 175, 7 2107-2115 (1993)).Protein Nac (Nitrogen Assimilation Control) belongs to the LysR family. This regulatory protein is involved in controlling the expression of several genes involved in histidine utilization and nitrogen assimilation. The Nac protein acts as a repressor of the asnC gene and the gabDTPC operon in response to a limited amount of nitrogen. Growth under nitrogen restrictions leads to an acute lack of glutamine. Through a complex cascade of reactions, glutamine deficiency in the bacterium Klebsiella aerogenes leads to phosphorylation (and activation) of the NtrC transcriptional regulatory protein. The phosphorylated NtrC protein activates R54 polymerase carrying σ54, which leads to the transcription of a number of genes, one of which is the nac gene encoding the Nac protein. The Nac protein, in turn, activates RNA polymerase carrying σ70, which leads to the transcription of a number of operons whose expression products can supply the cell with ammonium salts or glutamate using alternative sources of organic substances. The Nac protein also inhibits the expression of those operons whose function is the assimilation of ammonium salts when they are present in large quantities. Operons activated by the Nac protein in K. aerogenes bacteria include the hutUH, putP and ureDABCEFG operons, which encode the enzymes necessary for the catabolism of histidine, proline and urea, respectively. Operons suppressed by the Nac protein include the operons gdhA (glutamate dehydrogenase [GDH]), gItBD (glutamate synthase) and nac proper (Schwacha, A. and Bender, RA, J. Bacteriol., 175, 7 2107-2115 (1993)) .

Недавно был описан ген, кодирующий белок Nac бактерии Escherichia coli (Muse, W.B. and Bender R.A., J. Bacteriol., 180, 5 1166-1173 (1998)).Recently, a gene encoding a Nac protein of the bacterium Escherichia coli has been described (Muse, W.B. and Bender R.A., J. Bacteriol., 180, 5 1166-1173 (1998)).

Но в настоящее время нет сообщений, описывающих использование инактивации гена nac для получения L-аминокислот.But there are currently no reports describing the use of inactivation of the nac gene to produce L-amino acids.

Описание изобретенияDescription of the invention

Целями настоящего изобретения являются повышение продуктивности штаммов-продуцентов L-аминокислоты и предоставление способа получения L-аминокислоты с использованием этих штаммов.The objectives of the present invention are to increase the productivity of strains producing L-amino acids and provide a method for producing L-amino acids using these strains.

Вышеупомянутые цели были достигнуты путем установления того факта, что ослабление экспрессии гена nac может привести к повышению продукции L-аминокислот, таких как L-треонин, L-лизин, L-цистеин, L-лейцин, L-гистидин, L-глутаминовая кислота, L-фенилаланин, L-триптофан, L-пролин и L-аргинин.The above objectives were achieved by establishing the fact that the weakening of nac gene expression can lead to increased production of L-amino acids such as L-threonine, L-lysine, L-cysteine, L-leucine, L-histidine, L-glutamic acid, L-phenylalanine, L-tryptophan, L-proline and L-arginine.

Настоящее изобретение предоставляет бактерию семейства Enterobacteriaceae, обладающую способностью к повышенной продукции аминокислот, таких как L-треонин, L-лизин, L-цистеин, L-лейцин, L-гистидин, L-глутаминовая кислота, L-фенилаланин, L-триптофан, L-пролин и L-аргинин.The present invention provides a bacterium of the Enterobacteriaceae family that is capable of increased production of amino acids such as L-threonine, L-lysine, L-cysteine, L-leucine, L-histidine, L-glutamic acid, L-phenylalanine, L-tryptophan, L Proline and L-Arginine.

Целью настоящего изобретения является предоставление бактерии-продуцента L-аминокислоты семейства Enterobacteriaceae, модифицированной таким образом, что экспрессия гена nac в указанной бактерии ослаблена.The aim of the present invention is the provision of bacteria producing L-amino acids of the Enterobacteriaceae family, modified so that the expression of the nac gene in the specified bacteria is weakened.

Также целью настоящего изобретения является предоставление описанной выше бактерии, в которой ослабление экспрессии указанного гена nac осуществлено путем инактивации указанного гена nac.It is also an object of the present invention to provide a bacterium as described above, wherein expression of said nac gene is attenuated by inactivation of said nac gene.

Также целью настоящего изобретения является предоставление описанной выше бактерии, при этом указанная бактерия принадлежит к роду Escherichia.It is also an object of the present invention to provide the bacteria described above, wherein said bacterium belongs to the genus Escherichia.

Также целью настоящего изобретения является предоставление описанной выше бактерии, при этом указанная бактерия принадлежит к роду Pantoea.It is also an object of the present invention to provide the bacteria described above, wherein said bacterium belongs to the genus Pantoea.

Также целью настоящего изобретения является предоставление описанной выше бактерии, при этом указанная L-аминокислота выбрана из группы, состоящей из ароматической L-аминокислоты и неароматической L-аминокислоты.It is also an object of the present invention to provide the bacteria described above, wherein said L-amino acid is selected from the group consisting of an aromatic L-amino acid and a non-aromatic L-amino acid.

Также целью настоящего изобретения является предоставление описанной выше бактерии, при этом ароматическая L-аминокислота выбрана из группы, состоящей из L-фенилаланина, L-тирозина и L-триптофана.It is also an object of the present invention to provide the bacteria described above, wherein the aromatic L-amino acid is selected from the group consisting of L-phenylalanine, L-tyrosine and L-tryptophan.

Также целью настоящего изобретения является предоставление описанной выше бактерии, при этом неароматическая L-аминокислота выбрана из группы, состоящей из L-треонина, L-лизина, L-цистеина, L-метионина, L-лейцина, L-изолейцина, L-валина, L-гистидина, L-глицина, L-серина, L-аланина, L-аспарагина, L-аспартата, L-глутамина, L-глутаминовой кислоты, L-пролина и L-аргинина.Another objective of the present invention is the provision of the bacteria described above, while the non-aromatic L-amino acid is selected from the group consisting of L-threonine, L-lysine, L-cysteine, L-methionine, L-leucine, L-isoleucine, L-valine, L-histidine, L-glycine, L-serine, L-alanine, L-asparagine, L-aspartate, L-glutamine, L-glutamic acid, L-proline and L-arginine.

Также целью настоящего изобретения является предоставление способа получения L-аминокислоты, который включает в себя:Another objective of the present invention is the provision of a method for producing L-amino acids, which includes:

- выращивание описанной выше бактерии в питательной среде с целью продукции и накопления L-аминокислоты в питательной среде, и- growing the above bacteria in a nutrient medium for the purpose of production and accumulation of L-amino acids in a nutrient medium, and

- выделение указанной L-аминокислоты из культуральной жидкости.- the allocation of the specified L-amino acids from the culture fluid.

Также целью настоящего изобретения является предоставление описанного выше способа, при этом указанная L-аминокислота выбрана из группы, состоящей из ароматической L-аминокислоты и неароматической L-аминокислоты.It is also an object of the present invention to provide the method described above, wherein said L-amino acid is selected from the group consisting of an aromatic L-amino acid and a non-aromatic L-amino acid.

Также целью настоящего изобретения является предоставление описанного выше способа, при этом указанная ароматическая L-аминокислота выбрана из группы, состоящей из L-фенилаланина, L-тирозина и L-триптофана.It is also an object of the present invention to provide the method described above, wherein said aromatic L-amino acid is selected from the group consisting of L-phenylalanine, L-tyrosine and L-tryptophan.

Также целью настоящего изобретения является предоставление описанного выше способа, при этом указанная неароматическая L-аминокислота выбрана из группы, состоящей из L-треонина, L-лизина, L-цистеина, L-метионина, L-лейцина, L-изолейцина, L-валина, L-гистидина, L-глицина, L-серина, L-аланина, L-аспарагина, L-аспартата, L-глутамина, L-глутаминовой кислоты, L-пролина и L-аргинина.It is also an object of the present invention to provide the method described above, wherein said non-aromatic L-amino acid is selected from the group consisting of L-threonine, L-lysine, L-cysteine, L-methionine, L-leucine, L-isoleucine, L-valine , L-histidine, L-glycine, L-serine, L-alanine, L-asparagine, L-aspartate, L-glutamine, L-glutamic acid, L-proline and L-arginine.

Более детально настоящее изобретение описано ниже.In more detail, the present invention is described below.

Подробное описание наилучшего способа осуществления изобретенияDetailed Description of the Best Mode for Carrying Out the Invention

1. Бактерия согласно настоящему изобретению1. The bacterium according to the present invention

Бактерия согласно настоящему изобретению - это бактерия-продуцент L-аминокислоты семейства Enterobacteriaceae, модифицированная таким образом, что экспрессия гена nac в указанной бактерии ослаблена.The bacterium according to the present invention is a bacterium producing L-amino acids of the Enterobacteriaceae family, modified in such a way that expression of the nac gene in said bacterium is weakened.

Согласно настоящему изобретению «бактерия-продуцент L-аминокислоты» означает бактерию, обладающую способностью к продукции и выделению L-аминокислоты в питательную среду, когда бактерия согласно настоящему изобретению выращивается в указанной питательной среде.According to the present invention, “L-amino acid producing bacterium” means a bacterium capable of producing and secreting an L-amino acid into a culture medium when the bacterium of the present invention is grown in said culture medium.

Используемый здесь термин «бактерия-продуцент L-аминокислоты» также означает бактерию, которая способна к продукции L-аминокислоты и вызывает накопление L-аминокислоты в ферментационной среде в больших количествах по сравнению с природным или родительским штаммом Е. coli, таким как штамм Е. coli К-12, и предпочтительно означает, что указанный микроорганизм способен накапливать в среде целевую L-аминокислоту в количестве не менее чем 0.5 г/л, более предпочтительно не менее чем 1.0 г/л. Термин «L-аминокислота» включает в себя L-аланин, L-аргинин, L-аспарагин, L-аспарагиновую кислоту, L-цистеин, L-глутаминовую кислоту, L-глутамин, L-глицин, L-гистидин, L-изолейцин, L-лейцин, L-лизин, L-метионин, L-фенилаланин, L-пролин, L-серин, L-треонин, L-триптофан, L-тирозин и L-валин.As used herein, the term “L-amino acid producing bacterium” also means a bacterium that is capable of producing the L-amino acid and causes the accumulation of the L-amino acid in the fermentation medium in large quantities compared to the natural or parent strain of E. coli, such as strain E. coli K-12, and preferably means that the microorganism is able to accumulate in the medium the target L-amino acid in an amount of not less than 0.5 g / l, more preferably not less than 1.0 g / l. The term “L-amino acid” includes L-alanine, L-arginine, L-asparagine, L-aspartic acid, L-cysteine, L-glutamic acid, L-glutamine, L-glycine, L-histidine, L-isoleucine , L-leucine, L-lysine, L-methionine, L-phenylalanine, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine and L-valine.

Термин «ароматическая L-аминокислота» включает в себя L-фенилаланин, L-тирозин и L-триптофан. Термин «неароматическая L-аминокислота» включает в себя L-треонин, L-лизин, L-цистеин, L-метионин, L-лейцин, L-изолейцин, L-валин, L-гистидин, L-глицин, L-серин, L-аланин, L-аспарагин, L-аспартат, L-глутамин, L-глутаминовую кислоту, L-пролин и L-аргинин. Наиболее предпочтительны L-треонин, L-лизин, L-цистеин, L-лейцин, L-гистидин, L-глутаминовая кислота, L-фенилаланин, L-триптофан, L-пролин и L-аргинин.The term “aromatic L-amino acid” includes L-phenylalanine, L-tyrosine and L-tryptophan. The term “non-aromatic L-amino acid” includes L-threonine, L-lysine, L-cysteine, L-methionine, L-leucine, L-isoleucine, L-valine, L-histidine, L-glycine, L-serine, L-alanine, L-asparagine, L-aspartate, L-glutamine, L-glutamic acid, L-proline and L-arginine. Most preferred are L-threonine, L-lysine, L-cysteine, L-leucine, L-histidine, L-glutamic acid, L-phenylalanine, L-tryptophan, L-proline and L-arginine.

Семейство Enterobacteriaceae включает в себя бактерии, принадлежащие к родам Escherichia, Enterobacter, Erwinia, Klebsiella, Pantoea, Photorhabdus, Providencia, Salmonella, Serratia, Shigella, Morganella, Yersinia и т.д. Более конкретно, могут быть использованы бактерии, классифицируемые как принадлежащие к семейству Enterobacteriaceae в соответствии с таксономией, используемой в базе данных NCBI (National Center for Biotechnology Information) (http://www.ncbi.nlm.nih.gov/htbinpost/Taxonomy/wgetorg?mode=Tree&id=1236&1v1=3&k eep=l&srchmode=l&unlock). Бактерия, принадлежащая к родам Escherichia или Pantoea, предпочтительна.The Enterobacteriaceae family includes bacteria belonging to the genera Escherichia, Enterobacter, Erwinia, Klebsiella, Pantoea, Photorhabdus, Providencia, Salmonella, Serratia, Shigella, Morganella, Yersinia, etc. More specifically, bacteria classified as belonging to the Enterobacteriaceae family according to the taxonomy used in the NCBI database (National Center for Biotechnology Information) (http://www.ncbi.nlm.nih.gov/htbinpost/Taxonomy/ can be used. wgetorg? mode = Tree & id = 1236 & 1v1 = 3 & k eep = l & srchmode = l & unlock). A bacterium belonging to the genera Escherichia or Pantoea is preferred.

Термин "бактерия, принадлежащая к роду Escherichia" означает, что бактерия относится к роду Escherichia в соответствии с классификацией, известной специалисту в области микробиологии. В качестве примера микроорганизма, принадлежащего к роду Escherichia, использованного в настоящем изобретении, может быть упомянута бактерия Escherichia coli (E. coli).The term "bacterium belonging to the genus Escherichia" means that the bacterium belongs to the genus Escherichia in accordance with the classification known to the person skilled in the field of microbiology. As an example of a microorganism belonging to the genus Escherichia used in the present invention, the bacterium Escherichia coli (E. coli) may be mentioned.

Круг бактерий, принадлежащих к роду Escherichia, которые могут быть использованы в настоящем изобретении, не ограничен каким-либо образом, однако, например, бактерии, описанные в книге Neidhardt, F.C. et al. (Escherichia coli and Salmonella typhimurium, American Society for Microbiology, Washington D.C., 1208, Таблица 1), могут быть включены в число бактерий согласно настоящему изобретению.The range of bacteria belonging to the genus Escherichia that can be used in the present invention is not limited in any way, however, for example, the bacteria described in Neidhardt, F.C. et al. (Escherichia coli and Salmonella typhimurium, American Society for Microbiology, Washington D.C., 1208, Table 1), can be included in the number of bacteria according to the present invention.

Термин «бактерия, принадлежащая к роду Pantoea» означает, что бактерия относится к роду Pantoea в соответствии с классификацией, известной специалисту в области микробиологии. Недавно несколько видов Enterobacter agglomerans были классифицированы как Pantoea agglomerans, Pantoea ananatis, Pantoea stewartii или подобные им на основе анализа нуклеотидной последовательности 16S рРНК и т.д. (Int. J. Syst. Bacteriol., 43, 162-173 (1993)).The term "bacterium belonging to the genus Pantoea" means that the bacterium belongs to the genus Pantoea in accordance with the classification known to the specialist in the field of microbiology. Recently, several Enterobacter agglomerans species have been classified as Pantoea agglomerans, Pantoea ananatis, Pantoea stewartii or the like based on analysis of the 16S rRNA nucleotide sequence, etc. (Int. J. Syst. Bacteriol., 43, 162-173 (1993)).

Термин «бактерия модифицирована таким образом, что экспрессия гена nac ослаблена» означает, что указанная бактерия была модифицирована таким образом, что в результате модификации такая бактерия содержит пониженное количество белка Nac по сравнению с немодифицированной бактерией или указанная бактерия не способна синтезировать белок Nac. Термин «бактерия модифицирована таким образом, что экспрессия гена nac ослаблена» также означает, что целевой ген модифицирован таким образом, что кодирует мутантный белок Nac, обладающий пониженной активностью.The term “bacterium is modified in such a way that expression of the nac gene is weakened” means that said bacterium has been modified in such a way that, as a result of the modification, such a bacterium contains a reduced amount of Nac protein compared to an unmodified bacterium or the specified bacterium is unable to synthesize Nac protein. The term “bacterium is modified in such a way that the expression of the nac gene is weakened” also means that the target gene is modified in such a way that it encodes a mutant Nac protein with reduced activity.

