RU2309342C1 - Способ ожижения водорода с гелиевым холодильным циклом и устройство для его осуществления - Google Patents

Способ ожижения водорода с гелиевым холодильным циклом и устройство для его осуществления Download PDF

Info

Publication number
RU2309342C1
RU2309342C1 RU2006115476/06A RU2006115476A RU2309342C1 RU 2309342 C1 RU2309342 C1 RU 2309342C1 RU 2006115476/06 A RU2006115476/06 A RU 2006115476/06A RU 2006115476 A RU2006115476 A RU 2006115476A RU 2309342 C1 RU2309342 C1 RU 2309342C1
Authority
RU
Russia
Prior art keywords
helium
hydrogen
cooling
nitrogen
stream
Prior art date
Application number
RU2006115476/06A
Other languages
English (en)
Inventor
Игорь Михайлович Морковкин (RU)
Игорь Михайлович Морковкин
Иван Федорович Кузьменко (RU)
Иван Федорович Кузьменко
Елена Александровна Кашонкова (RU)
Елена Александровна Кашонкова
Юрий Иванович Духанин (RU)
Юрий Иванович Духанин
Евгений Иванович Гуров (RU)
Евгений Иванович Гуров
Original Assignee
Открытое акционерное общество криогенного машиностроения (ОАО "Криогенмаш")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество криогенного машиностроения (ОАО "Криогенмаш") filed Critical Открытое акционерное общество криогенного машиностроения (ОАО "Криогенмаш")
Priority to RU2006115476/06A priority Critical patent/RU2309342C1/ru
Application granted granted Critical
Publication of RU2309342C1 publication Critical patent/RU2309342C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/001Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • F25J1/0065Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0204Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a single flow SCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/14External refrigeration with work-producing gas expansion loop
    • F25J2270/16External refrigeration with work-producing gas expansion loop with mutliple gas expansion loops of the same refrigerant

Abstract

Изобретение может быть использовано при создании водородных ожижителей средней и крупной производительности. Способ включает сжатие продукционного потока водорода, предварительные ступени охлаждения с помощью холодильной установки и жидкого азота, охлаждение гелием с проведением адиабатной конверсии, промежуточное дросселирование, сжижение водорода гелием с проведением адиабатной конверсии и дросселирование жидкого параводорода. В гелиевом холодильном цикле гелий сжимают и после охлаждения жидким азотом большую часть от сжатого потока расширяют в двух последовательно установленных турбодетандерах с понижением температуры, при этом часть расширившегося потока отводят на охлаждение водорода, а оставшуюся - меньшую часть сжатого потока гелия - охлаждают и расширяют в третьем турбодетандере с понижением температуры гелия, после чего его направляют на охлаждение потока водорода и затем соединяют с потоком гелия, отобранным после второго турбодетандера, а затем проводят теплообмен с потоком водорода, при этом поток гелия разделяют на три части и возвращают в гелиевый цикл на трех температурных уровнях. Техническим результатом является снижение удельного расхода энергии и повышение термодинамической эффективности цикла ожижения водорода в широком диапазоне регулирования производительности. 2 н.п.ф-лы, 2 ил.