Термин «инактивация гена nac» означает, что указанный ген модифицирован таким образом, что такой модифицированный ген кодирует полностью неактивный белок. Также возможно, что естественная экспрессия модифицированного участка ДНК невозможна из-за делеции целевого гена или его части, сдвига рамки считывания данного гена, введения missense/nonsense мутации (мутаций) или модификации прилегающих к гену областей, которые включают последовательности, контролирующие экспрессию гена, такие как промотор(ы), энхансер(ы), аттенуатор(ы), сайт(ы) связывания рибосомы и т.д.The term "inactivation of the nac gene" means that the specified gene is modified in such a way that such a modified gene encodes a completely inactive protein. It is also possible that natural expression of the modified DNA region is not possible due to deletion of the target gene or part of it, shift of the reading frame of this gene, introduction of missense / nonsense mutations (mutations), or modification of regions adjacent to the gene that include sequences that control gene expression, such as promoter (s), enhancer (s), attenuator (s), ribosome binding site (s), etc.

Уровень экспрессии гена можно оценить путем измерения количества мРНК, транскрибируемой с целевого гена, с использованием различных известных методик, включая гибридизацию по Нозерну (Northern blotting), количественный метод ОТ-ПЦР (RT-PCR) и подобные им. Количество белка, кодируемого данным геном, может быть измерено с помощью известных методов, включающих метод SDS-PAGE с последующим иммуноблотингом (Western blotting) и подобные им.Gene expression can be estimated by measuring the amount of mRNA transcribed from the target gene using various known techniques, including Northern blotting, quantitative RT-PCR and the like. The amount of protein encoded by this gene can be measured using known methods, including the SDS-PAGE method followed by Western blotting and the like.

Ген nac (Nitrogen Assimilation Control) кодирует белок Nac (синоним - В1988), который является транскрипционным активатором путей ассимиляции азота. Ген nac (номера нуклеотидов с 2059040 по 2059957 в нуклеотидной последовательности с инвентарньм номером NC_000913.2 в базе данных GenBank; gi: 49175990; SEQ ID NO: 1) расположен на хромосоме штамма Е. coli К-12 между генами cbl и erfK. Нуклеотидная последовательность гена nac и соответствующая ей аминокислотная последовательность белка Nac, кодируемого геном nac, приведены в Списке последовательностей под номерами 1 (SEQ ID NO: 1) и 2 (SEQ ID NO: 2) соответственно.The nac gene (Nitrogen Assimilation Control) encodes a Nac protein (synonym - B1988), which is a transcriptional activator of nitrogen assimilation pathways. The nac gene (nucleotide numbers 2059040 to 2059957 in the nucleotide sequence with inventory number NC_000913.2 in the GenBank database; gi: 49175990; SEQ ID NO: 1) is located on the chromosome of strain E. coli K-12 between the cbl and erfK genes. The nucleotide sequence of the nac gene and the corresponding amino acid sequence of the Nac protein encoded by the nac gene are shown in the Sequence Listing Numbers 1 (SEQ ID NO: 1) and 2 (SEQ ID NO: 2), respectively.

Поскольку у представителей различных родов и штаммов семейства Enterobacteriaceae возможны некоторые вариации в нуклеотидных последовательностях, понятие инактивируемого гена nac не ограничивается геном, последовательность которого приведена в Списке последовательностей под номером 1 (SEQ ID No: 1), но также может включать и гомологичные ему гены, кодирующие варианты белка Nac. Термин «вариант белка», как он используется в настоящем изобретении, означает белок с изменениями в последовательности, будь то делеции, вставки, добавления или замены аминокислот, при этом сохраняющий активность белка Nac. Количество изменений в варианте белка зависит от положения или типа аминокислотного остатка в третичной структуре белка. Возможно от 2 до 30, предпочтительно от 2 до 15, более предпочтительно от 2 до 5 изменений в последовательности, приведенной в Списке последовательностей под номером 2 (SEQ ID No: 2). Эти изменения в вариантах белка могут иметь место в областях белка, которые некритичны для функционирования белка. Такие изменения допускаются благодаря тому, что некоторые аминокислоты имеют высокую гомологию друг к другу, поэтому такие изменения не влияют на третичную структуру или активность. Таким образом, вариант белка, кодируемого геном nac, может быть представлен белком с гомологией не менее 80%, предпочтительно не менее 90% и наиболее предпочтительно не менее 95% по отношению к полной аминокислотной последовательности, приведенной в Списке последовательностей под номером 2 (SEQ ID No: 2), при условии, что сохраняется способность белка Nac к активации путей ассимиляции азота.Since representatives of various genera and strains of the Enterobacteriaceae family may experience some variations in the nucleotide sequences, the concept of the inactivated nac gene is not limited to the gene shown in the Sequence Listing Number 1 (SEQ ID No: 1), but may also include genes homologous to it, coding variants of the Nac protein. The term "protein variant", as used in the present invention, means a protein with changes in sequence, be it deletion, insertion, addition or replacement of amino acids, while maintaining the activity of the Nac protein. The number of changes in a protein variant depends on the position or type of amino acid residue in the tertiary structure of the protein. Perhaps from 2 to 30, preferably from 2 to 15, more preferably from 2 to 5 changes in the sequence shown in the List of sequences under number 2 (SEQ ID No: 2). These changes in protein variants can occur in areas of the protein that are not critical to the functioning of the protein. Such changes are allowed due to the fact that some amino acids have a high homology to each other, therefore, such changes do not affect the tertiary structure or activity. Thus, a variant of the protein encoded by the nac gene can be represented by a protein with a homology of at least 80%, preferably at least 90% and most preferably at least 95% with respect to the complete amino acid sequence shown in Sequence Listing No. 2 (SEQ ID No: 2), provided that the ability of the Nac protein to activate nitrogen assimilation pathways is maintained.

Гомология между двумя аминокислотными последовательностями может быть определена с использованием известных методов, например компьютерной программы BLAST 2.0, которая считает три параметра: число аминокислот, идентичность и сходство.Homology between two amino acid sequences can be determined using known methods, for example, the BLAST 2.0 computer program, which counts three parameters: amino acid number, identity, and similarity.

Кроме того, ген nac может быть представлен вариантом, который гибридизуется в жестких условиях с нуклеотидной последовательностью, приведенной в Списке последовательностей под номером 1 (SEQ ID No: 1), или с зондом, который может быть синтезирован на основе указанной нуклеотидной последовательности при условии, что указанный вариант кодирует функциональный белок Nac. «Жесткие условия» включают такие условия, при которых специфические гибриды, например гибриды со степенью гомологии не менее 60%, предпочтительно не менее 70%, более предпочтительно не менее 80%, еще более предпочтительно не менее 90%, наиболее предпочтительно не менее 95%, образуются, а неспецифические гибриды, например гибриды со степенью гомологии ниже вышеуказанной, не образуются. Практическим примером жестких условий является однократная отмывка, предпочтительно двух- или трехкратная, при концентрации солей, соответствующей стандартным условиям отмывки при гибридизации по Саузерну, например 1×SSC, 0.1% SDS, предпочтительно 0.1×SSC, 0.1% SDS, при 60°С. Продолжительность отмывки зависит от типа используемой для блоттинга мембраны и, как правило, такова, как рекомендовано производителем. Например, рекомендуемая продолжительность отмывки для нейлоновой мембраны Hybond™ N+ (Amersham) при строгих условиях 15 минут. Предпочтительна двух-, трехкратная отмывка. Длина зонда может быть выбрана в зависимости от условий гибридизации, обычно она составляет от 100 п.н. до 1 т.п.н.In addition, the nac gene can be represented by a variant that hybridizes under stringent conditions with the nucleotide sequence shown in Sequence Listing number 1 (SEQ ID No: 1), or with a probe that can be synthesized based on the specified nucleotide sequence, provided that said variant encodes a functional Nac protein. "Stringent conditions" include those conditions under which specific hybrids, for example hybrids with a degree of homology of at least 60%, preferably at least 70%, more preferably at least 80%, even more preferably at least 90%, most preferably at least 95% are formed, and non-specific hybrids, for example hybrids with a degree of homology lower than the above, are not formed. A practical example of harsh conditions is a one-time washing, preferably two or three times, at a salt concentration corresponding to standard washing conditions for Southern hybridization, for example 1 × SSC, 0.1% SDS, preferably 0.1 × SSC, 0.1% SDS, at 60 ° C. The duration of washing depends on the type of membrane used for blotting and, as a rule, is as recommended by the manufacturer. For example, the recommended wash time for Hybond ™ N + nylon membrane (Amersham) under stringent conditions is 15 minutes. Two to three times washing is preferred. The length of the probe can be selected depending on the hybridization conditions, usually it is from 100 bp up to 1 kb

Экспрессия гена nac может быть ослаблена введением такой мутации в ген на хромосоме, что активность кодируемого геном белка снижена по сравнению с немодифицированным штаммом. Такой мутацией может быть перестановка одного или более основания с целью получения аминокислотной замены в кодируемом геном белке («миссенс»-мутация), введение стоп-кодона («нонсенс»-мутация), делеция одного или нескольких оснований для сдвига рамки считывания, вставка гена устойчивости к антибиотику или делеция части гена или делеция гена полностью (Qiu, Z. and Goodman, M.F., J. Biol. Chem., 272, 8611-8617 (1997); Kwon, D. H. et al, J. Antimicrob. Chemother., 46, 793-796 (2000)). Экспрессия гена nac также может быть ослаблена модификацией регулирующей экспрессию последовательности, такой как промотор, последовательность Шайн-Дальгарно (SD) и т.д. (заявка РСТ WO 95/34672, Carrier, T.A. and Keasling, J.D., Biotechnol. Prog. 15, 58-64 (1999)).Expression of the nac gene can be attenuated by introducing a mutation into the gene on the chromosome such that the activity of the protein encoded by the gene is reduced compared to the unmodified strain. Such a mutation may be a rearrangement of one or more bases in order to obtain an amino acid substitution in a protein encoded by the gene (“missense” mutation), insertion of a stop codon (“nonsense” mutation), deletion of one or more bases for reading frame shift, gene insertion antibiotic resistance or deletion of a part of a gene or deletion of a gene completely (Qiu, Z. and Goodman, MF, J. Biol. Chem., 272, 8611-8617 (1997); Kwon, DH et al, J. Antimicrob. Chemother., 46, 793-796 (2000)). The expression of the nac gene can also be attenuated by modifying the expression control sequence, such as a promoter, a Shine-Dalgarno (SD) sequence, etc. (PCT Application WO 95/34672, Carrier, T.A. and Keasling, J.D., Biotechnol. Prog. 15, 58-64 (1999)).

Например, для введения мутации генной рекомбинацией могут применяться следующие методы. Конструируется мутантный ген, кодирующий мутантный белок со сниженной активностью, бактерия для модификации трансформируется фрагментом ДНК, содержащим мутантный ген. Затем нативный ген на хромосоме заменяется с использованием гомологичной рекомбинации мутантным геном, отбирается полученный штамм. Такое замещение гена с использованием гомологичной рекомбинации может быть проведено методом с использованием линейной ДНК, известным как "Red-зависимая интеграция" (Datsenko, К.А. and Wanner, B.L., Proc. Natl. Acad. Sci. USA, 97, 12, p. 6640-6645 (2000)), или методами с использованием плазмиды, репликация которой чувствительна к температуре (патент США 6303383 или патентная заявка Японии JP 05-007491 А). Далее, введение сайт-специфической мутации генной заменой с использованием гомологичной рекомбинации, такой как описано выше, также может быть проведено с использованием плазмиды, неспособной реплицироваться в клетке хозяина.For example, the following methods can be used to introduce mutations by gene recombination. A mutant gene is constructed that encodes a mutant protein with reduced activity, the bacterium is transformed for modification by a DNA fragment containing the mutant gene. Then the native gene on the chromosome is replaced using homologous recombination with the mutant gene, and the resulting strain is selected. Such gene substitution using homologous recombination can be carried out using a linear DNA method known as "Red-dependent integration" (Datsenko, K.A. and Wanner, BL, Proc. Natl. Acad. Sci. USA, 97, 12, p. 6640-6645 (2000)), or by methods using a plasmid whose replication is temperature sensitive (US patent 6303383 or Japanese patent application JP 05-007491 A). Further, the introduction of a site-specific mutation by gene replacement using homologous recombination, such as described above, can also be carried out using a plasmid incapable of replicating in the host cell.

Экспрессия гена также может быть ослаблена вставкой в кодирующую область гена транспозона или IS-фактора (патент США 5175107) или такими традициоными методами, как мутагенез с использованием УФ-излучения или обработка нитрозогуанидином (N-метил-N'-нитро-N-нитрозогуанидин).Gene expression can also be attenuated by inserting a transposon or IS factor gene into the coding region (US Pat. No. 5,175,107) or by conventional methods such as mutagenesis using UV radiation or treatment with nitrosoguanidine (N-methyl-N'-nitro-N-nitrosoguanidine) .

Наличие активности белка Nac может быть определено путем комплементации мутации nac-, к примеру, с помощью метода, описанного (Muse, W.B. and Bender R.A., J. Bacteriol., 180, 5 1166-1173 (1998)). Таким образом, снижение или отсутствие активности белка Nac в бактерии согласно настоящему изобретению может быть определено путем сравнения указанной бактерии с родительской немодифицированной бактерией.The presence of Nac protein activity can be determined by complementing the nac - mutation, for example, using the method described (Muse, WB and Bender RA, J. Bacteriol., 180, 5 1166-1173 (1998)). Thus, a decrease or absence of Nac protein activity in a bacterium according to the present invention can be determined by comparing said bacterium with a parent unmodified bacterium.

Методами получения плазмидной ДНК, разрезания и лигирования ДНК, трансформации, выбора олигонуклеотидов в качестве праймеров и подобными им могут являться обычные методы, хорошо известные специалисту в данной области. Эти методы описаны, например, в книге Sambrook, J., Fritsch, E.F. and Maniatis, Т., "Molecular Cloning A Laboratory Manual, Second Edition", Cold Spring Harbor Laboratory Press (1989).Methods for obtaining plasmid DNA, cutting and ligation of DNA, transformation, selection of oligonucleotides as primers and the like can be conventional methods well known to those skilled in the art. These methods are described, for example, in the book Sambrook, J., Fritsch, E.F. and Maniatis, T., "Molecular Cloning A Laboratory Manual, Second Edition", Cold Spring Harbor Laboratory Press (1989).

Бактерия-продуцент L-аминокислотыL-amino acid producing bacterium

В качестве бактерии согласно настоящему изобретению, модифицированной таким образом, что экспрессия гена nac ослаблена, может быть использована бактерия, способная к продукции ароматической или неароматической L-аминокислоты.As a bacterium according to the present invention, modified so that expression of the nac gene is impaired, a bacterium capable of producing an aromatic or non-aromatic L-amino acid can be used.

Бактерия согласно настоящему изобретению может быть получена путем ослабления экспрессии гена nac в бактерии, уже обладающей способностью к продукции L-аминокислот. С другой стороны, бактерия согласно настоящему изобретению может быть получена путем придания бактерии, в которой экспрессия гена nac уже ослаблена, способности к продукции L-аминокислот.The bacterium of the present invention can be obtained by attenuating the expression of the nac gene in a bacterium already capable of producing L-amino acids. Alternatively, the bacterium of the present invention can be obtained by imparting a bacterium in which expression of the nac gene is already impaired to the ability to produce L-amino acids.

Бактерия-продуцент L-треонинаL-threonine producing bacterium

Примеры родительского штамма для получения бактерии-продуцента L-треонина согласно настоящему изобретению включают, но не ограничиваются штаммами, принадлежащими к роду Escherichia, такими как штамм Е. coli TDH-6/pVIC40 (ВКПМ В-3996) (патенты США 5175107 и 5705371), штамм Е. coli NRRL-21593 (патент США 5939307), штамм Е. coli FERM ВР-3756 (патент США 5474918), штаммы Е. coli FERM ВР-3519 и FERM BP-3520 (патент США 5376538), штамм Е. coli MG442 (Гусятинер и др. Генетика, 14, 947-956 (1978)), штаммы Е. coli VL643 и VL2055 (Европейская патентная заявка ЕР 1149911 А) и подобные им.Examples of the parent strain for producing the L-threonine producing bacterium of the present invention include, but are not limited to, strains belonging to the genus Escherichia, such as E. coli strain TDH-6 / pVIC40 (VKPM B-3996) (US Pat. Nos. 5,175,107 and 5,705,737) , E. coli strain NRRL-21593 (US patent 5939307), E. coli strain FERM BP-3756 (US patent 5474918), E. coli strains FERM BP-3519 and FERM BP-3520 (US patent 5376538), strain E. coli MG442 (Gusyatiner et al. Genetics, 14, 947-956 (1978)), E. coli strains VL643 and VL2055 (European patent application EP 1149911 A) and the like.

Штамм TDH-6 является дефектным по гену thrC, способен ассимилировать сахарозу и содержит ген ilvA с мутацией типа "leaky". Указанный штамм содержит мутацию в гене rhtA, которая обуславливает устойчивость к высоким концентрациям треонина и гомосерина. Штамм В-3996 содержит плазмиду pVIC40, которая была получена путем введения в вектор, производный от вектора RSF1010, оперона thrA*BC, включающего мутантный ген thrA, кодирующий аспартокиназа-гомосериндегидрогеназу I, у которой существенно снижена чувствительность к ингибированию треонином по типу обратной связи. Штамм В-3996 был депонирован 19 ноября 1987 года во Всесоюзном научном центре антибиотиков (РФ, 117105 Москва, Нагатинская ул., 3-А) с инвентарным номером РИА 1867. Указанный штамм также был депонирован во Всероссийской коллекции промышленных микроорганизмов (ВКПМ) (РФ, 117545 Москва, 1-й Дорожный проезд, 1) с инвентарным номером В-3996.The TDH-6 strain is defective in the thrC gene, is capable of assimilating sucrose, and contains the ilvA gene with a leaky mutation. The specified strain contains a mutation in the rhtA gene, which causes resistance to high concentrations of threonine and homoserine. Strain B-3996 contains the plasmid pVIC40, which was obtained by introducing into the vector derived from the RSF1010 vector the thrA * BC operon including the thrA mutant gene encoding aspartokinase-homoserine dehydrogenase I, which has a significantly reduced feedback sensitivity to threonine inhibition. Strain B-3996 was deposited on November 19, 1987 at the All-Union Scientific Center for Antibiotics (RF, 117105 Moscow, Nagatinskaya St., 3-A) with inventory number RIA 1867. The strain was also deposited in the All-Russian Collection of Industrial Microorganisms (VKPM) (RF , 117545 Moscow, 1st Road passage, 1) with inventory number B-3996.

Предпочтительно, чтобы бактерия согласно настоящему изобретению была далее модифицирована таким образом, чтобы иметь повышенную экспрессию одного или нескольких следующих генов:Preferably, the bacterium of the present invention is further modified so as to have increased expression of one or more of the following genes:

- мутантного гена thrA, кодирующего аспартокиназа-гомосериндегидрогеназу I, устойчивую к ингибированию треонином по типу обратной связи;- mutant thrA gene encoding aspartokinase-homoserine dehydrogenase I, resistant to threonine inhibition by feedback type;

- гена thrB, кодирующего гомосеринкиназу;- thrB gene encoding homoserine kinase;

- гена thrC, кодирующего треонинсинтазу;- thrC gene encoding threonine synthase;

- гена rhtA, предположительно кодирующего трансмембранный белок;- rhtA gene, presumably encoding a transmembrane protein;

- гена asd, кодирующего аспартат-β-семиальдегиддегидрогеназу, иthe asd gene encoding aspartate β-semialdehyde dehydrogenase, and

- гена aspC, кодирующего аспартатаминотрансферазу (аспартаттрансаминазу).- aspC gene encoding aspartate aminotransferase (aspartate transaminase).

Нуклеотидная последовательность гена thrA, кодирующего аспартокиназа-гомосериндегидрогеназу I из Escherichia coli, известна (номера нуклеотидов с 337 по 2799 в последовательности с инвентарным номером NC_000913.2 в базе данных GenBank, gi: 49175990). Ген thrA расположен на хромосоме штамма Е. coli К-12 между генами thrL и thrB. Нуклеотидная последовательность гена thrB, кодирующего гомосеринкиназу из Escherichia coli, известна (номера нуклеотидов с 2801 по 3733 в последовательности с инвентарным номером NC_000913.2 в базе данных GenBank, gi: 49175990). Ген thrB расположен на хромосоме штамма Е. coli К-12 между генами thrA и thrC. Нуклеотидная последовательность гена thrC, кодирующего треонинсинтазу из Escherichia coli, известна (номера нуклеотидов с 3734 по 5020 в последовательности с инвентарным номером NC_000913.2 в базе данных GenBank, gi: 49175990). Ген thrC расположен на хромосоме штамма Е. coli К-12 между геном thrB и открытой рамкой считывания уааХ. Все три указанных гена функционируют как один треониновый оперон.The nucleotide sequence of the thrA gene encoding aspartokinase-homoserine dehydrogenase I from Escherichia coli is known (nucleotide numbers 337 to 2799 in sequence with accession number NC_000913.2 in the GenBank database, gi: 49175990). The thrA gene is located on the chromosome of E. coli K-12 strain between the thrL and thrB genes. The nucleotide sequence of the thrB gene encoding homoserine kinase from Escherichia coli is known (nucleotide numbers 2801 to 3733 in sequence with accession number NC_000913.2 in the GenBank database, gi: 49175990). The thrB gene is located on the chromosome of E. coli K-12 strain between the thrA and thrC genes. The nucleotide sequence of the thrC gene encoding a threonine synthase from Escherichia coli is known (nucleotide numbers 3734 to 5020 in the sequence with accession number NC_000913.2 in the GenBank database, gi: 49175990). The thrC gene is located on the chromosome of E. coli K-12 strain between the thrB gene and the open uaaX reading frame. All three of these genes function as one threonine operon.

Мутантный ген thrA, кодирующий аспартокиназу-гомосериндегидрогеназу I, устойчивую к ингибированию треонином по типу обратной связи, так же, как и гены thrB и thrC могут быть получены в виде единого оперона из хорошо известной плазмиды pVIC40, которая представлена в штамме-продуценте Е. coli ВКПМ В-3996. Плазмида pVIC40 подробно описана в патенте США 5705371.The mutant thrA gene encoding aspartokinase-homoserine dehydrogenase I, resistant to threonine inhibition by feedback type, as well as the thrB and thrC genes can be obtained as a single operon from the well-known plasmid pVIC40, which is represented in the E. coli producer strain VKPM B-3996. Plasmid pVIC40 is described in detail in US Pat. No. 5,705,371.

Ген rhtA расположен на 18 минуте хромосомы Е. coli около оперона glnHPQ, который кодирует компоненты транспортной системы глутамина, ген rhtA идентичен ORF1 (ген ybiF, номера нуклеотидов с 764 по 1651 в последовательности с инвентарным номером ААА218541 в базе данных GenBank, gi:440181), расположен между генами рехВ и отрХ. Участок ДНК, экспрессирующийся с образованием белка, кодируемого рамкой считывания ORF1, был назван геном rhtA (rht: resistance to homoserine and threonine). Также было показано, что мутация rhtA23 представляет собой замену А-на-G в положении -1 по отношению к старт-кодону ATG (ABSTRACTS of 17th International Congress of Biochemistry and Molecular Biology in conjugation with 1997 Annual Meeting of the American Society for Biochemistry and Molecular Biology, San Francisco, California August 24-29, 1997, abstract No. 457, EP 1013765 A).The rhtA gene is located at the 18th minute of the E. coli chromosome near the glnHPQ operon, which encodes the components of the glutamine transport system, the rhtA gene is identical to ORF1 (ybiF gene, nucleotide numbers 764 to 1651 in sequence with accession number AAA218541 in the GenBank database, gi: 440181) , is located between the genes pXB and otpX. The DNA region expressed to form the protein encoded by the ORF1 reading frame was named the rhtA gene (rht: resistance to homoserine and threonine). The rhtA23 mutation has also been shown to represent an A-to-G substitution at position -1 with respect to the ATG start codon (ABSTRACTS of 17 th International Congress of Biochemistry and Molecular Biology in conjugation with 1997 Annual Meeting of the American Society for Biochemistry and Molecular Biology, San Francisco, California August 24-29, 1997, abstract No. 457, EP 1013765 A).

Нуклеотидная последовательность гена asd из E.coli известна (номера нуклеотидов с 3572511 по 3571408 в последовательности с инвентарным номером NC_000913.1 в базе данных GenBank, gi:16131307) и может быть получена с помощью ПЦР (полимеразная цепная реакция; ссылка на White, T.J. et al., Trends Genet., 5, 185 (1989)) с использованием праймеров, синтезированных на основе нуклеотидной последовательности указанного гена. Гены asd из других микроорганизмов могут быть получены сходным образом.The nucleotide sequence of the asd gene from E. coli is known (nucleotide numbers 3572511 to 3571408 in sequence with accession number NC_000913.1 in the GenBank database, gi: 16131307) and can be obtained using PCR (polymerase chain reaction; link to White, TJ et al., Trends Genet., 5, 185 (1989)) using primers synthesized based on the nucleotide sequence of the gene. Asd genes from other microorganisms can be obtained in a similar way.

Также нуклеотидная последовательность гена aspC из E.coli известна (номера нуклеотидов с 983742 по 984932 в последовательности с инвентарным номером NC_000913.1 в базе данных GenBank, gi: 16128895) и может быть получена с помощью ПЦР. Гены aspC из других микроорганизмов могут быть получены сходным образом.Also, the nucleotide sequence of the aspC gene from E. coli is known (nucleotide numbers 983742 to 984932 in the sequence with accession number NC_000913.1 in the GenBank database, gi: 16128895) and can be obtained by PCR. AspC genes from other microorganisms can be obtained in a similar way.

Бактерия-продуцент L-лизинаL-lysine producing bacterium

Примеры бактерий-продуцентов L-лизина, принадлежащих к роду Escherichia, включают мутанты, обладающие устойчивостью к аналогу L-лизина. Аналог L-лизина ингибирует рост бактерий, принадлежащих к роду Escherichia, но это ингибирование полностью или частично снимается, когда в среде также присутствует L-лизин. Примеры аналога L-лизина включают, но не ограничиваются оксализином, лизингидроксаматом, S-(2-аминоэтил)-L-цистеином (АЕС), γ-метиллизином, α-хлорокапролактамом и так далее. Мутанты, обладающие устойчивостью к указанным аналогам лизина, могут быть получены путем обработки бактерий, принадлежащих к роду Escherichia, традиционными мутагенами. Конкретные примеры бактериальных штаммов, используемых для получения L-лизина, включают штамм Escherichia coli AJ 11442 (FERM ВР-1543, NRRL В-12185; смотри патент США 4346170) и штамм Escherichia coli VL611. В этих микроорганизмах аспартокиназа устойчива к ингибированию L-лизином по принципу обратной связи.Examples of bacteria producing L-lysine belonging to the genus Escherichia include mutants that are resistant to the L-lysine analogue. The L-lysine analogue inhibits the growth of bacteria belonging to the genus Escherichia, but this inhibition is completely or partially removed when L-lysine is also present in the medium. Examples of the L-lysine analogue include, but are not limited to oxalysine, lysine hydroxamate, S- (2-aminoethyl) -L-cysteine (AEC), γ-methyllysine, α-chlorocaprolactam, and so on. Mutants that are resistant to these lysine analogues can be obtained by treating bacteria belonging to the genus Escherichia with traditional mutagens. Specific examples of bacterial strains used to produce L-lysine include Escherichia coli strain AJ 11442 (FERM BP-1543, NRRL B-12185; see US Pat. No. 4,346,170) and Escherichia coli strain VL611. In these microorganisms, aspartokinase is resistant to feedback inhibition by L-lysine.

Штамм WC196 может быть использован в качестве бактерии-продуцента L-лизина Escherichia coli. Данный бактериальный штамм был получен путем селекции фенотипа устойчивости к АЕС у штамма W3110, производного от штамма Escherichia coli К-12. Полученный штамм был назван Escherichia coli AJ 13069 и был депонирован в Национальном Институте Биологических Наук и Человеческих Технологий, Агенство Промышленной Науки и Технологии (National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology), в настоящее время называющийся Национальный Институт Прогрессивной Промышленной Науки и Технологии, Международный Депозитарий Организмов для Целей Патентования, Централ 6,1-1, Хигаши 1-Чоме, Тсукуба-ши, Ибараки-кен, 305-8566, Япония (National Institute of Advanced Industrial Science and Technology, International Patent Organism Depositary, Central 6, 1-1, Higashi 1-Chome, Tsukuba-shi, Ibaraki-ken, 305-8566, Japan), 6 декабря 1994 года и получил инвентарный номер FERM P-14690. Затем было произведено международное депонирование этого штамма согласно условиям Будапештского Договора 29 сентября 1995 года и штамм получил инвентарный номер FERM BP-5252 (смотри патент США 5827698).Strain WC196 can be used as a bacterium producer of L-lysine Escherichia coli. This bacterial strain was obtained by selection of the phenotype of resistance to AEC in strain W3110, derived from the strain Escherichia coli K-12. The resulting strain was named Escherichia coli AJ 13069 and was deposited at the National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology, currently called the National Institute of Progressive Industrial Science and Technology, International Organizational Depository for Patenting, Central 6.1-1, Higashi 1-Chome, Tsukuba-shi, Ibaraki-ken, 305-8566, Japan (National Institute of Advanced Industrial Science and Technology, International Patent Organism Depositary, Central 6, 1-1, Higashi 1-Chome, Tsukuba-shi, Ibara ki-ken, 305-8566, Japan), December 6, 1994 and received FERM P-14690. Then, the strain was internationally deposited in accordance with the terms of the Budapest Treaty on September 29, 1995, and the strain received accession number FERM BP-5252 (see US Patent 5827698).

Бактерия-продуцент L-цистеинаL-cysteine producing bacterium

Примеры родительских штаммов, используемых для получения бактерии-продуцента L-цистеина согласно настоящему изобретению, включают в себя, но не ограничиваются штаммами, принадлежащими к роду Escherichia, такими как штамм Е. coli JM15, трансформированный различными аллелями гена cysE, кодирующими устойчивые к ингибированию по типу обратной связи серинацетилтрансферазы (патент США 6218168, патентная заявка РФ 2003121601); штамм Е. coli W3110, содержащий гены с повышенной экспрессией, кодирующие белок, способный к секреции соединений, токсичных для клетки (патент США 5972663); штаммы Е. coli, содержащие цистеиндесульфогидразу со сниженной активностью (патент Японии JP 11155571 А2); штамм Е. coli W3110 с повышенной активностью позитивного транскрипционного регулятора цистеинового регулона, кодируемого геном cysB (международная заявка РСТ WO 0127307 A1) и подобные им.Examples of parent strains used to produce the L-cysteine producing bacterium of the present invention include, but are not limited to, strains belonging to the genus Escherichia, such as E. coli strain JM15 transformed with various cysE alleles encoding inhibition resistant cysE feedback type serine acetyltransferase (US patent 6218168, patent application of the Russian Federation 2003121601); E. coli strain W3110 containing genes with increased expression encoding a protein capable of secretion of compounds toxic to the cell (US patent 5972663); E. coli strains containing cysteine desulfohydrase with reduced activity (Japanese patent JP 11155571 A2); E. coli strain W3110 with increased activity of the positive transcriptional regulator of the cysteine regulon encoded by the cysB gene (international application PCT WO 0127307 A1) and the like.