Description

Изобретение относится к криогенной технике и широко может быть использовано в водородных ожижителях.
Известен способ ожижения водорода за счет водородного холодильного цикла и ожижитель водорода, включающий сжатие, предварительное азотное охлаждение продукционного потока водорода, рекуперативный теплообмен с циркуляционным потоком водорода холодильного цикла и конденсацию за счет испарения водорода, получаемого в холодильном цикле [Криогенные системы. Т.2. А.М.Архаров и др. Москва, Машиностроение, 1987 г., стр.168-170, рис.2.17].
Главными недостатками данного способа и ожижителя водорода являются взрыво-пожароопасность и сложность создания надежного оборудования компримирования и расширительных машин в циркуляционном водородном контуре охлаждения.
Известен способ ожижения водорода и установка посредством водородно-пропанового холодильного цикла [Криогенные системы. A.M.Архаров, В.П.Беляков. Москва, Машиностроение, 1987 г., стр.382-387, рис.5-18].
Основной недостаток указанного способа и установки взрыво- и пожароопасность, зависимость эффективности от состава водородно-пропановой смеси, необходимость постоянного контроля и поддержание состава смеси, затруднительность регулирования холодопроизводительности в широком диапазоне.
Наиболее близким по технической сущности и достигаемому эффекту к заявляемому изобретению является способ ожижения водорода с гелиевым холодильным циклом и водородный ожижитель, включающий сжатие потока водорода, предварительное охлаждение газообразным и жидким азотом, изотермическую конверсию, а также охлаждение, адиабатную конверсию и сжижение водорода за счет рекуперативного теплообмена с частью потока гелия, выводимого из гелиевого холодильного цикла, и дросселирование потока водорода, а также сжатие гелия, охлаждение его жидким азотом, расширение части потока гелия в двух последовательно установленных турбодетандерах, отбор оставшейся части сжатого потока гелия из гелиевого холодильного цикла на охлаждение водорода и возврат его в холодильный гелиевый цикл. [Химическое и нефтяное машиностроение, №3, 2002 г. Ожижитель водорода малой производительности с гелиевым циклом, стр.26-28]
Основным недостатком данного способа и ожижителя водорода является низкий термодинамический КПД, высокий удельный расход энергии на производство жидкого водорода на номинальном режиме работы при дальнейшем снижении эффективности в случае регулирования производительности.
Решаемая задача - снижение удельного расхода энергии и повышение термодинамической эффективности цикла ожижения водорода в широком диапазоне регулирования производительности.
Указанный технический результат достигается тем, что в способе ожижения водорода, включающем сжатие потока водорода, предварительное охлаждение газообразным и жидким азотом, изотермическую конверсию, охлаждение, адиабатную конверсию и сжижение водорода за счет рекуперативного теплообмена с частью потока гелия, выводимого из гелиевого холодильного цикла, и дросселирование потока водорода, а также сжатие гелия, охлаждение его жидким азотом, расширение части потока гелия в двух последовательно установленных турбодетандерах, отбор оставшейся части сжатого потока гелия из гелиевого холодильного цикла на охлаждение водорода и возврат его в холодильный гелиевый цикл, поток водорода сжимают с 0,1 МПа...1,6 МПа до 5,0 МПа, предварительно охлаждают до 273 К с помощью холодильной установки, до 80 К - жидким азотом с проведением изотермической конверсии на уровне 80 К, а от 80 К до 25 К - охлаждают гелием с проведением адиабатной конверсии водорода на уровне 30 К и 25 К, после чего осуществляют промежуточное дросселирование водорода с 5,0 МПа до 1,0 МПа...1,2 МПа, сжижение водорода гелием с проведением адиабатной конверсии на уровне 20 К...22 К и дросселирование до давления 0,03 МПа...0,05 МПа жидкого