Бактерия-продуцент L-лейцинаL-Leucine Producer Bacteria

Примеры родительских штаммов, используемых для получения бактерии-продуцента L-лейцина согласно настоящему изобретению, включают в себя, но не ограничиваются штаммами, принадлежащими к роду Escherichia, такими как штаммы Е. coli, устойчивые к аналогам лейцина, включающие, например, β-2-тиенилаланин, 3-гидроксилейцин, 4-азалейцин и 5,5,5-трифлуоролейцин (выложенные патентные заявки Японии 62-34397 и 8-70879), штаммы Е. coli, полученные с помощью генно-инженерных методов, описанных в заявке РСТ 96/06926; Е. coli штамм Н-9068 (JP 08-70879 А) и подобные им.Examples of parent strains used to produce the L-leucine producing bacterium of the present invention include, but are not limited to, strains belonging to the genus Escherichia, such as E. coli strains resistant to leucine analogs, including, for example, β-2 -thienylalanine, 3-hydroxyleucine, 4-azaleucine and 5,5,5-trifluoroleucine (Japanese Patent Laid-open 62-34397 and 8-70879), E. coli strains obtained using the genetic engineering methods described in PCT 96 / 06926; E. coli strain H-9068 (JP 08-70879 A) and the like.

Бактерия согласно настоящему изобретению может быть улучшена путем усиления экспрессии одного или нескольких генов, вовлеченных в биосинтез L-лейцина. Примеры таких генов включают в себя гены оперона leuABCD и предпочтительно представлены мутантным геном leuA, кодирующим изопропилмалатсинтазу со снятым ингибированием L-лейцином по типу обратной связи (патент США 6403342). Кроме того, бактерия согласно настоящему изобретению может быть улучшена путем усиления экспрессии одного или нескольких генов, кодирующих белки, которые экспортируют L-аминокислоту из бактериальной клетки. Примеры таких генов включают в себя гены b2682 и b2683 (гены yga ZH) (патентная заявка РФ 2001117632).The bacterium of the present invention can be improved by enhancing the expression of one or more genes involved in the biosynthesis of L-leucine. Examples of such genes include the leuABCD operon genes and are preferably represented by the mutant leuA gene encoding feedback feedback depleted L-leucine isopropyl malate synthase (US Pat. No. 6,333,342). In addition, the bacterium of the present invention can be improved by enhancing the expression of one or more genes encoding proteins that export the L-amino acid from a bacterial cell. Examples of such genes include the b2682 and b2683 genes (yga ZH genes) (RF patent application 2001117632).

Бактерия-продуцент L-гистидинаL-histidine producing bacterium

Примеры родительских штаммов, используемых для получения бактерии-продуцента L-гистидина согласно настоящему изобретению, включают в себя, но не ограничиваются бактериями-продуцентами L-гистидина, принадлежащими к роду Escherichia, такими как штамм Е. coli 24 (ВКПМ В-5945, патент РФ 2003677); штамм Е. coli 80 (ВКПМ В-7270, патент РФ 2119536); штаммы Е. coli NRRL В-12116 - В12121 (патент США 4388405); штаммы Е. coli H-9342 (FERM ВР-6675) и Н-9343 (FERM ВР-6676) (патент США 6344347); штамм Е. coli H-9341 (FERM BP-6674) (Европейский патент 1085087); штамм Е. coli AI80/pFM201 (патент США 6258554) и подобные им.Examples of parent strains used to produce L-histidine producing bacteria of the present invention include, but are not limited to, L-histidine producing bacteria belonging to the genus Escherichia, such as E. coli 24 strain (VKPM B-5945, patent RF 2003677); E. coli strain 80 (VKPM B-7270, RF patent 2119536); E. coli strains NRRL B-12116 - B12121 (US Pat. No. 4,388,405); E. coli strains H-9342 (FERM BP-6675) and H-9343 (FERM BP-6676) (US patent 6344347); E. coli strain H-9341 (FERM BP-6674) (European patent 1085087); E. coli strain AI80 / pFM201 (US Pat. No. 6,258,554) and the like.

Бактерия-продуцент L-глутаминовой кислотыL-glutamic acid producing bacterium

Примеры родительских штаммов, используемых для получения бактерии-продуцента L-глутаминовой кислоты согласно настоящему изобретению, включают в себя, но не ограничиваются штаммами, принадлежащими к роду Escherichia, такими как штамм Е. coli VL334thrC+ (Европейский патент ЕР 1172433). Штамм Е. coli VL334 (ВКПМ В-1641) является ауксотрофом по L-изолейцину и L-треонину с мутациями в генах thrC и ilvA (патент США 4278765). В этот штамм была перенесена природная аллель гена thrC методом общей трансдукции с использованием бактериофага Р1, выращенного на клетках природного штамма Е. coli K12 (ВКПМ В-7). В результате был получен штамм, ауксотроф по L-изолейцину, VL334thrC+ (ВКПМ В-8961). Этот штамм обладает способностью к продукции L-глутаминовой кислоты.Examples of parental strains used to produce the L-glutamic acid producing bacterium of the present invention include, but are not limited to, strains belonging to the genus Escherichia, such as E. coli strain VL334thrC + (European patent EP 1172433). Strain E. coli VL334 (VKPM B-1641) is an auxotroph of L-isoleucine and L-threonine with mutations in the thrC and ilvA genes (US patent 4278765). The natural allele of the thrC gene was transferred to this strain by the general transduction method using bacteriophage P1 grown on cells of the natural E. coli K12 strain (VKPM B-7). The result was a strain, auxotroph for L-isoleucine, VL334thrC + (VKPM B-8961). This strain has the ability to produce L-glutamic acid.

Примеры родительских штаммов, используемых для получения бактерии-продуцента L-глутаминовой кислоты согласно настоящему изобретению, включают в себя мутантные штаммы, лишенные активности α-кетоглутаратдегидрогеназы или обладающие сниженной активностью α- кетоглутаратдегидрогеназы. Бактерии, принадлежащие к роду Escherichia, лишенные активности α-кетоглутаратдегидрогеназы или обладающие сниженной активностью α-кетоглутаратдегидрогеназы, и способы их получения описаны в патентах США 5378616 и 5573945. Конкретно, примеры таких штаммов включают в себя следующие штаммы:Examples of parental strains used to produce the L-glutamic acid producing bacterium of the present invention include mutant strains lacking α-ketoglutarate dehydrogenase activity or having reduced α-ketoglutarate dehydrogenase activity. Bacteria belonging to the genus Escherichia, lacking the activity of α-ketoglutarate dehydrogenase or having reduced activity of α-ketoglutarate dehydrogenase, and methods for their preparation are described in US patents 5378616 and 5573945. Specifically, examples of such strains include the following strains:

E. coli W3110sucA::KmrE. coli W3110sucA :: Kmr

Е. coli AJ12624 (FERM BP-3853)E. coli AJ12624 (FERM BP-3853)

Е. coli AJ12628 (FERM BP-3854)E. coli AJ12628 (FERM BP-3854)

Е. coli AJ12949 (FERM BP-4881)E. coli AJ12949 (FERM BP-4881)

Штамм Е. coli W3110sucA::Kmr был получен в результате разрушения гена α-кетоглутаратдегидрогеназы (далее называемого "ген sucA") в штамме Е. coli W3110. У этого штамма активность α-кетоглутаратдегидрогеназы отсутствует полностью.The E. coli strain W3110sucA :: Kmr was obtained by disrupting the α-ketoglutarate dehydrogenase gene (hereinafter referred to as the “sucA gene”) in E. coli strain W3110. In this strain, the activity of α-ketoglutarate dehydrogenase is completely absent.

Другие примеры бактерии-продуцента L-глутаминовой кислоты включают в себя бактерии, принадлежащие к роду Pantoea, которые лишенны активности α-кетоглутаратдегидрогеназы или имеют сниженную активность α-кетоглутаратдегидрогеназы, и могут быть получены описанньм выше способом. Примерами таких штаммов являются штамм Pantoea ananatis AJ13356 (патент США 6331419), штамм Pantoea ananatis AJ13356, депонированный в Национальном Институте Биологических Наук и Человеческих Технологий, Агенство Промышленной Науки и Технологии, Министерство Международной Торговли и Промышленности (National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology, Ministry of International Trade and Industry), в настоящее время называющийся Национальный Институт Прогрессивной Промышленной Науки и Технологии, Международный Депозитарий Организмов для Целей Патентования, Централ 6, 1-1, Хигаши 1-Чоме, Тсукуба-ши, Ибараки-кен, 305-8566, Япония (National Institute of Advanced Industrial Science and Technology, International Patent Organism Depositary, Central 6, 1-1, Higashi 1-Chome, Tsukuba-shi, Ibaraki-ken, 305-8566, Japan), 19 февраля 1998 года и получивший инвентарный номер FERM Р-16645. Затем было произведено международное депонирование этого штамма согласно условиям Будапештского Договора от 11 января 1999 года и штамм получил инвентарный номер FERM BP-6615. В штамме Pantoea ananatis AJ13356 отсутствует активность α-KGDH в результате разрушения гена субъединицы αKGDH-E1 (sucA). Вышеупомянутый штамм при выделении был идентифицирован как Enterobacter agglomerans и депонирован как штамм Enterobacter agglomerans AJ13355. Тем не менее, позднее он был классифицирован как Pantoea ananatis на основе нуклеотидной последовательности 16S рРНК и других доказательств (смотри раздел Примеры). Несмотря на то, что оба штамма - AJ13355 и полученный из него штамм AJ13356 были депонированы в указанный выше депозитарий как Enterobacter agglomerans, для целей данного описания они будут упоминаться как Pantoea ananatis.Other examples of bacteria producing L-glutamic acid include bacteria belonging to the genus Pantoea, which are devoid of α-ketoglutarate dehydrogenase activity or have a reduced α-ketoglutarate dehydrogenase activity, and can be obtained as described above. Examples of such strains are Pantoea ananatis AJ13356 strain (US Pat. No. 6,331,419), Pantoea ananatis AJ13356 strain deposited at the National Institute of Biological Sciences and Human Technologies, Agency for Industrial Science and Technology, Department of International Trade and Industry (National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology, Ministry of International Trade and Industry), now called the National Institute of Advanced Industrial Science and Technology, International Organizational Depository for Patenting Purposes, Central 6, 1-1, Higashi 1-Cho me, Tsukuba-shi, Ibaraki-ken, 305-8566, Japan (National Institute of Advanced Industrial Science and Technology, International Patent Organism Depositary, Central 6, 1-1, Higashi 1-Chome, Tsukuba-shi, Ibaraki-ken, 305-8566, Japan), February 19, 1998 and received FERM P-16645. Then, the strain was internationally deposited in accordance with the conditions of the Budapest Treaty of January 11, 1999, and the strain received accession number FERM BP-6615. In the Pantoea ananatis strain AJ13356, α-KGDH activity is absent due to the destruction of the αKGDH-E1 subunit gene (sucA). The above strain, when isolated, was identified as Enterobacter agglomerans and deposited as Enterobacter agglomerans AJ13355 strain. However, it was later classified as Pantoea ananatis based on the nucleotide sequence of 16S rRNA and other evidence (see the Examples section). Although both strains — AJ13355 and the strain AJ13356 obtained from it — were deposited as Enterobacter agglomerans in the above depository, for the purposes of this description they will be referred to as Pantoea ananatis.

Бактерия-продуцент L-фенилаланинаL-phenylalanine producing bacterium

Примеры родительских штаммов, используемых для получения бактерии-продуцента L-фенилаланина согласно настоящему изобретению, включают в себя, но не ограничиваются штаммами, принадлежащими к роду Escherichia, такими как штамм E. coli AJ12739 (tyrA::TnW, tyrR) (ВКМП В-8197); штамм E. coli HW1089 (АТСС-55371), содержащий ген pheА34 (патент США 5354672); мутантный штамм E. coli MWEC101-b (KR8903681); штаммы E. coli NRRL В-12141, NRRL В-12145, NRRL В-12146 и NRRL В-12147 (патент США 4407952) и подобные им. Также в качестве родительских штаммов могут быть использованы бактерии, принадлежащие к роду Escherichia, - продуценты L-фенилаланина, такие как штамм E.coli K-12[W3110(tyrA)/pPHAB] (FERM BP-3566), штамм E.coli K-12[W3110(tyrA)/pPHAD] (FERM BP-12659), штамм E.coli K-12[W3110(tyrA)/pPHATerm] (FERM BP-12662) и штамм E.coli K-12[W3110(tyrA)/pBR-aroG4, рАСМАВ], названный как AJ12604 (FERM BP-3579) (Европейский патент ЕР 488424 В1). Кроме того, также могут быть использованы бактерии-продуценты L-фенилаланина, принадлежащие к роду Escherichia с повышенной активностью белков, кодируемых геном yedА или геном yddG (патентные заявки США 2003/0148473 А1 и 2003/0157667 A1).Examples of parental strains used to produce the L-phenylalanine producing bacterium of the present invention include, but are not limited to, strains belonging to the genus Escherichia, such as E. coli strain AJ12739 (tyrA :: TnW, tyrR) (VKMP B- 8197); E. coli strain HW1089 (ATCC-55371) containing the pheA34 gene (US patent 5354672); mutant E. coli strain MWEC101-b (KR8903681); E. coli strains NRRL B-12141, NRRL B-12145, NRRL B-12146 and NRRL B-12147 (US 4407952) and the like. Also, bacteria belonging to the genus Escherichia, producers of L-phenylalanine, such as E. coli K-12 strain [W3110 (tyrA) / pPHAB] (FERM BP-3566), E. coli K strain, can be used as parent strains. -12 [W3110 (tyrA) / pPHAD] (FERM BP-12659), E. coli K-12 strain [W3110 (tyrA) / pPHATerm] (FERM BP-12662) and E. coli K-12 strain [W3110 (tyrA ) / pBR-aroG4, pACMAB], named as AJ12604 (FERM BP-3579) (European patent EP 488424 B1). In addition, L-phenylalanine producing bacteria belonging to the genus Escherichia with increased activity of the proteins encoded by the yedA gene or yddG gene can also be used (US patent applications 2003/0148473 A1 and 2003/0157667 A1).

Бактерия-продуцент L-триптофанаL-tryptophan producing bacterium

Примеры родительских штаммов, используемых для получения бактерии-продуцента L-триптофана согласно настоящему изобретению, включают в себя, но не ограничиваются бактериями-продуцентами L-триптофана, принадлежащими к роду Escherichia, такими как штаммы Е. coli JP4735/pMU3028 (DSM10122) и JP6015/pMU91 (DSM10123), лишенные активности триптофанил-тРНК синтетазы, кодируемой мутантным геном trpS (патент США 5756345); штамм Е. coli SV164 (pGH5), содержащий аллель гена serA, кодирующего фермент, не ингибируемый серином по типу обратной связи (патент США 6180373); штаммы Е. coli AGX17 (pGX44) (NRRL В-12263) и AGX6(pGX50)aroP (NRRL В-12264), лишенные активности триптофаназы (патент США 4371614); штамм Е. coli AGX17/pGX50,pACKG4-pps, в котором усилена способность к синтезу фосфоенолпирувата (международная заявка 9708333, патент США 6319696), и подобные им.Examples of parental strains used to produce L-tryptophan-producing bacteria of the present invention include, but are not limited to, L-tryptophan-producing bacteria belonging to the genus Escherichia, such as E. coli strains JP4735 / pMU3028 (DSM10122) and JP6015 / pMU91 (DSM10123) lacking the activity of tryptophanyl tRNA synthetase encoded by the mutant trpS gene (US patent 5756345); E. coli strain SV164 (pGH5) containing an allele of the serA gene encoding an enzyme not inhibited by serine in a feedback manner (US Pat. No. 6,180,373); E. coli strains AGX17 (pGX44) (NRRL B-12263) and AGX6 (pGX50) aroP (NRRL B-12264) lacking tryptophanase activity (US patent 4371614); E. coli strain AGX17 / pGX50, pACKG4-pps, which enhances the ability to synthesize phosphoenolpyruvate (international application 9708333, US patent 6319696), and the like.

Ранее было показано, что природная аллель гена yddG, кодирующего мембранный белок, не участвующий в путях биосинтеза ни одной из L-аминокислот, амплифицированная на многокопийном векторе в микроорганизме, придает этому микроорганизму устойчивость к L-фенилаланину и нескольким аналогам этой аминокислоты. Кроме того, введение в клетки бактерий-продуцентов L-фенилаланина или L-триптофана дополнительных копий гена yddG может положительно влиять на продукцию соответствующих аминокислот (международная заявка РСТ WO 03044192). Таким образом, желательно, чтобы бактерия-продуцент L-триптофана была далее модифицирована таким образом, что в этой бактерии усилена экспрессия открытой рамки считывания yddG.It was previously shown that the natural allele of the yddG gene, which encodes a membrane protein that is not involved in the biosynthesis of any of the L-amino acids, amplified on a multi-copy vector in a microorganism, gives this microorganism resistance to L-phenylalanine and several analogues of this amino acid. In addition, the introduction of additional copies of the yddG gene into the cells of bacteria producing L-phenylalanine or L-tryptophan can positively affect the production of the corresponding amino acids (PCT international application WO 03044192). Thus, it is desirable that the bacterium producing L-tryptophan be further modified so that expression of the open reading frame yddG is enhanced in this bacterium.

Бактерия-продуцент L-пролинаL-proline producing bacterium

Примеры бактерий-продуцентов L-пролина, используемых в качестве родительского штамма согласно настоящему изобретению, включают в себя, но не ограничиваются штаммами, принадлежащими к роду Escherichia, такими как штамм Е. coli 702 ilvA (ВКПМ В-8012), дефицитного по гену ilvA и способного к продукции L-пролина (Европейский патент ЕР 1172433). Бактерия согласно настоящему изобретению может быть улучшена путем усиления экспрессии одного или нескольких генов, вовлеченных в биосинтез L-пролина. Предпочтительно, примеры таких генов для бактерий-продуцентов L-пролина, включают ген proB, кодирующий глутаматкиназу с десенсибилизированной регуляцией L-пролином по типу обратной связи (патент Германии 3127361). Кроме того, бактерия согласно настоящему изобретению может быть улучшена путем усиления экспрессии одного или нескольких генов, кодирующих белки, экскретирующие L-аминокислоту из бактериальной клетки. Примерами таких генов являются гены b2682 и b2683 (yga ZH гены) (Европейская патентная заявка ЕР 1239041 А2).Examples of bacteria-producers of L-proline used as the parent strain of the present invention include, but are not limited to strains belonging to the genus Escherichia, such as E. coli strain 702 ilvA (VKPM B-8012), deficient in ilvA gene and capable of producing L-proline (European patent EP 1172433). The bacterium of the present invention can be improved by enhancing the expression of one or more genes involved in the biosynthesis of L-proline. Preferably, examples of such genes for bacterium-producing L-proline include the proB gene encoding glutamate kinase with desensitized feedback regulation of L-proline (German patent 3127361). In addition, the bacterium of the present invention can be improved by enhancing the expression of one or more genes encoding proteins that secrete the L-amino acid from a bacterial cell. Examples of such genes are the b2682 and b2683 genes (yga ZH genes) (European Patent Application EP 1239041 A2).

Примеры бактерий, принадлежащих к роду Escherichia и обладающих способностью к продукции L-пролина, включают следующие штаммы Е. coli: NRRL В-12403 и NRRL В-12404 (патент Великобритании GB 2075056), ВКПМ В-8012 (патентная заявка РФ 2000124295), плазмидные мутанты, описанные в патенте Германии DE 3127361, плазмидные мутанты, описанные у Bloom F.R. et al (The 15th Miami winter symposium, 1983, p.34) и подобные им.Examples of bacteria belonging to the genus Escherichia and possessing the ability to produce L-proline include the following E. coli strains: NRRL B-12403 and NRRL B-12404 (UK patent GB 2075056), VKPM B-8012 (RF patent application 2000124295), plasmid mutants described in German patent DE 3127361, plasmid mutants described in Bloom FR et al (The 15 th Miami winter symposium, 1983, p. 34) and the like.

Бактерия-продуцент L-аргининаL-arginine producing bacterium

Примеры родительских штаммов, используемых для получения бактерии-продуцента L-аргинина согласно настоящему изобретению, включают в себя, но не ограничиваются штаммами, принадлежащими к роду Escherichia, такими как штамм Е. coli 237 (ВКПМ В-7925) (патентная заявка США US 2002058315) и его производные, содержащие мутантную N-ацетилглутаматсинтазу (патентная заявка РФ 2001112869), штамм Е. coli 382 (ВКПМ В-7926) (Европейская патентная заявка ЕР 1170358), штамм-продуцент аргинина, в который введен ген argA, кодирующий N-ацетилглутаматсинтетазу (выложенная патентная заявка Японии 57-5693А), и подобные им.Examples of parent strains used to produce the L-arginine producing bacterium of the present invention include, but are not limited to, strains belonging to the genus Escherichia, such as E. coli strain 237 (VKPM B-7925) (US Patent Application US 2002058315) ) and its derivatives containing mutant N-acetylglutamate synthase (RF patent application 2001112869), E. coli 382 strain (VKPM B-7926) (European patent application EP 1170358), arginine producing strain into which the argA gene encoding N- acetylglutamate synthetase (Japanese Patent Laid-Open 57 -5693A), and the like.

2. Способ согласно настоящему изобретению.2. The method according to the present invention.

Способом согласно настоящему изобретению является способ получения L-аминокислоты, включающий стадии выращивания бактерии согласно настоящему изобретению в питательной среде с целью продукции и накопления L-аминокислоты в питательной среде и выделения L-аминокислоты из культуральной жидкости.The method according to the present invention is a method for producing an L-amino acid, comprising the steps of growing a bacterium according to the present invention in a culture medium in order to produce and accumulate the L-amino acid in the culture medium and isolate the L-amino acid from the culture fluid.

Согласно настоящему изобретению выращивание, выделение и очистка L-аминокислоты из культуральной или подобной ей жидкости может быть осуществлена способом, подобным традиционным способам ферментации, в которых аминокислота продуцируется с использованием бактерии.According to the present invention, the cultivation, isolation and purification of an L-amino acid from a culture or similar liquid may be carried out in a manner similar to traditional fermentation methods in which the amino acid is produced using a bacterium.

Питательная среда, используемая для выращивания, может быть как синтетической, так и натуральной при условии, что указанная среда содержит источники углерода, азота, минеральные добавки и, если необходимо, соответствующее количество питательных добавок, необходимых для роста микроорганизмов. К источникам углерода относятся различные углеводы, такие как глюкоза и сахароза, а также различные органические кислоты. В зависимости от характера ассимиляции используемого микроорганизма могут использоваться спирты, такие как этанол и глицерин. В качестве источника азота могут использоваться различные неорганические соли аммония, такие как аммиак и сульфат аммония, другие соединения азота, такие как амины, природные источники азота, такие как пептон, гидролизат соевых бобов, ферментолизат микроорганизмов. В качестве минеральных добавок могут использоваться фосфат калия, сульфат магния, хлорид натрия, сульфат железа, сульфат марганца, хлорид кальция и подобные им соединения. В качестве витаминов могут использоваться тиамин и дрожжевой экстракт.The nutrient medium used for growing can be either synthetic or natural, provided that the medium contains sources of carbon, nitrogen, mineral additives and, if necessary, the appropriate amount of nutrient additives necessary for the growth of microorganisms. Carbon sources include various carbohydrates such as glucose and sucrose, as well as various organic acids. Depending on the nature of the assimilation of the microorganism used, alcohols such as ethanol and glycerin may be used. Various inorganic ammonium salts, such as ammonia and ammonium sulfate, other nitrogen compounds, such as amines, natural nitrogen sources, such as peptone, soybean hydrolyzate, microorganism fermentolizate, can be used as a nitrogen source. As mineral additives, potassium phosphate, magnesium sulfate, sodium chloride, iron sulfate, manganese sulfate, calcium chloride and the like can be used. Thiamine and yeast extract can be used as vitamins.

Выращивание осуществляется предпочтительно в аэробных условиях, таких как перемешивание культуральной жидкости на качалке, взбалтывание с аэрацией при температуре в пределах от 20 до 40°С, предпочтительно в пределах от 30 до 38°С. рН среды поддерживают в пределах от 5 до 9, предпочтительно от 6.5 до 7.2. рН среды может регулироваться аммиаком, карбонатом кальция, различными кислотами, основаниями и буферными растворами. Обычно выращивание в течение от 1 до 5 дней приводит к накоплению целевой L-аминокислоты в культуральной жидкости.The cultivation is preferably carried out under aerobic conditions, such as mixing the culture fluid on a rocking chair, shaking with aeration at a temperature in the range from 20 to 40 ° C, preferably in the range from 30 to 38 ° C. The pH of the medium is maintained in the range from 5 to 9, preferably from 6.5 to 7.2. The pH of the medium can be adjusted by ammonia, calcium carbonate, various acids, bases and buffer solutions. Typically, growing for 1 to 5 days leads to the accumulation of the target L-amino acid in the culture fluid.

После выращивания твердые остатки, такие как клетки, могут быть удалены из культуральной жидкости методом центрифугирования или фильтрацией через мембрану, а затем L-аминокислота может быть выделена и очищена методами ионообменной хроматографии, концентрирования и/или кристаллизации.After growth, solid residues, such as cells, can be removed from the culture fluid by centrifugation or filtration through a membrane, and then the L-amino acid can be isolated and purified by ion exchange chromatography, concentration and / or crystallization.

Краткое описание рисунковBrief Description of Drawings

На Фиг.1 изображены относительные положения праймеров nacL и nacR на плазмиде pACYC184, используемой для амплификации гена cat.Figure 1 shows the relative positions of the nacL and nacR primers on the plasmid pACYC184 used to amplify the cat gene.

На Фиг.2 изображено конструирование фрагмента хромосомной ДНК, содержащего инактивированный ген nac.Figure 2 shows the construction of a chromosomal DNA fragment containing an inactivated nac gene.

ПримерыExamples

Настоящее изобретение будет более подробно описано ниже со ссылкой на следующие не ограничивающие настоящее изобретение Примеры.The present invention will be described in more detail below with reference to the following non-limiting Examples.

Пример 1. Конструирование штамма с инактивированным геном nacExample 1. Construction of a strain with an inactivated nac gene

1. Делеция гена nac1. Deletion of the nac gene

Штамм, содержащий делецию гена nac, был сконструирован с использованием методики, разработанной Datsenko, K.A. и Wanner, B.L. (Proc. Natl. Acad. Sci. USA, 2000, 97(12), 6640-6645), известной как "Red-зависимая интеграция". В соответствии с этой методикой были синтезированы ПЦР-праймеры nacL (SEQ ID NO: 3) и nacR (SEQ ID NO: 4), гомологичные участку, прилегающему к гену nac и гену, сообщающему устойчивость к антибиотику, на плазмиде, используемой в качестве матрицы для ПЦР. В качестве матрицы для ПЦР была использована плазмида pACYC184 (NBL Gene Sciences Ltd., UK) (инвентарный номер Х06403 в базе данных GenBank/EMBL). Использовался следующий температурный профиль для ПЦР: денатурация при 95°С в течение 3 мин; два первых цикла: 1 мин при 95°С, 30 сек при 50°С, 40 сек при 72°С; последующие 25 циклов: 30 сек при 95°С, 30 сек при 54°С, 40 сек при 72°С и заключительная полимеризация: 5 мин при 72°С.The strain containing the deletion of the nac gene was constructed using the technique developed by Datsenko, K.A. and Wanner, B.L. (Proc. Natl. Acad. Sci. USA, 2000, 97 (12), 6640-6645), known as "Red-dependent Integration". In accordance with this technique, nacL PCR primers (SEQ ID NO: 3) and nacR (SEQ ID NO: 4) homologous to the region adjacent to the nac gene and the antibiotic resistance reporting gene on a plasmid used as a template were synthesized for PCR. The plasmid pACYC184 (NBL Gene Sciences Ltd., UK) (accession number X06403 in the GenBank / EMBL database) was used as a template for PCR. The following temperature profile for PCR was used: denaturation at 95 ° C for 3 min; the first two cycles: 1 min at 95 ° C, 30 sec at 50 ° C, 40 sec at 72 ° C; subsequent 25 cycles: 30 sec at 95 ° C, 30 sec at 54 ° C, 40 sec at 72 ° C and final polymerization: 5 min at 72 ° C.

Полученный продукт ПЦР длиной 1152 п.н. (Фиг.1), очищенный в агарозном геле, может быть использован для электропорации в штамм Е. coli MG1655 (АТСС 700926), содержащий плазмиду pKD46 с термочувствительным репликоном. Плазмида pKD46 (Datsenko, K.A. and Wanner, B.L., Proc. Natl. Acad. Sci. USA, 2000, 97:12:6640-45) содержит фрагмент ДНК фага λ длиной 2154 нуклеотида (позиции с 31088 по 33241 нуклеотидной последовательности с инвентарньм номером J02459 в базе данных GenBank), а также содержит гены λ Red-гомологичной системы рекомбинации (гены γ, β, ехо) под контролем промотора РaraB, индуцируемого арабинозой. Плазмида pKD46 необходима для интеграции продукта ПЦР в хромосому штамма MG1655.The resulting PCR product with a length of 1152 bp (Figure 1), purified by agarose gel, can be used for electroporation into E. coli strain MG1655 (ATCC 700926) containing the plasmid pKD46 with a heat-sensitive replicon. Plasmid pKD46 (Datsenko, KA and Wanner, BL, Proc. Natl. Acad. Sci. USA, 2000, 97: 12: 6640-45) contains a phage λ DNA fragment of 2154 nucleotides in length (positions from 31088 to 33241 nucleotide sequence with inventory number J02459 in the GenBank database), and also contains the λ genes of the Red homologous recombination system (γ, β, exo genes) under the control of the araB inducer P induced by arabinose. Plasmid pKD46 is required for integration of the PCR product into the chromosome of strain MG1655.

Электрокомпетентные клетки были получены следующим образом: ночную культуру штамма Е. coli MG1655 выращивали при 30°С в среде LB с добавкой ампициллина (100 мг/л), развели в 100 раз, добавив 5 мл среды SOB (Sambrook et al. "Molecular Cloning A Laboratory Manual, Second Edition", Cold Spring Harbor Laboratory Press (1989)), содержащей ампициллин и L-арабинозу (1 мМ). Полученную культуру растили с перемешиванием при 30°С до достижения OD600≈0.6, после чего делали клетки электрокомпетентными путем концентрирования в 100 раз и трехкратного отмывания ледяной деионизированной H2O. Электропорацию проводили с использованием 70 мкл клеток и ≈100 нг продукта ПЦР. После электропорации клетки инкубировали в 1 мл среды SOC (Sambrook et al. "Molecular Cloning A Laboratory Manual, Second Edition", Cold Spring Harbor Laboratory Press (1989)) при 37°С в течение 2.5 часов, после чего высевали на чашки с L-агаром, содержащим хлорамфеникол (30 мкг/мл) и выращивали при 37°С для отбора CmR-рекомбинантов. Затем для удаления плазмиды pKD46 проводили 2 пассажа на L-агаре с Cm при 42°С и полученные колонии проверяли на чувствительность к ампициллину.Electrocompetent cells were obtained as follows: an overnight culture of E. coli strain MG1655 was grown at 30 ° C in LB medium supplemented with ampicillin (100 mg / L), diluted 100 times by adding 5 ml of SOB medium (Sambrook et al. "Molecular Cloning A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1989)) containing ampicillin and L-arabinose (1 mM). The resulting culture was grown with stirring at 30 ° C until OD 600 ≈0.6 was reached, after which the cells were made electrocompetent by 100-fold concentration and three times washing with ice-cold deionized H 2 O. Electroporation was performed using 70 μl of cells and ≈100 ng of PCR product. After electroporation, cells were incubated in 1 ml of SOC medium (Sambrook et al. "Molecular Cloning A Laboratory Manual, Second Edition", Cold Spring Harbor Laboratory Press (1989)) at 37 ° C for 2.5 hours, after which they were plated on L plates agar containing chloramphenicol (30 μg / ml) and grown at 37 ° C to select Cm R recombinants. Then, to remove plasmid pKD46, 2 passages were performed on L-agar with Cm at 42 ° C and the obtained colonies were tested for sensitivity to ampicillin.