параводорода, кроме того, в гелиевом холодильном цикле гелий сжимают с 0,35 МПа до 2,5 МПа и после охлаждения жидким азотом большую часть от сжатого потока расширяют в двух последовательно установленных турбодетандерах до давления 0,35 МПа с понижением температуры до 28 К...30 К, при этом часть расширившегося потока отводят на охлаждение водорода давлением 5,0 МПа, а оставшуюся - меньшую часть сжатого потока гелия - охлаждают и расширяют в третьем турбодетандере до давления 0,35 МПа с понижением температуры гелия до 18 К...20 К, после чего его направляют на охлаждение потока водорода давлением 1,0 МПа...1,2 МПа до температуры 18,5 К...20,5 К, а при достижении температуры гелия 28 К...30 К его соединяют с потоком гелия, отобранным после второго турбодетандера, а затем проводят теплообмен с потоком водорода с давлением 5,0 МПа, при этом поток гелия разделяют на три части и возвращают в гелиевый цикл на трех температурных уровнях:
- на уровне 43 К...45 К возвращают первую часть;
- на уровне 53 К...56 К возвращают вторую часть;
- на уровне 78 К...78,5 К возвращают третью часть,
и кроме того, из гелиевого холодильного цикла выводят газообразный азот, соединяют с газообразным азотом водородного цикла и полученный в результате поток газообразного азота направляют на охлаждение потока водорода.
Указанный технический результат достигается также тем, что устройство для ожижения водорода по предлагаемому способу, содержащее установленные по линии подачи водорода водородный компрессор, блок азотного охлаждения, состоящий из рекуперативного теплообменника, азотной ванны и изотермического конвертора, блок ожижения водорода, состоящий из каскада рекуперативных теплообменников с адиабатными конверторами, и дроссельный вентиль, а также гелиевый компрессор, гелиевый блок предварительного азотного охлаждения, состоящий из рекуперативного теплообменника и азотной ванны, гелиевый блок охлаждения, состоящий из каскада рекуперативных теплообменников, двух последовательно установленных турбодетандеров, имеющий основную криогенную линию подачи гелия на ожижение водорода и криогенную линию возврата гелия в гелиевый блок охлаждения, отличающееся тем, что оно снабжено в блоке азотного охлаждения и гелиевом блоке предварительного азотного охлаждения - холодильной установкой и дополнительным рекуперативным теплообменником, в блоке ожижения водорода - дополнительным дроссельным вентилем, при этом три адиабатных конвертора размещены поочередно после рекуперативных теплообменников, входящих в каскад, начиная с третьего, при этом дополнительный дроссельный вентиль установлен на линии подачи водорода после второго адиабатного конвертора, а дроссельный вентиль - на выходе из последнего рекуперативного теплообменника каскада, в гелиевом блоке охлаждения - третьим турбодетандером, который размещен на основной криогенной линии подачи гелия на ожижение водорода, а также дополнительным криогенным трубопроводом подачи гелия на ожижение водорода, установленным между вторым турбодетандером и входом гелия в третий рекуперативный теплообменник каскада блока ожижения водорода, а криогенную линию возврата в гелиевый блок охлаждения разделяют на три части, которые расположены:
- между выходом гелия из третьего теплообменника каскада блока ожижения водорода и четвертым теплообменником гелиевого блока охлаждения;
- между выходом гелия из второго теплообменника каскада блока ожижения водорода и третьим теплообменником гелиевого блока охлаждения;
- между выходом гелия из первого теплообменника каскада блока ожижения водорода и рекуперативным теплообменником гелиевого блока предварительного азотного охлаждения,
а к выходу газообразного азота из азотной ванны блока азотного охлаждения подведен азотный трубопровод от азотной ванны гелиевого блока предварительного азотного охлаждения, и, кроме того, водородный компрессор выполнен дожимающим, а гелиевый компрессор выполнен с регулируемым давлением на входе.