2. Подтверждение делении гена nac с помощью ПЦР.2. Confirmation of the division of the nac gene by PCR.

Мутанты с делетированным геном nac, содержащие ген устойчивости к Cm, были проверены с помощью ПЦР. Локус-специфичные праймеры nac1 (SEQ ID NO: 5) и nac2 (SEQ ID NO: 6) были использованы для проверки делеции с помощью ПЦР. Использовался следующий температурный профиль для ПЦР-проверки: денатурация при 94°С в течение 3 мин; профиль для 30 циклов: 30 сек при 94°С, 30 сек при 54°С, 1 мин при 72°С; заключительный шаг: 7 мин при 72°С. Длина продукта ПЦР, полученного в результате реакции с использованием в качестве матрицы клеток родительского штамма nac+ MG1655, составляет 1350 п.н. Длина продукта ПЦР, полученного в результате реакции с использованием в качестве матрицы клеток мутантного штамма MG1655 Δnac::cat, составляет 1592 п.н. (Фиг.2).Mutants with the deleted nac gene containing the Cm resistance gene were verified by PCR. Locus-specific primers nac1 (SEQ ID NO: 5) and nac2 (SEQ ID NO: 6) were used to verify deletion by PCR. The following temperature profile was used for PCR testing: denaturation at 94 ° C for 3 min; profile for 30 cycles: 30 sec at 94 ° C, 30 sec at 54 ° C, 1 min at 72 ° C; final step: 7 min at 72 ° C. The length of the PCR product obtained by the reaction using the parent strain nac + MG1655 as a matrix of cells is 1350 bp The length of the PCR product obtained by the reaction using the mutant strain MG1655 Δnac :: cat as a matrix of cells is 1592 bp (Figure 2).

Пример 2. Продукция L-треонина штаммом Е. coli B-3996-Δnac.Example 2. Production of L-threonine by E. coli strain B-3996-Δnac.

Для оценки влияния инактивации гена nac на продукцию треонина ДНК-фрагменты хромосомы описанного выше штамма Е. coli MG1655 Δnac::cat перенесли в штамм-продуцент L-треонина Е. coli В-3996 (ВКПМ В-3996) с помощью Р1-трансдукции (Miller, J.H. (1972) Experiments in Molecular Genetics, Cold Spring Harbor Lab. Press, Plainview, NY) для получения штамма В-3996-Δnac.To assess the effect of inactivation of the nac gene on the production of threonine, DNA fragments of the chromosome of the E. coli strain MG1655 Δnac :: cat described above were transferred to the E. coli B-3996 L-threonine producing strain (VKPM B-3996) using P1 transduction ( Miller, JH (1972) Experiments in Molecular Genetics, Cold Spring Harbor Lab. Press, Plainview, NY) to obtain strain B-3996-Δnac.

Оба штамма Е. Coli, В-3996 и В-3996-Δnac выращивали в течение 18-24 часов при температуре 37°С на чашках с L-агаром. Для получения посевной культуры указанные штаммы выращивали при 32°С в течение 18 часов на роторной качалке (250 об/мин) в пробирках размером 20х200 мм, содержащих 2 мл L-бульона с 4% сахарозой. Затем в ферментационную среду внесли по 0.21 мл (10%) посевной культуры. Ферментацию проводили в 2 мл минимальной ферментационной среды в пробирках размером 20×200 мм. Клетки выращивали в течение 72 часов при 32°C с перемешиванием (250 об/мин).Both strains of E. Coli, B-3996 and B-3996-Δnac were grown for 18-24 hours at 37 ° C on plates with L-agar. To obtain a seed culture, these strains were grown at 32 ° C for 18 hours on a rotary shaker (250 rpm) in 20x200 mm test tubes containing 2 ml of L-broth with 4% sucrose. Then, 0.21 ml (10%) of the seed culture was introduced into the fermentation medium. Fermentation was carried out in 2 ml of minimal fermentation medium in test tubes measuring 20 × 200 mm. Cells were grown for 72 hours at 32 ° C with stirring (250 rpm).

После выращивания количество накопленного в среде L-треонина определяли с помощью бумажной хроматографии с использованием подвижной фазы следующего состава: бутанол: уксусная кислота: вода =4:1:1 (v/v). Для визуализации использовали раствор (2%) нингидрина в ацетоне. Пятно, содержащее L-треонин, вырезали; элюировали L-треонин 0.5% водным раствором CdCl2, после чего количество L-треонина оценивали спектрофотометрическим методом при длине волны 540 нм. Результаты десяти независимых пробирочных ферментаций приведены в Таблице 1.After growing, the amount of L-threonine accumulated in the medium was determined by paper chromatography using the mobile phase of the following composition: butanol: acetic acid: water = 4: 1: 1 (v / v). For visualization, a solution (2%) of ninhydrin in acetone was used. A spot containing L-threonine was excised; L-threonine was eluted with a 0.5% aqueous solution of CdCl 2 , after which the amount of L-threonine was estimated spectrophotometrically at a wavelength of 540 nm. The results of ten independent in vitro fermentations are shown in Table 1.

Использовали ферментационную среду следующего состава (г/л):Used fermentation medium of the following composition (g / l):

ГлюкозаGlucose 80.080.0 (NH4)2SO4 (NH 4 ) 2 SO 4 22.022.0 NaClNaCl 0.80.8 KH2PO4 KH 2 PO 4 2.02.0 MgSO4·7H2OMgSO 4 · 7H 2 O 0.80.8 FeSO4·7H2OFeSO 4 · 7H 2 O 0.020.02 MnSO4·5H2OMnSO 4 · 5H 2 O 0.020.02 Тиамин гидрохлоридThiamine hydrochloride 0.00020.0002 Дрожжевой экстрактYeast extract 1.01.0 СаСО3 CaCO 3 30.030.0

Глюкозу и сульфат магния стерилизовали отдельно. СаСО3 стерилизовали сухим жаром при 180°С в течение 2 часов. рН доводят до 7.0. Антибиотик добавляли в среду после стерилизации.Glucose and magnesium sulfate were sterilized separately. CaCO 3 was dry heat sterilized at 180 ° C for 2 hours. The pH was adjusted to 7.0. The antibiotic was added to the medium after sterilization.

Как видно из Таблицы 1, штамм В-3996-Δnac накапливал большее количество L-треонина по сравнению со штаммом В-3996.As can be seen from Table 1, strain B-3996-Δnac accumulated a greater amount of L-threonine compared to strain B-3996.

Пример 3. Продукция L-лизина штаммом Е. coli WC196-ΔnacExample 3. Production of L-lysine by E. coli strain WC196-Δnac

Для оценки влияния инактивации гена nac на продукцию лизина ДНК-фрагменты хромосомы описанного выше штамма Е. coli MG1655 Δnac::cat переносили в штамм-продуцент L-лизина Е. coli WC196 (FERM ВР-5252) с помощью Р1-трансдукции (Miller, J.H. (1972) Experiments in Molecular Genetics, Cold Spring Harbor Lab. Press, Plainview, NY) для получения штамма WC196-Δnac::cat.To assess the effect of inactivation of the nac gene on lysine production, DNA fragments of the chromosome of the E. coli strain MG1655 Δnac :: cat described above were transferred to E. coli WC196 L-lysine producer strain (FERM BP-5252) using P1 transduction (Miller, JH (1972) Experiments in Molecular Genetics, Cold Spring Harbor Lab. Press, Plainview, NY) to obtain strain WC196-Δnac :: cat.

Для получения посевной культуры оба штамма, WC196 и WC196-Δnac, выращивали на роторной качалке (250 об/мин) при 32°С в течение 18 ч в пробирках 20×200 мм, содержащих 2 мл среды, разведенной в два раза по сравнению с описанной ниже средой для ферментации. Затем 0,21 мл (10%) посевной культуры инокулировали в 2 мл среды для ферментации, разлитой в пробирки 20×200 мм. Ферментацию проводили при 32°С в течение 24 ч с перемешиванием (250 об/мин).To obtain a seed culture, both strains, WC196 and WC196-Δnac, were grown on a rotary shaker (250 rpm) at 32 ° С for 18 h in 20 × 200 mm tubes containing 2 ml of medium diluted twice as compared to fermentation medium described below. Then, 0.21 ml (10%) of the seed culture was inoculated in 2 ml of fermentation medium, poured into 20 × 200 mm tubes. Fermentation was carried out at 32 ° C for 24 hours with stirring (250 rpm).

После культивирования количество накопленного в среде L-лизина определяли методом бумажной хроматографии с использованием подвижной фазы следующего состава: бутанол-уксусная кислота-вода= 4:1:1 (v/v). В качестве реагента для визуализации использовали раствор нингидрина (2%) в ацетоне. Содержащие L-лизин пятна вырезали, элюировали L-лизин водным раствором CdCl2 (0,5%), оценивали количество L-лизина спектрофотометрически при 540 нм. Результаты пяти независимых пробирочных ферментаций приведены в Таблице 3.After cultivation, the amount of L-lysine accumulated in the medium was determined by paper chromatography using the mobile phase of the following composition: butanol-acetic acid-water = 4: 1: 1 (v / v). A solution of ninhydrin (2%) in acetone was used as a reagent for visualization. The spots containing L-lysine were excised, L-lysine was eluted with an aqueous solution of CdCl 2 (0.5%), the amount of L-lysine was evaluated spectrophotometrically at 540 nm. The results of five independent in vitro fermentations are shown in Table 3.

Использовали ферментационную среду следующего состава (г/л):Used fermentation medium of the following composition (g / l):

ГлюкозаGlucose 40.040.0 (NH4)2SO4 (NH 4 ) 2 SO 4 24.024.0 К2HPO4 K 2 HPO 4 1.01.0 MgSO4·7H2OMgSO 4 · 7H 2 O 1.01.0 FeSO4·7H2OFeSO 4 · 7H 2 O 0.010.01 MnSO4·5H2OMnSO 4 · 5H 2 O 0.010.01 Дрожжевой экстрактYeast extract 2.02.0 СаСО3 CaCO 3 30.030.0

Глюкозу, фосфат калия и сульфат магния стерилизовали отдельно. СаСО3 стерилизовали сухим жаром при 180°С в течение 2 часов. рН доводили до 7.0.Glucose, potassium phosphate and magnesium sulfate were sterilized separately. CaCO 3 was dry heat sterilized at 180 ° C for 2 hours. The pH was adjusted to 7.0.

Как видно из Таблицы 3, штамм WC196-ΔleuO накапливал большее количество L-лизина по сравнению со штаммом WC196.As can be seen from Table 3, the strain WC196-ΔleuO accumulated a greater amount of L-lysine compared to strain WC196.

Пример 4. Продукция L-цистеина штаммом Е. coli JM15(ydeD)-ΔnacExample 4. Production of L-cysteine by E. coli strain JM15 (ydeD) -Δnac

Для оценки влияния инактивации гена nac на продукцию L-цистеина ДНК-фрагменты хромосомы описанного выше штамма Е. coli MG1655 Δnac::cat могут быть перенесены в штамм-продуцент L-цистеина Е. coli JM15(ydeD) с помощью Р1-трансдукции (Miller, J.H. (1972) Experiments in Molecular Genetics, Cold Spring Harbor Lab. Press, Plainview, NY), в результате чего может быть получен штамм JM15(ydeD)-Δnac.To assess the effect of inactivation of the nac gene on L-cysteine production, DNA fragments of the chromosome of the E. coli strain MG1655 Δnac :: cat described above can be transferred to the E. coli JM15 L-cysteine producer strain (ydeD) using P1 transduction (Miller , JH (1972) Experiments in Molecular Genetics, Cold Spring Harbor Lab. Press, Plainview, NY), whereby the JM15 (ydeD) -Δnac strain can be obtained.

Штамм Е. coli JM15(ydeD) является производным штамма Е. coli JM15 (патент США 6218168), который может быть трансформирован ДНК, содержащей ген ydeD, кодирующий мембранный белок, не вовлеченный в пути биосинтеза ни одной из L-аминокислот (патент США 5972663).The strain E. coli JM15 (ydeD) is a derivative of the strain E. coli JM15 (US patent 6218168), which can be transformed with DNA containing the ydeD gene encoding a membrane protein not involved in the biosynthesis of any of the L-amino acids (US patent 5972663 )

Условия ферментации для оценки продукции L-цистеина детально описаны в Примере 6 патента США 6218168.Fermentation conditions for evaluating L-cysteine production are described in detail in Example 6 of US Pat. No. 6,218,168.

Пример 5. Продукция L-лейцина штаммом Е. coli 57-ΔnacExample 5. The production of L-leucine strain E. coli 57-Δnac

Для оценки влияния инактивации гена nac на продукцию L-лейцина ДНК-фрагменты хромосомы описанного выше штамма Е. coli MG1655 Δnac::cat могут быть перенесены в штамм-продуцент L-лейцина Е. coli 57 (ВКПМ В-7386, патент США 6124121) с помощью P1-трансдукции (Miller, J.H. (1972) Experiments in Molecular Genetics, Cold Spring Harbor Lab. Press, Plainview, NY), в результате чего может быть получен штамм 57-Δnac.To assess the effect of inactivation of the nac gene on the production of L-leucine, DNA fragments of the chromosome of the E. coli strain MG1655 Δnac :: cat described above can be transferred to the E. coli 57 L-leucine producer strain (VKPM B-7386, US patent 6124121) by P1 transduction (Miller, JH (1972) Experiments in Molecular Genetics, Cold Spring Harbor Lab. Press, Plainview, NY), whereby a 57-Δnac strain can be obtained.

Оба штамма Е. coli, 57 и 57-Δnac, могут быть выращены в течение 18-24 часов при температуре 37°С на чашках с L-агаром. Для получения посевной культуры указанные штаммы могут быть выращены на роторной качалке (250 об/мин) при 32°С в течение 18 часов в пробирках размером 20×200 мм, содержащих 2 мл L-бульона с 4% сахарозы. Затем в ферментационную среду может быть внесено по 0.21 мл (10%) посевной культуры. Ферментацию можно проводить в 2 мл минимальной ферментационной среды в пробирках размером 20×200 мм. Клетки могут быть выращены в течение 48-72 часов при 32°С с перемешиванием (250 об/мин). Количество L-лейцина может быть измерено с помощью бумажной хроматографии (состав подвижной фазы: бутанол - уксусная кислота - вода = 4:1:1).Both strains of E. coli, 57 and 57-Δnac, can be grown for 18-24 hours at 37 ° C on plates with L-agar. To obtain a seed culture, these strains can be grown on a rotary shaker (250 rpm) at 32 ° C for 18 hours in 20 × 200 mm test tubes containing 2 ml of L-broth with 4% sucrose. Then, 0.21 ml (10%) of the seed culture can be added to the fermentation medium. Fermentation can be carried out in 2 ml of minimal fermentation medium in test tubes measuring 20 × 200 mm. Cells can be grown for 48-72 hours at 32 ° C with stirring (250 rpm). The amount of L-leucine can be measured using paper chromatography (mobile phase composition: butanol - acetic acid - water = 4: 1: 1).

Может быть использована ферментационная среда следующего состава (г/л) (рН 7.2):Can be used in a fermentation medium of the following composition (g / l) (pH 7.2):

ГлюкозаGlucose 60.060.0 (NH4)2SO4 (NH 4 ) 2 SO 4 25.025.0 K2HPO4 K 2 HPO 4 2.02.0 MgSO4·7H2OMgSO 4 · 7H 2 O 1.01.0 ТиаминThiamine 0.010.01 СаСО3 CaCO 3 25.025.0

Глюкозу и мел следует стерилизовать отдельно.Glucose and chalk should be sterilized separately.