Проведенный анализ уровня техники позволил установить, что заявителем не обнаружен аналог, характеризующийся признаками, идентичными всем существенным признакам заявленного изобретения, а следовательно, оно соответствует критерию «новизна» и «изобретательский уровень».
Сущность изобретения поясняет фиг.1, где показана схема ожижителя водорода с гелиевым холодильным циклом, и фиг.2, где отражен процесс организации и осуществления теплообмена между потоком водорода и потоком охлаждающего гелия.
Ожижитель водорода состоит из компрессора 1 для сжатия водорода, блока азотного охлаждения 2, который включает дополнительный рекуперативный теплообменник 3, холодильную установку 4, рекуперативный теплообменник 5, азотную ванну 6 с изотермическим конвертором 7, блока ожижения водорода 8, который включает каскад из пяти рекуперативных теплообменников 9...13, в том числе и концевой теплообменник 13, три адиабатных конвертора 14, 15, 16, установленных после каждого теплообменника, начиная с третьего теплообменника, дополнительный дроссельный вентиль 17, установленный после второго адиабатного конвертора 15, концевой дроссельный вентиль 18, установленный после концевого теплообменника 13, а также из гелиевого компрессора 19, гелиевого блока предварительного азотного охлаждения 20, который включает дополнительный рекуперативный теплообменник 21, холодильную установку 22, рекуперативный теплообменник 23, азотную ванну 24, гелиевого блока охлаждения 25, который включает рекуперативные теплообменники 26...29, два последовательно установленных турбодетандера 30, 31 и третий турбодетандер 32, а также шести межблочных трубопроводов связи, а именно:
- основного криогенного трубопровода 33 подачи потока гелия в концевой теплообменник 13 после третьего турбодетандера 32;
- дополнительного криогенного трубопровода 34 подачи части потока гелия после второго турбодетандера 31 в теплообменник 11;
- первого криогенного трубопровода 35 возврата гелия после теплообменника 11 в теплообменник 28;
- второго криогенного трубопровода 36 возврата гелия после теплообменника 10 в теплообменник 27;
- третьего криогенного трубопровода 37 возврата гелия после теплообменника 9 в теплообменник 23;
- трубопровода 38 подачи паров азота из азотной ванны 24 в трубопровод 39 отвода паров азота из азотной ванны 6.
Способ ожижения водорода осуществляется следующим образом.
Поток водорода сжимают с 0,1 МПа...1,6 МПа до 5,0 МПа, предварительно охлаждают до 273 К с помощью холодильной установки, до 80 К - жидким азотом с проведением изотермической конверсии на уровне 80 К, а от 80 К до 25 К - охлаждают гелием с проведением адиабатной конверсии водорода на уровне 30 К и 25 К, после чего осуществляют промежуточное дросселирование водорода с 5,0 МПа до 1,0 МПа...1,2 МПа, сжижение водорода гелием с проведением адиабатной конверсии на уровне 20 К...22 К и дросселирование до давления 0,03 МПа...0,05 МПа жидкого параводорода, кроме того, в гелиевом холодильном цикле гелий сжимают с 0,35 МПа до 2,5 МПа и после охлаждения жидким азотом большую часть от сжатого потока расширяют в двух последовательно установленных турбодетандерах до давления 0,35 МПа с понижением температуры до 28 К...30 К, при этом часть расширившегося потока отводят на охлаждение водорода давлением 5,0 МПа, а оставшуюся - меньшую часть сжатого потока гелия - охлаждают и расширяют в третьем турбодетандере до давления 0,35 МПа с понижением температуры гелия до 18 К...20 К, после чего его направляют на охлаждение потока водорода давлением 1,0 МПа...1,2 МПа до температуры 18,5 К...20,5 К, а при достижении температуры гелия 28 К...30 К его соединяют с потоком гелия, отобранным после второго турбодетандера, а затем проводят теплообмен с потоком водорода с давлением 5,0 МПа, при этом поток гелия разделяют на три части и возвращают в гелиевый цикл на трех температурных уровнях:
- на уровне 43 К...45 К возвращают первую часть;
- на уровне 53 К...56 К возвращают вторую часть;
- на уровне 78 К...78,5 К возвращают третью часть,
и кроме того, из гелиевого холодильного цикла выводят газообразный азот, соединяют с газообразным азотом водородного цикла и полученный в результате поток газообразного азота направляют на охлаждение потока водорода.
Устройство для осуществления способа работает следующим образом.
Поток водорода сжимается в дожимающем компрессоре 1 с давления 0,1 МПа...1,6 МПа до давления 5,0 МПа и поступает в блок азотного охлаждения 2, где предварительно охлаждается от 300 К до 280 К в дополнительном теплообменнике 3 за счет холода отходящих паров азота, затем от 280 К до 273 К с помощью холодильной установки 4, а от 273 К до 80 К охлаждение осуществляется за счет паров азота в рекуперативном теплообменнике 5 и жидкого азота в ванне 6, где содержание параводорода после изотермического конвертора 7 увеличивается с 25% до 55%. Далее поток с давлением 5,0 МПа последовательно проходит рекуперативные теплообменники 9, 10, 11, 12 и два адиабатных конвертора 14 и 15, где водород охлаждается за счет газообразного гелия до 25 К, при этом содержание параводорода повышается до 94-95%. После конвертора 15 давление водорода снижается с помощью промежуточного дроссельного вентиля 17 до 1,0 МПа...1,2 МПа, и он за счет потока гелия с температурой 18...20 К охлаждается и сжижается в теплообменниках 12 и 13, при этом значение параводорода после прохождения конвертора 16 составляет 98%. Далее поток водорода дросселируется с помощью дроссельного вентиля 18 до давления 0,05 МПа...0,1 МПа и отводится в виде жидкого продукта. Охлаждение, ожижение и превращение водорода в параводород в диапазоне температур от 80 К до 20 К производится за счет гелия, необходимый холод которого создается в гелиевом холодильном цикле. В номинальном режиме работы гелий сжимается в компрессоре 19 с давления 0,35 МПа до 2,5 МПа, далее он охлаждается в гелиевом блоке предварительного азотного охлаждения 20 от 300 К до 80 К за счет рекуперации холода обратного потока гелия в дополнительном теплообменнике 21, рекуперативном теплообменнике 23, а также холода холодильной установки 22 и скрытой теплоты азота в азотной ванне 24, при этом пары азота из ванны 24 отводятся по трубопроводу 38 и соединяются с парами азота, отходящими по трубопроводу 39 из азотной ванны 6. После азотной ванны 24 гелий с температурой 80 К и давлением 2,5 МПа поступает в гелиевый блок охлаждения 25, где после теплообменника 26 большая часть (65%...70%) от сжатого потока гелия расширяется в двух последовательно установленных турбодетандерах 30 и 31 с 2,5 МПа до 0,35 МПа с понижением температуры до 28...30 К, при этом часть расширившегося потока, равную 17,5%...18,5% от сжатого потока, по дополнительному криогенному трубопроводу 34 отводят в блок ожижения водорода 8, а оставшийся поток поступает в теплообменники 29...21. Другая же - меньшая (30%...35%) часть сжатого гелия - после охлаждения в теплообменниках 27...29 поступает в третий турбодетандер 32, где расширяется с 2,5 МПа до 0,35 МПа с понижением температуры до 18...20 К и по основному криогенному трубопроводу 33 отводится в теплообменник 13. Отдав свой холод потоку водорода давлением 1,0 МПа...1,2 МПа поток гелия нагревается до 28...30 К и соединяется с потоком гелия, отведенным от второго турбодетандера 31. Далее гелий последовательно нагревается в теплообменниках 11, 10, 9 до 78 К...78,5 К, при этом при температуре 43 К...45 К часть потока, равная 17%...18% от сжатого потока гелия, после теплообменника 11 из блока ожижения водорода 8 возвращается по первому криогенному трубопроводу 35 в теплообменник 28 гелиевого блока охлаждения 25, еще 8%...9% гелия от величины сжатого потока возвращаются при температуре 53 К...56 К по второму криогенному трубопроводу 36 после теплообменника 10 в теплообменник 27, а оставшийся поток гелия (22%...25% от величины сжатого потока) после теплообменника 9 по третьему криогенному трубопроводу 37 возвращают в теплообменник 23 гелиевого блока предварительного азотного охлаждения 20.
На фиг.2 приведена Q-T диаграмма, в которой графически отражен процесс организации теплообмена в блоке ожижения 8 (в диапазоне температур от 80 К до 20 К) между водородом и гелием с учетом их реальных теплофизических свойств. Как видно из графика, характер изменения разности температур в указанном диапазоне близок к оптимальному закону теплообмена для криогенных циклов, что позволяет минимизировать внутренние потери от необратимости рекуперативного теплообмена.
В предлагаемом устройстве оптимизация процесса теплообмена в блоке ожижения 8 между потоками достигается следующими способами:
- в диапазоне температур от 19 К до 30 К средняя разность температур 0,75 К достигается за счет промежуточного дросселирования потока водорода с 5,0 МПа до 1,0 МПа...1,2 МПа (пунктирной линией показан характер изменения разности температур без промежуточного дросселирования потока водорода);
- в диапазоне температур от 30 К до 43 К разность температур между теплообменивающими потоками - 0,5 К и обеспечивается за счет потока гелия, поступающего после второго турбодетандера 31 и соединяемого с потоком гелия, выходящего из теплообменника 12;
- в диапазоне от 43 К до 55 К разность температур в 0,5 К сохраняется за счет отвода части гелия с температурой 43 К...45 К в гелиевый блок охлаждения 25;
- в диапазоне от 55 К до 80 К средняя разность температур 2 К обеспечивается за счет нового отбора части гелия с температурой 55 К (пунктиром показан характер изменения разности температур без отбора гелия).
Кроме того, высокая термодинамическая эффективность предложенного способа и устройства ожижения водорода обусловлено не только минимальными потерями от внутреннего теплообмена между потоком водорода и охлаждающим гелием, но за счет высокоэффективного гелиевого цикла, включающего ступень предварительного охлаждения холодильной установки, ступень предварительного азотного охлаждения, три турбодетандерных ступени охлаждения с адиабатным КПД более 75%, оптимальных условий теплообмена между потоком гелия за счет организации возврата гелия из водородного цикла.
Как показывают расчеты предложенного способа ожижения водорода удельный расход энергии составляет от 12,5...14,5 кВт·ч/кг жидкого водорода в зависимости от типа компрессора, а термодинамический КПД с учетом ортопараконверсии - от 30% до 34,5%.
Проведенный сравнительный термодинамический анализ показал, что предложенный способ ожижения и устройство для его осуществления позволяют снизить на 8%...10% удельные затраты электроэнергии по сравнению с ожижителем водорода, в котором используется в качестве источника охлаждения внешний водородный цикл.
Другое преимущество предлагаемого способа и устройства заключается в том, что они позволяют регулировать в широком диапазоне холодопроизводительность гелиевого цикла (от 100 до 50%) при сохранении высокой термодинамической эффективности за счет изменения абсолютного давления на всасывании от 0,35 МПа до 0,10 МПа при сохранении степени сжатия и расширения в компрессоре и турбодетандерах. Это дает возможность легко регулировать режим работы гелиевого цикла охлаждения при изменении расхода сжижаемого водорода и дает основание считать, что предложенное изобретение «промышленно применимо».
Таким образом, предлагаемое техническое решение обеспечивает снижение расхода энергии и повышение термодинамической эффективности в широком диапазоне изменения производительности по жидкому водороду.