Пример 6. Продукция L-гистидина штаммом Е. coli 80-ΔnacExample 6. Production of L-histidine by E. coli strain 80-Δnac

Для оценки влияния инактивации гена nac на продукцию L-гистидина ДНК-фрагменты хромосомы описанного выше штамма Е. coli MG1655 Δnac::cat могут быть перенесены в штамм-продуцент L-гистидина Е. coli 80 с помощью P1-трансдукции (Miller, J.H. (1972) Experiments in Molecular Genetics, Cold Spring Harbor Lab. Press, Plainview, NY) для получения штамма 80-Δnac. Штамм 80 описан в патенте РФ 2119536 и депонирован во Всероссийской коллекции промышленных микроорганизмов (Россия, 117545 Москва, 1-ый Дорожный проезд, 1) с инвентарным номером ВКПМ В-7270, затем 12 июля 2004 г. было произведено международное депонирование этого штамма согласно условиям Будапештского Договора.To evaluate the effect of nac gene inactivation on L-histidine production, DNA fragments of the chromosome of the E. coli MG1655 Δnac :: cat strain described above can be transferred to the E. coli 80 L-histidine producing strain using P1 transduction (Miller, JH ( 1972) Experiments in Molecular Genetics, Cold Spring Harbor Lab. Press, Plainview, NY) to obtain the strain 80-Δnac. Strain 80 is described in RF patent 2119536 and deposited in the All-Russian collection of industrial microorganisms (Russia, 117545 Moscow, 1st Dorozhniy proezd, 1) with accession number VKPM B-7270, then on July 12, 2004, this strain was internationally deposited in accordance with the conditions Budapest Treaty.

Оба штамма Е. coli, 80 и 80-Δnac, могут быть выращены в L-бульоне при 29°С в течение 6 часов. Затем 0.1 мл полученных культур может быть внесено в 2 мл ферментационной среды в пробирки размером 20×200 мм и культуры могут быть выращены при 29°С в течение 65 часов на роторной качалке (350 об/мин). После выращивания количество накопленного в среде гистидина может быть определено с помощью бумажной хроматографии. Может быть использована подвижная фаза следующего состава: п-бутанол - уксусная кислота - вода =4:1:1 (v/v). Раствор нингидрина (0.5%) в ацетоне может быть использован для визуализации.Both strains of E. coli, 80 and 80-Δnac, can be grown in L-broth at 29 ° C for 6 hours. Then 0.1 ml of the obtained cultures can be introduced into 2 ml of fermentation medium in 20 × 200 mm test tubes and the cultures can be grown at 29 ° C for 65 hours on a rotary shaker (350 rpm). After growing, the amount of histidine accumulated in the medium can be determined by paper chromatography. The mobile phase of the following composition can be used: p-butanol - acetic acid - water = 4: 1: 1 (v / v). A solution of ninhydrin (0.5%) in acetone can be used for visualization.

Состав ферментационной среды (рН 6.0) (г/л):The composition of the fermentation medium (pH 6.0) (g / l):

ГлюкозаGlucose 100.0100.0 Мамено (гидролизат сои)Mameno (soy hydrolyzate) 0.2 общего азота0.2 total nitrogen L-пролинL-proline 1.01.0 (NH4)2SO4 (NH 4 ) 2 SO 4 25.025.0 KH2PO4 KH 2 PO 4 2.02.0 MgSO4·7H2OMgSO 4 · 7H 2 O 1.01.0 FeSO4·7H2OFeSO 4 · 7H 2 O 0.010.01 MnSO4 MnSO 4 0.010.01 ТиаминThiamine 0.0010.001 БетаинBetaine 2.02.0 СаСО3 CaCO 3 60.060.0

Глюкозу, пролин, бетаин и СаСО3 стерилизуют отдельно. рН доводят до 6.0 перед стерилизацией.Glucose, proline, betaine and CaCO 3 are sterilized separately. The pH is adjusted to 6.0 before sterilization.

Пример 7. Продукция L-глутаминовой кислоты штаммом Е. coli VL334thrC+-ΔnacExample 7. The production of L-glutamic acid strain E. coli VL334thrC + -Δnac

Для оценки влияния инактивации гена nac на продукцию L-глутаминовой кислоты ДНК-фрагменты хромосомы описанного выше штамма Е. coli MG1655 Δnac::cat могут быть перенесены в штамм-продуцент L-глутаминовой кислоты Е. VL334thrC+ (ЕР 1172433) с помощью P1-трансдукции (Miller, J.H. (1972) Experiments in Molecular Genetics, Cold Spring Harbor Lab. Press, Plainview, NY), в результате чего может быть получен штамм VL334thrC+-Δnac. Штамм VL334thrC+ депонирован во Всероссийской коллекции промышленных микроорганизмов (Россия, 117545 Москва, 1-ый Дорожный проезд, 1) 6 декабря 2004 г. с инвентарным номером В-8961, затем 8 декабря 2004 г. было произведено международное депонирование этого штамма согласно условиям Будапештского Договора.To assess the effect of inactivation of the nac gene on the production of L-glutamic acid, DNA fragments of the chromosome of the E. coli strain MG1655 Δnac :: cat described above can be transferred to the L-glutamic acid producer strain E. VL334thrC + (EP 1172433) using P1- transduction (Miller, JH (1972) Experiments in Molecular Genetics, Cold Spring Harbor Lab. Press, Plainview, NY), whereby strain VL334thrC + -Δnac can be obtained. Strain VL334thrC + was deposited in the All-Russian collection of industrial microorganisms (Russia, 117545 Moscow, 1st Dorozhniy proezd, 1) December 6, 2004 with accession number B-8961, then December 8, 2004, this strain was internationally deposited in accordance with the conditions of the Budapest Of the contract.

Оба штамма, VL334thrC+и VL334thrC+-Δnac, могут быть выращены на чашках с L-агаром при 37°С в течение 18-24 часов. Далее, одна петля клеток может быть перенесена в пробирки, содержащие 2 мл ферментационной среды. Ферментационная среда должна содержать глюкозу - 60 г/л, сульфат аммония - 25 г/л, КН2PO4 - 2 г/л, MgSO4 - 1 г/л, тиамин - 0.1 мг/мл, L-изолейцин - 70 мкг/мл и мел - 25 г/л (рН 7.2). Глюкозу и мел следует стерилизовать отдельно. Выращивание может производиться при 30°С в течение 3 дней с перемешиванием. После выращивания количество полученной L-глутаминовой кислоты может быть определено с помощью бумажной хроматографии (состав подвижной фазы; бутанол-уксусная кислота-вода = 4:1:1) с последующим окрашиванием нингидрином (1% раствор в ацетоне) и дальнейшим элюированием полученных соединений в 50% этаноле с 0.5% CdCl2.Both strains, VL334thrC + and VL334thrC + -Δnac, can be grown on L-agar plates at 37 ° C for 18-24 hours. Further, one loop of cells can be transferred to tubes containing 2 ml of fermentation medium. The fermentation medium should contain glucose - 60 g / l, ammonium sulfate - 25 g / l, KH 2 PO 4 - 2 g / l, MgSO 4 - 1 g / l, thiamine - 0.1 mg / ml, L-isoleucine - 70 μg / ml and chalk - 25 g / l (pH 7.2). Glucose and chalk should be sterilized separately. Cultivation can be carried out at 30 ° C for 3 days with stirring. After growing, the amount of L-glutamic acid obtained can be determined using paper chromatography (mobile phase composition; butanol-acetic acid-water = 4: 1: 1), followed by staining with ninhydrin (1% solution in acetone) and further eluting the obtained compounds in 50% ethanol with 0.5% CdCl 2 .

Пример 8. Продукция L-фенилаланина штаммом Е. coli AJ12739-ΔnacExample 8. The production of L-phenylalanine strain E. coli AJ12739-Δnac

Для оценки влияния инактивации гена nac на продукцию L-фенилаланина ДНК-фрагменты хромосомы описанного выше штамма Е. coli MG1655 Δnac::cat могут быть перенесены в штамм-продуцент L-фенилаланина Е. coli AJ12739 с помощью Р1-трансдукции (Miller, J.H. (1972) Experiments in Molecular Genetics, Cold Spring Harbor Lab. Press, Plainview, NY) для получения штамма АJ12739-Δnac. Штамм АJ12739 депонирован во Всероссийской коллекции промышленных микроорганизмов (ВКПМ) (Россия, 117545 Москва, 1ый Дорожный проезд, 1) 6 ноября 2001 года с инвентарным номером ВКПМ В-8197, затем 23 августа 2002 г. было произведено международное депонирование этого штамма согласно условиям Будапештского Договора.To assess the effect of inactivation of the nac gene on L-phenylalanine production, DNA fragments of the chromosome of the E. coli strain MG1655 Δnac :: cat described above can be transferred to the E. coli L-phenylalanine producing strain AJ12739 using P1 transduction (Miller, JH ( 1972) Experiments in Molecular Genetics, Cold Spring Harbor Lab. Press, Plainview, NY) to obtain strain AJ12739-Δnac. Strain АJ12739 was deposited in the All-Russian Collection of Industrial Microorganisms (VKPM) (Russia, 117545 Moscow, 1st Road passage, 1) on November 6, 2001 with accession number VKPM B-8197, then on August 23, 2002 this strain was internationally deposited in accordance with the conditions Budapest Treaty.

Оба штамма, AJ12739-Δnac и AJ12739, могут быть выращены при 37°С в течение 18 часов в питательном бульоне; 0.3 мл полученных культур может быть внесено в 3 мл ферментационной среды в пробирки размером 20×200 мм и культуры могут быть выращены при 37°С в течение 48 часов на роторной качалке. По окончании ферментации количество накопленного в среде фенилаланина может быть определено с помощью тонкослойной хроматографии (TLC). Для этой цели могут быть использованы TLC-пластинки размером 10×15 см, покрытые 0.11 мм-слоем силикагеля Сорбфил без флуоресцентного индикатора (Акционерное Общество Сорбполимер, Краснодар, Россия). Пластинки Сорбфил могут быть экспонированы в подвижной фазе следующего состава: пропан-2-ол: этилацетат: 25% водного аммиака: вода = 40:40:7:16 (v/v). Раствор (2%) нингидрина в ацетоне может быть использован для визуализации.Both strains, AJ12739-Δnac and AJ12739, can be grown at 37 ° C for 18 hours in nutrient broth; 0.3 ml of the obtained cultures can be introduced into 3 ml of fermentation medium in 20 × 200 mm tubes and the cultures can be grown at 37 ° C for 48 hours on a rotary shaker. At the end of the fermentation, the amount of phenylalanine accumulated in the medium can be determined by thin layer chromatography (TLC). For this purpose, 10 × 15 cm TLC plates coated with a 0.11 mm layer of Sorbfil silica gel without a fluorescent indicator can be used (Sorbpolymer Joint-Stock Company, Krasnodar, Russia). Sorbfil plates can be exposed in the mobile phase of the following composition: propan-2-ol: ethyl acetate: 25% aqueous ammonia: water = 40: 40: 7: 16 (v / v). A solution (2%) of ninhydrin in acetone can be used for visualization.

Состав ферментационной среды (г/л):The composition of the fermentation medium (g / l):

ГлюкозаGlucose 40.040.0 (NH4)2SO4 (NH 4 ) 2 SO 4 16.016.0 К2HPO4 K 2 HPO 4 0.10.1 MgSO4·7H2OMgSO 4 · 7H 2 O 1.01.0 FeSO4·7H2OFeSO 4 · 7H 2 O 0.010.01 MnSO4·5H2OMnSO 4 · 5H 2 O 0.010.01 Тиамин HClThiamine HCl 0.00020.0002 Дрожжевой экстрактYeast extract 2.02.0 ТирозинTyrosine 0.1250.125 СаСО3 CaCO 3 20.020.0

Глюкозу и сульфат магния стерилизуют отдельно. СаСО3 стерилизуют сухим жаром при 180°С в течение 2 часов. рН доводят до 7.0.Glucose and magnesium sulfate are sterilized separately. CaCO 3 is sterilized by dry heat at 180 ° C for 2 hours. The pH was adjusted to 7.0.

Пример 9. Продукция L-триптофана штаммом Е. coli SV164 (pGH5)-ΔnacExample 9. Production of L-tryptophan by E. coli strain SV164 (pGH5) -Δnac

Для оценки влияния инактивации гена nac на продукцию L-триптофана ДНК-фрагменты хромосомы описанного выше штамма Е. coli MG1655 Δnac::cat могут быть перенесены в штамм-продуцент L-триптофана Е. coli SV164 (pGH5) с помощью Р1-трансдукции (Miller, J.H. (1972) Experiments in Molecular Genetics, Cold Spring Harbor Lab, Press, Plainview, NY) для получения штамма SV164(pGH5)-Δnac Штамм SV164 содержит аллель trpE, кодирующий антранилатсинтазу, которая не подвержена ингибированию триптофаном по типу обратной связи. Плазмида pGH5 содержит мутантный ген serA, кодирующий фосфоглицератдегидрогеназу, которая не подвержена ингибированию серином по типу обратной связи. Штамм SV164 (pGH5) детально описан в патенте США 6180373.To assess the effect of inactivation of the nac gene on the production of L-tryptophan, DNA fragments of the chromosome of the E. coli strain MG1655 Δnac :: cat described above can be transferred to the E. coli L-tryptophan producing strain SV164 (pGH5) using P1 transduction (Miller , JH (1972) Experiments in Molecular Genetics, Cold Spring Harbor Lab, Press, Plainview, NY) to obtain strain SV164 (pGH5) -Δnac Strain SV164 contains the trpE allele encoding anthranilate synthase, which is not susceptible to tryptophan inhibition by feedback. Plasmid pGH5 contains the mutant gene serA, encoding phosphoglycerate dehydrogenase, which is not susceptible to serine inhibition by feedback. Strain SV164 (pGH5) is described in detail in US Pat. No. 6,180,373.

Оба штамма, SV164(pGH5)-Δnac и SV164(pGH5), могут быть выращены с перемешиванием при 37°С в течение 18 часов в 3 мл питательного бульона с добавлением тетрациклина (маркера плазмиды pGH5,20 мг/мл). По 0.3 мл полученных культур может быть внесено в 3 мл ферментационной среды, содержащей тетрациклин (20 мг/мл), в пробирках размером 20×200 мм; и культуры могут быть выращены при 37°С в течение 48 часов на роторной качалке при 250 об/мин. После выращивания количество накопленного в среде триптофана может быть определено с помощью TLC, как описано в Примере 8. Компоненты ферментационной среды представлены в Таблице 1, но группы компонентов А, В, С, D, Е, F и Н следует стерилизовать отдельно, как и показано в Таблице, чтобы избежать нежелательных взаимодействий во время стерилизации.Both strains, SV164 (pGH5) -Δnac and SV164 (pGH5), can be grown with stirring at 37 ° C for 18 hours in 3 ml of nutrient broth with tetracycline (plasmid marker pGH5.20 mg / ml). 0.3 ml of the obtained cultures can be introduced into 3 ml of a fermentation medium containing tetracycline (20 mg / ml) in 20 × 200 mm test tubes; and cultures can be grown at 37 ° C. for 48 hours on a rotary shaker at 250 rpm. After growing, the amount of tryptophan accumulated in the medium can be determined using TLC, as described in Example 8. The components of the fermentation medium are shown in Table 1, but the groups of components A, B, C, D, E, F and H should be sterilized separately, as shown in the Table to avoid unwanted interactions during sterilization.

Пример 10. Продукция L-пролина штаммом Е. coli 702ilvA-ΔnacExample 10. The production of L-proline strain E. coli 702ilvA-Δnac

Для оценки влияния инактивации гена nac на продукцию L-пролина ДНК-фрагменты из хромосомы описанного выше штамма Е.coli MG1655 Δnac::cat могут быть перенесены в штамм-продуцент L-пролина Е. coli 702ilvA с помощью Р1-трансдукции (Miller, J.H. (1972) Experiments in Molecular Genetics, Cold Spring Harbor Lab. Press, Plainview, NY) для получения штамма 702ilvA-Δnac. Штамм 702ilvA депонирован во Всероссийской коллекции промышленных микроорганизмов (ВКПМ) (Россия, 117545 Москва, 1ый Дорожный проезд, 1) 18 июля 2000 г. с инвентарным номером ВКПМ В-8012, затем 18 мая 2001 г. было произведено международное депонирование этого штамма согласно условиям Будапештского Договора.To assess the effect of inactivation of the nac gene on L-proline production, DNA fragments from the chromosome of the E. coli MG1655 Δnac :: cat strain described above can be transferred to the E. coli 702ilvA L-proline producer strain using P1 transduction (Miller, JH (1972) Experiments in Molecular Genetics, Cold Spring Harbor Lab. Press, Plainview, NY) to obtain strain 702ilvA-Δnac. Strain 702ilvA was deposited in the All-Russian Collection of Industrial Microorganisms (VKPM) (Russia, 117545 Moscow, 1st Road passage, 1) July 18, 2000 with accession number VKPM B-8012, then on May 18, 2001, this strain was internationally deposited according to terms of the Budapest Treaty.

Оба штамма Е. Coli, 702ilvA и 702ilvA-Δnac, могут быть выращены в течение 18-24 часов при температуре 37°С на чашках с L-агаром. Затем ферментация с использованием этих штаммов может производиться в тех же условиях, как описано в Примере 7.Both strains of E. Coli, 702ilvA and 702ilvA-Δnac, can be grown for 18-24 hours at 37 ° C on plates with L-agar. Then fermentation using these strains can be carried out under the same conditions as described in Example 7.

Пример 11. Продукция L-аргинина штаммом Е. coli 382-ΔnacExample 11. The production of L-arginine strain E. coli 382-Δnac

Для оценки влияния инактивации гена nac на продукцию L-аргинина ДНК-фрагменты хромосомы описанного выше штамма Е. coli MG1655 Δnac::cat могут быть перенесены в штамм-продуцент L-аргинина Е. coli 382 с помощью Р1-трансдукции (Miller, J.H. (1972) Experiments in Molecular Genetics, Cold Spring Harbor Lab. Press, Plainview, NY) для получения штамма 382-Δnac. Штамм 382 депонирован во Всероссийской коллекции промышленных микроорганизмов (ВКПМ) (Россия, 117545 Москва, 1ый Дорожный проезд, 1) 10 апреля 2000 года с инвентарным номером ВКПМ В-7926, затем 18 мая 2001 г. было произведено международное депонирование этого штамма согласно условиям Будапештского Договора.To assess the effect of inactivation of the nac gene on L-arginine production, DNA fragments of the chromosome of the E. coli MG1655 Δnac :: cat strain described above can be transferred to the E. coli 382 L-arginine producing strain using P1 transduction (Miller, JH ( 1972) Experiments in Molecular Genetics, Cold Spring Harbor Lab. Press, Plainview, NY) to obtain strain 382-Δnac. Strain 382 was deposited in the All-Russian Collection of Industrial Microorganisms (VKPM) (Russia, 117545 Moscow, 1st Dorozhniy proezd, 1) on April 10, 2000 with accession number VKPM B-7926, then on May 18, 2001, this strain was internationally deposited in accordance with the conditions Budapest Treaty.

Оба штамма, 382-Δnac и 382, могут быть выращены с перемешиванием при 37°С в течение 18 часов в 3 мл питательного бульона, содержащего хлорамфеникол (30 мг/мл); по 0.3 мл полученных культур может быть внесено в 3 мл ферментационной среды в пробирки размером 20×200 мм и культуры могут быть выращены при 32°С в течение 48 часов на роторной качалке.Both strains, 382-Δnac and 382, can be grown with stirring at 37 ° C for 18 hours in 3 ml of nutrient broth containing chloramphenicol (30 mg / ml); 0.3 ml of the resulting cultures can be introduced into 3 ml of fermentation medium in 20 × 200 mm tubes and cultures can be grown at 32 ° C for 48 hours on a rotary shaker.

После выращивания количество накопленного в среде L-аргинина может быть определено с помощью бумажной хроматографии, при этом может быть использован следующий состав подвижной фазы: бутанол: уксусная кислота: вода =4:1:1 (v/v). Раствор нингидрина (2%) в ацетоне может быть использован для визуализации. Пятно, содержащее L-аргинин, может быть вырезано; L-аргинин может быть элюирован 0.5% водным раствором CdCl2, после чего количество L-аргинина может быть определено спектрофотометрическим методом при длине волны 540 нм.After growing, the amount of L-arginine accumulated in the medium can be determined using paper chromatography, and the following composition of the mobile phase can be used: butanol: acetic acid: water = 4: 1: 1 (v / v). A solution of ninhydrin (2%) in acetone can be used for visualization. A stain containing L-arginine can be excised; L-arginine can be eluted with a 0.5% aqueous solution of CdCl 2 , after which the amount of L-arginine can be determined spectrophotometrically at a wavelength of 540 nm.

Состав ферментационной среды (г/л):The composition of the fermentation medium (g / l):

ГлюкозаGlucose 48.048.0 (NH4)2SO4 (NH 4 ) 2 SO 4 35.035.0 КН2PO4 KN 2 PO 4 2.02.0 MgSO4 7H2OMgSO 4 7H 2 O 1.01.0 Тиамин HClThiamine HCl 0.00020.0002 Дрожжевой экстрактYeast extract 1.01.0 L-изолейцинL-isoleucine 0.10.1 СаСО3 CaCO 3 5.05.0

Глюкозу и сульфат магния стерилизуют отдельно. СаСО3 стерилизуют сухим жаром при 180°С в течение 2 часов. рН доводят до 7.0.Glucose and magnesium sulfate are sterilized separately. CaCO 3 is sterilized by dry heat at 180 ° C for 2 hours. The pH was adjusted to 7.0.

Хотя указанное изобретение описано в деталях со ссылкой на Наилучший способ осуществления изобретения, для специалиста в указанной области техники очевидно, что могут быть совершены различные изменения и произведены эквивалентные замены и такие изменения и замены не выходят за рамки настоящего изобретения.Although the invention has been described in detail with reference to the Best Mode for Carrying Out the Invention, it will be apparent to those skilled in the art that various changes may be made and equivalent replacements may be made and such changes and replacements are not beyond the scope of the present invention.

Каждому из упомянутых выше документов соответствует ссылка и все цитируемые документы являются частью описания настоящего изобретения.Each of the above documents has a link and all cited documents are part of the description of the present invention.

Таблица 1Table 1 ШтаммStrain OD540 OD 540 L-треонин, г/лL-threonine, g / l В-3996B-3996 25.2±2.625.2 ± 2.6 28.4±0.728.4 ± 0.7 В-3996-ΔnacB-3996-Δnac 27.7±4.127.7 ± 4.1 31.9±1.031.9 ± 1.0 Таблица 2table 2 РастворыSolutions КомпонентComponent Конечная концентрация, г/лFinal concentration, g / l АBUT КН2PO4 KN 2 PO 4 1.51.5 NaClNaCl 0.50.5 (NH4)2SO4 (NH 4 ) 2 SO 4 1.51.5 L-метионинL-methionine 0.050.05 L-фенилаланинL-phenylalanine 0.10.1 L-тирозинL-tyrosine 0.10.1 Mameno (общий N)Mameno (total N) 0.070.07 ВAT ГлюкозаGlucose 40.040.0 MgSO4×7H2OMgSO 4 × 7H 2 O 0.30.3 СFROM CaCl2 CaCl 2 0.0110.011 DD FeSO4×7H2OFeSO 4 × 7H 2 O 0.0750.075 Цитрат натрияSodium citrate 1.01.0 ЕE Na2MoO4×2H2ONa 2 MoO 4 × 2H 2 O 0.000150.00015 Н3ВО3 H 3 IN 3 0.00250.0025 CoCl2×6H2OCoCl 2 × 6H 2 O 0.000070.00007 CuSO4×5H2OCuSO 4 × 5H 2 O 0.000250.00025 MnCl2×4H2OMnCl 2 × 4H 2 O 0.00160.0016 ZnSO4×7Н2ОZnSO 4 × 7H 2 O 0.00030.0003 FF Тиамин HClThiamine HCl 0.0050.005 GG СаСО3 CaCO 3 30.030.0 НN ПиридоксинPyridoxine 0.030.03 рН раствора А доводили до значения 7.1 при помощи NH4OH.The pH of solution A was adjusted to 7.1 with NH 4 OH. Таблица 3Table 3 ШтаммStrain OD540 OD 540 L-лизин, г/лL-lysine, g / l WC 196WC 196 24.8±0.424.8 ± 0.4 1.9±0.11.9 ± 0.1 WC196-ΔnacWC196-Δnac 18.3±0.318.3 ± 0.3 2.3±0.22.3 ± 0.2

Figure 00000001
Figure 00000001

Figure 00000002
Figure 00000002

Figure 00000003
Figure 00000003

Figure 00000004
Figure 00000004

Figure 00000005
Figure 00000005

Claims (3)

1. Бактерия-продуцент L-треонина или L-лизина, принадлежащая к роду Escherichia, модифицированная таким образом, что в указанной бактерии инактивирован ген nас.1. The bacterium producing L-threonine or L-lysine belonging to the genus Escherichia, modified in such a way that the gene nac is inactivated in this bacterium. 2. Бактерия по п.1, отличающаяся тем, что указанный ген nac инактивирован за счет делеции гена пас в хромосоме бактерии.2. The bacterium according to claim 1, characterized in that said nac gene is inactivated due to deletion of the pass gene in the bacterial chromosome. 3. Способ получения L-треонина или L-лизина, включающий выращивание бактерии по любому из пп.1 и 2 в питательной среде, вызывающее продукцию и накопление указанной L-аминокислоты в культуральной жидкости, и выделение указанной L-аминокислоты из культуральной жидкости.3. A method for producing L-threonine or L-lysine, comprising growing a bacterium according to any one of claims 1 and 2 in a nutrient medium, causing production and accumulation of said L-amino acid in the culture fluid, and isolation of said L-amino acid from the culture fluid.
RU2006104648/13A 2006-02-16 2006-02-16 METHOD FOR PREPARING L-THREONINE OR L-LYSINE USING MICROORGANISM BELONGING TO Escherichia GENUS WHEREIN nac GENE IS INACTIVATED RU2315810C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2006104648/13A RU2315810C2 (en) 2006-02-16 2006-02-16 METHOD FOR PREPARING L-THREONINE OR L-LYSINE USING MICROORGANISM BELONGING TO Escherichia GENUS WHEREIN nac GENE IS INACTIVATED

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2006104648/13A RU2315810C2 (en) 2006-02-16 2006-02-16 METHOD FOR PREPARING L-THREONINE OR L-LYSINE USING MICROORGANISM BELONGING TO Escherichia GENUS WHEREIN nac GENE IS INACTIVATED

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
RU2005106347/13A Substitution RU2005106347A (en) 2005-03-10 2005-03-10 METHOD FOR PRODUCING L-AMINO ACIDS USING THE BACTERIA OF THE ENTEROBACTERIACEAE FAMILY IN WHICH THE NAC GENE IS INACTIVATED

Publications (2)

Publication Number Publication Date
RU2006104648A RU2006104648A (en) 2007-09-10
RU2315810C2 true RU2315810C2 (en) 2008-01-27

Family

ID=38597782

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006104648/13A RU2315810C2 (en) 2006-02-16 2006-02-16 METHOD FOR PREPARING L-THREONINE OR L-LYSINE USING MICROORGANISM BELONGING TO Escherichia GENUS WHEREIN nac GENE IS INACTIVATED

Country Status (1)

Country Link
RU (1) RU2315810C2 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MUSE W.B. et al. The nac (nitrogen assimilation control) gene from Escherichia coli. J Bacteriol. 1998 Mar; 180(5): 1166-73. SCHWACHA A. et al. The nac (nitrogen assimilation control) gene from Klebsiella aerogenes. J Bacteriol. 1993 Apr; 175(7):2107-15. *

Also Published As

Publication number Publication date
RU2006104648A (en) 2007-09-10

Similar Documents

Publication Publication Date Title
EP1828397B1 (en) Method for producing l-amino acid using bacterium of enterobacteriaceae family having expression of yafa gene attenuated
EP1848811B1 (en) A method for producing an l-amino acid using a bacterium of the enterobacteriaceae family
WO2008072640A1 (en) A METHOD FOR PRODUCING AN L-AMINO ACID USING A BACTERIUM OF THE ENTEROBACTERIACEAE FAMILY WITH ATTENUATED EXPRESSION OF ANY OF THE cynT, cynS, cynX OR cynR GENE OR COMBINATION THEREOF
RU2501858C2 (en) METHOD FOR OBTAINING L-AMINOACID USING BACTERIUM OF Enterobacteriaceae FAMILY
WO2006123764A1 (en) A method for producing an l-amino acid using a bacterium of the enterobacteriaceae family with attenuated expression of the kefb gene
EP1929027A1 (en) A METHOD FOR PRODUCING AN L-AMINO ACID USING A BACTERIUM OF THE ENTEROBACTERIACEAE FAMILY WITH ATTENUATED EXPRESSION OF THE ybiV GENE
RU2366703C2 (en) METHOD FOR PREPARING L-THREONINE WITH USING Escherichia BACTERIUM WITH INACTIVATED tolC GENE
RU2337959C2 (en) METHOD OF OBTAINING L-THREONINE USING BACTERIUM, BELONGING TO GENUS Escherichia, IN WHICH GENE yfeH IS INACTIVATED
RU2312894C1 (en) METHOD FOR PREPARING L-AMINO ACIDS USING MICROORGANISM BELONGING TO GENUS Escherichia WHEREIN leuO GENE IS INACTIVATED
RU2337956C2 (en) METHOD OF L-THREONINE RECEIVING WITH USAGE OF BACTERIA BELONGING TO GENUS Escherichia, IN WHICH INACTIVATED GENE lrhA
RU2330883C2 (en) BACTERIUM OF Escherichia GENUS WITH INACTIVATED pnp GENE PRODUCING L-THREONINE AND L-THREONINE TECHNIQUE
RU2497943C2 (en) METHOD OF PRODUCTION OF L-AMINO ACIDS USING BACTERIA OF FAMILY Enterobacteriaceae
RU2359029C2 (en) METHOD FOR OBTAINING L-THREONINE USING BACTERIUM RELATING TO Escherichia, IN WHICH rcsA GENE IS INACTIVATED
RU2315810C2 (en) METHOD FOR PREPARING L-THREONINE OR L-LYSINE USING MICROORGANISM BELONGING TO Escherichia GENUS WHEREIN nac GENE IS INACTIVATED
RU2326164C2 (en) METHOD FOR PRODUCING L-HISTIDINE USING A BACTERIUM BELONGING TO THE GENUS Escherichia, WHEREIN THE sanA GENE IS INACTIVATED
RU2313574C2 (en) METHOD FOR PREPARING L-ARGININE USING MICROORGANISM BELONGING TO GENUS Escherichia WHEREIN relBE OPERON IS INACTIVATED
RU2312138C2 (en) METHOD FOR PREPARING L-THREONINE USING MICROORGANISM BELONGING TO GENUS Escherichia WHEREIN yefM-yoeB OPERON IS INACTIVATED
EP1856242B1 (en) Process for producing a l-amino acid employing a bacterium of the enterobacteriaceae family with attenuated nac expression
RU2311452C2 (en) METHOD FOR PREPARING L-THREONINE USING MICROORGANISM BELONGING TO GENUS ESCHERICHIA WHEREIN OPERON phoBR IS INACTIVATED
RU2312139C2 (en) METHOD FOR PREPARING L-AMINO ACIDS BY USING MICROORGANISM BELONGING TO GENUS Escherichia WHEREIN bolA GENE IS INACTIVATED
RU2313573C2 (en) METHOD FOR PREPARING L-THREONINE USING MICROORGANISM BELONGING TO GENUS ESCHERICHIA WHEREIN mazEF OPERON IS INACTIVATED
RU2314343C2 (en) METHOD FOR PREPARING L-THREONINE USING MICROORGANISM BELONGING TO Escherichia GENUS WHEREIN dinJ-yafQ OPERON IS INACTIVATED
RU2315099C2 (en) METHOD FOR PREPARING L-THREONINE USING MICROORGANISM BELONGING TO GENUS Escherichia WHEREIN dicB GENE IS INACTIVATED
RU2320719C2 (en) METHOD FOR PREPARING L-THREONINE USING MICROORGANISM BELONGING TO ESCHERICHIA GENUS WHEREIN ybiV GENE IS INACTIVATED
RU2320718C2 (en) METHOD FOR PREPARING L-THREONINE USING MICROORGANISM BELONGING TO ESCHERICHIA GENUS WHEREIN hipA GENE IS INACTIVATED