Claims (2)

1. Способ сжижения водорода с гелиевым холодильным циклом, включающий сжатие потока водорода, предварительное охлаждение газообразным и жидким азотом, изотермическую конверсию, а также охлаждение, адиабатную конверсию и сжижение водорода за счет рекуперативного теплообмена с частью потока гелия, выводимого из гелиевого холодильного цикла, и дросселирование потока водорода, а также сжатие гелия, охлаждение его жидким азотом, расширение части потока гелия в двух последовательно установленных турбодетандерах, отбор оставшейся части сжатого потока гелия из гелиевого холодильного цикла на охлаждение водорода и возврат его в холодильный гелиевый цикл, отличающийся тем, что поток водорода сжимают с 0,1 ...1,6 МПа до 5,0 МПа, предварительно охлаждают до 273 К с помощью холодильной установки, до 80 К - жидким азотом с проведением изотермической конверсии на уровне 80 К, а от 80 до 25 К охлаждают гелием с проведением адиабатной конверсии водорода на уровне 30 и 25 К, после чего осуществляют промежуточное дросселирование водорода с 5,0 МПа до 1,0 ...1,2 МПа, сжижение водорода гелием с проведением адиабатной конверсии на уровне 20 ...22 К и дросселирование до давления 0,03 ...0,05 МПа жидкого параводорода, кроме того, в гелиевом холодильном цикле гелий сжимают с 0,35 до 2,5 МПа и после охлаждения жидким азотом большую часть от сжатого потока расширяют в двух последовательно установленных турбодетандерах до давления 0,35 МПа с понижением температуры до 28 ...30 К, при этом часть расширившегося потока отводят на охлаждение водорода давлением 5,0 МПа, а оставшуюся - меньшую часть сжатого потока гелия - охлаждают и расширяют в третьем турбодетандере до давления 0,35 МПа с понижением температуры гелия до 18 ...20 К, после чего его направляют на охлаждение потока водорода давлением 1,0 ...1,2 МПа до температуры 18,5 ...20,5 К, а при достижении температуры гелия 28 ...30 К его соединяют с потоком гелия, отобранным после второго турбодетандера, а затем проводят теплообмен с потоком водорода с давлением 5,0 МПа, при этом поток гелия разделяют на три части и возвращают в гелиевый цикл на трех температурных уровнях:
на уровне 43...45 К возвращают первую часть;
на уровне 53...56 К возвращают вторую часть;
на уровне 78...78,5 К возвращают третью часть и, кроме того, из гелиевого холодильного цикла выводят газообразный азот, соединяют с газообразным азотом водородного цикла и полученный в результате поток газообразного азота направляют на охлаждение потока водорода.
2. Устройство ожижения водорода с гелиевым холодильным циклом, включающее установленные по линии подачи водорода водородный компрессор, блок азотного охлаждения, состоящий из рекуперативного теплообменника, азотной ванны и изотермического конвертора, блок ожижения водорода, состоящий из каскада рекуперативных теплообменников с адиабатными конверторами, и дроссельный вентиль, а также гелиевый компрессор, гелиевый блок предварительного азотного охлаждения, состоящий из рекуперативного теплообменника и азотной ванны, гелиевый блок охлаждения, состоящий из каскада рекуперативных теплообменников, двух последовательно установленных турбодетандеров, имеющий основную криогенную линию подачи гелия на ожижение водорода и криогенную линию возврата гелия в гелиевый блок охлаждения, отличающееся тем, что оно снабжено в блоке азотного охлаждения и гелиевом блоке предварительного азотного охлаждения холодильной установкой и дополнительным рекуперативным теплообменником, в блоке ожижения водорода дополнительным дроссельным вентилем, при этом три адиабатных конвертора размещены поочередно после рекуперативных теплообменников, входящих в каскад, начиная с третьего, при этом дополнительный дроссельный вентиль установлен на линии подачи водорода после второго адиабатного конвертора, а дроссельный вентиль - на выходе из последнего рекуперативного теплообменника каскада, в гелиевом блоке охлаждения - третьим турбодетандером, который размещен на основной криогенной линии подачи гелия на ожижение водорода, а также дополнительным криогенным трубопроводом подачи гелия на ожижение водорода, установленным между вторым турбодетандером и входом гелия в третий рекуперативный теплообменник каскада блока ожижения водорода, а криогенную линию возврата в гелиевый блок охлаждения разделяют на три части, которые расположены
между выходом гелия из третьего теплообменника каскада блока ожижения водорода и четвертым теплообменником гелиевого блока охлаждения;
между выходом гелия из второго теплообменника каскада блока ожижения водорода и третьим теплообменником гелиевого блока охлаждения;
между выходом гелия из первого теплообменника каскада блока ожижения водорода и рекуперативным теплообменником гелиевого блока предварительного азотного охлаждения,
а к выходу газообразного азота из азотной ванны блока азотного охлаждения подведен азотный трубопровод от азотной ванны гелиевого блока предварительного азотного охлаждения, и, кроме того, водородный компрессор выполнен дожимающим, а гелиевый компрессор выполнен с регулируемым давлением на входе.
RU2006115476/06A 2006-05-05 2006-05-05 Способ ожижения водорода с гелиевым холодильным циклом и устройство для его осуществления RU2309342C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2006115476/06A RU2309342C1 (ru) 2006-05-05 2006-05-05 Способ ожижения водорода с гелиевым холодильным циклом и устройство для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2006115476/06A RU2309342C1 (ru) 2006-05-05 2006-05-05 Способ ожижения водорода с гелиевым холодильным циклом и устройство для его осуществления

Publications (1)

Publication Number Publication Date
RU2309342C1 true RU2309342C1 (ru) 2007-10-27

Family

ID=38955812

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006115476/06A RU2309342C1 (ru) 2006-05-05 2006-05-05 Способ ожижения водорода с гелиевым холодильным циклом и устройство для его осуществления

Country Status (1)

Country Link
RU (1) RU2309342C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2718378C1 (ru) * 2015-10-27 2020-04-02 Линде Акциенгезельшафт Крупномасштабное сжижение водорода посредством водородного холодильного цикла высокого давления, объединенного с новым предварительным охлаждением однократно смешанным хладагентом
CN114963688A (zh) * 2021-02-27 2022-08-30 河南中科清能科技有限公司 采用低温透平压缩循环的氢液化系统
RU2780120C1 (ru) * 2021-11-19 2022-09-19 Алексей Константинович Дедков Криогенная система ожижения водорода, получаемого преимущественно на АЭС

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Беляков В.В. и др. Ожижитель водорода малой производительности с гелиевым циклом. Химическое и нефтегазовое машиностроение, 2002, №3. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2718378C1 (ru) * 2015-10-27 2020-04-02 Линде Акциенгезельшафт Крупномасштабное сжижение водорода посредством водородного холодильного цикла высокого давления, объединенного с новым предварительным охлаждением однократно смешанным хладагентом
CN114963688A (zh) * 2021-02-27 2022-08-30 河南中科清能科技有限公司 采用低温透平压缩循环的氢液化系统
CN114963688B (zh) * 2021-02-27 2024-02-20 河南中科清能科技有限公司 采用低温透平压缩循环的氢液化系统
RU2780120C1 (ru) * 2021-11-19 2022-09-19 Алексей Константинович Дедков Криогенная система ожижения водорода, получаемого преимущественно на АЭС

Similar Documents

Publication Publication Date Title
Quack Conceptual design of a high efficiency large capacity hydrogen liquefier
RU2538192C1 (ru) Способ сжижения природного газа и установка для его осуществления
US7540171B2 (en) Cryogenic liquefying/refrigerating method and system
RU2636966C1 (ru) Способ производства сжиженного природного газа
CA2864482C (en) Method and system for liquefying natural gas using single mixed refrigerant and refrigeration medium
Nandi et al. Performance and optimization of hydrogen liquefaction cycles
US20140083132A1 (en) Process for liquefaction of natural gas
CN103534544A (zh) 低温空气分离方法与系统
US20140283548A1 (en) System and method for liquefying natural gas using single mixed refrigerant as refrigeration medium
JP6557280B2 (ja) 液化方法およびシステム
WO2017121042A1 (zh) 一种膨胀制冷富甲烷气液化的方法及装置
GB2522421A (en) LNG production process
US9841229B2 (en) Process for cooling a hydrocarbon-rich fraction
AU2022256150A1 (en) Fluid cooling apparatus
EP0171951A1 (en) Refrigeration method
RU2309342C1 (ru) Способ ожижения водорода с гелиевым холодильным циклом и устройство для его осуществления
WO2005080892A1 (en) Liquefying hydrogen
RU2656068C1 (ru) Способ сжижения природного газа на газораспределительной станции и установка для его осуществления
JP2024501105A (ja) 液化水素の生成プロセス
RU2805403C1 (ru) Способ производства сжиженного природного газа на компрессорной станции магистрального газопровода
RU2234648C2 (ru) Способ ожижения природного газа
RU2772632C1 (ru) Способ производства сжиженного природного газа
RU2258186C1 (ru) Способ сжижения природного газа
RU2233411C2 (ru) Способ сжижения природного газа в дроссельном цикле
RU2247908C1 (ru) Способ производства сжиженного природного газа

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner