RU2308651C1 - Способ автоматического управления процессом прокаливания сырьевого материала во вращающейся печи - Google Patents

Способ автоматического управления процессом прокаливания сырьевого материала во вращающейся печи Download PDF

Info

Publication number
RU2308651C1
RU2308651C1 RU2006112050/02A RU2006112050A RU2308651C1 RU 2308651 C1 RU2308651 C1 RU 2308651C1 RU 2006112050/02 A RU2006112050/02 A RU 2006112050/02A RU 2006112050 A RU2006112050 A RU 2006112050A RU 2308651 C1 RU2308651 C1 RU 2308651C1
Authority
RU
Russia
Prior art keywords
furnace
temperature
raw material
coke
flow rate
Prior art date
Application number
RU2006112050/02A
Other languages
English (en)
Inventor
Евгений Николаевич Чичук (RU)
Евгений Николаевич Чичук
Игорь Иванович Лапаев (RU)
Игорь Иванович Лапаев
Виталий Викторович Синельников (RU)
Виталий Викторович Синельников
Юрий Анатольевич Францев (RU)
Юрий Анатольевич Францев
Константин Федорович Никандров (RU)
Константин Федорович Никандров
Анатолий Иванович Мурашкин (RU)
Анатолий Иванович Мурашкин
Александр Геннадьевич Соломатов (RU)
Александр Геннадьевич Соломатов
Original Assignee
Общество с ограниченной ответственностью "Русская инжиниринговая компания"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Русская инжиниринговая компания" filed Critical Общество с ограниченной ответственностью "Русская инжиниринговая компания"
Priority to RU2006112050/02A priority Critical patent/RU2308651C1/ru
Application granted granted Critical
Publication of RU2308651C1 publication Critical patent/RU2308651C1/ru

Links

Images

Landscapes

  • Coke Industry (AREA)

Abstract

Изобретение относится к технологическому процессу прокалки, например нефтяного или пекового кокса, антрацита или обжига сырого магнезита во вращающихся печах. Технический результат - повышение надежности работы печи, стойкости футеровки и повышение качества готового продукта. Способ включает измерение расхода топлива, сырьевого материала, мгновенного веса фиксированного объема сырьевого материала на ленте весоизмерителя-дозатора, температуры прокаленного материала на выходе из печи, температуры отходящих из печи газов. Также осуществляют стабилизацию расхода топлива с коррекцией по температуре прокаленного материала на выходе из печи, стабилизацию температуры отходящих из печи газов путем изменения положения направляющих аппаратов дымососа, стабилизацию расхода загружаемого в печь сырьевого материала с коррекцией по отклонению текущего мгновенного веса сырьевого материала на ленте весоизмерителя-дозатора от вычисленного его среднего значения за установленный период времени. 2 з.п. ф-лы, 3 ил.

Description

Изобретение относится к технике автоматизации процесса прокаливания сырьевого материала, в частности "сырого" кокса, во вращающихся печах и может быть использовано, например, в металлургической промышленности, преимущественно в производстве анодной массы для самообжигающихся анодов алюминиевых электролизеров, в производстве огнеупорных материалов, а также в электродной промышленности.
Известен способ управления процессом обжига материала во вращающейся печи, включающий измерение температуры в зоне спекания и расхода топлива, моделирование процесса обжига во вращающейся печи, расчет предсказанной моделью температуры в зоне спекания и соответствующее изменение подачи топлива (авторское свидетельство СССР №842373, кл. F27D 19/00, 1979).
Недостатком известного способа управления является то, что он не позволяет осуществлять обжиг материала с заданным качеством, так как температурный режим печи, от которого зависит качество полученного продукта, является функцией не только расхода топлива, но и аэродинамического режима печи (в первую очередь разрежения), загрузки исходного материала и его основных свойств (гранулометрического и химического состава).
Наиболее близким по технической сущности к предлагаемому решению является способ автоматического управления процессом прокаливания углеродистых материалов во вращающихся трубчатых печах (авторское свидетельство СССР №926479, кл. F27B 7/00, С04В 7/44, 1980), включающий измерение температуры отходящих из печи газов, температуры прокаленного материала на выходе из печи, температуры материала в зоне прокаливания вращающейся печи, стабилизацию заданной загрузки сырьевого материала в печь, регулирование температуры прокаленного материала на выходе из печи изменением расхода топлива (газа); изменяют разрежение, расход вторичного воздуха и скорость вращения печи, причем изменение разрежения осуществляют при отклонении температуры отходящих газов и материала в зоне прокаливания более чем на ±50°C от заданного значения, а изменение расхода вторичного воздуха и скорости вращения печи осуществляют при отклонении температуры отходящих газов и материала в зоне прокаливания менее чем на ±50°С от заданного значения.
Прототип-способ обладает следующими недостатками.
Подача топлива в печь не стабилизируется - это является возмущением, влияющим на стабильность теплового режима печи.
Показания датчиков температуры прокаленного материала на выходе из печи и материала в зоне прокаливания вращающейся печи во многом дублируют друг друга, а дополнительный датчик - пирометр имеет стоимость порядка 7000$, что повышает стоимость системы управления.
Регулирование температуры прокаленного материала на выходе из печи изменением подачи топлива приводит и к изменению температуры материала в зоне прокаливания, что не способствует повышению качества получаемого продукта.
Изменение скорости вращения печи, при неизменности загрузки, ведет к беспорядочному изменению высоты слоя материала по длине печи, что приведет к разной степени его термообработки, и соответственно, к различному качеству. Изменение скорости вращения печи также приводит к изменению температурного режима всей печи, что сказывается на качестве прокаленного продукта.
Вариации гранулометрического состава загружаемого в печь углеродистого сырьевого материала компенсируются через изменение температуры отходящих из печи газов с большим запаздыванием (5-6 мин) и поэтому с низким качеством регулирования.
Эффективность работы системы управления процессом прокалки также зависит от величины заданных температур в зоне прокаливания печи и отходящих газов. В способе-прототипе задание осуществляется оператором, что также является недостатком.
Еще одним недостатком является и то, что управление ведется по косвенным показателям (температурам) процесса, т.к. лабораторные анализы получаемого продукта поступают оператору примерно через 2,5 часа после отбора соответствующей пробы прокаленного материала.
Задачей, на решение которой направлено изобретение, является повышение эффективности управления процессом прокаливания сырьевого материала.
Технический результат, который может быть получен при использовании предлагаемого способа управления процессом прокаливания сырьевого материала во вращающейся печи, заключается в повышении эффективности и надежности работы печи за счет стабилизации ее теплового режима, качества готового прокаленного продукта, повышения стойкости футеровки.
Сущность изобретения заключается в том, что в способе автоматического управления процессом прокаливания сырьевого материала во вращающихся печах, включающем измерение температуры отходящих из печи газов, ее регулирование изменением разрежения в печи; измерение и регулирование температуры прокаленного материала на выходе из печи изменением расхода топлива при стабилизированном заданном расходе загружаемого в печь сырьевого материала дозатором-весоизмерителем, согласно предлагаемому изобретению дополнительно измеряют и стабилизируют расход топлива на заданном уровне, измеряют мгновенный вес фиксированного объема загружаемого в печь сырьевого материала на ленте дозатора-весоизмерителя и по отклонению от вычисленного его среднего значения за установленный период корректируют заданное значение расхода загружаемого в печь сырьевого материала.
Способ дополняют частные отличительные признаки, направленные также на решение поставленной задачи.
Регулирование температуры прокаленного материала на выходе из печи и температуры отходящих из печи газов осуществляют изменением заданий регуляторам температуры прокаленного материала на выходе из печи и температуры отходящих из печи газов, которые рассчитывают в автоматическом режиме, с дискретностью не более 8 минут, на основе оптимизационной нейросетевой подсистемы управления.
В качестве задания для оптимизационной нейросетевой подсистемы управления устанавливают требуемые по технологии показатели качества прокаленного материала.
Сопоставительный анализ признаков заявляемого решения и признаков аналога и прототипа свидетельствует о соответствии решения критерию "новизна".
На фиг.1 показана блок-схема устройства, реализующего предлагаемый способ управления, на фиг.2 - упрощенная блок-схема системы автоматической стабилизации и коррекции расхода загружаемого в печь сырьевого материала по мгновенному весу на ленте дозатора с автоматическим определением задания корректирующему регулятору, на фиг.3 - графики изменения мгновенного веса сырьевого материала на ленте дозатора, расхода топлива (мазута) в печь, расхода сырьевого материала (кокса) в печь и температуры прокаленного материала (кокса) на выходе из печи.
Устройство содержит: датчики расхода топлива 1, температуры прокаленного материала (кокса) на выходе из печи 2, температуры отходящих из печи газов 3, скорости ленты дозатора 4 (в качестве дозатора используют дозатор-весоизмеритель ленточный - ДВЛ), мгновенного веса фиксированного объема загружаемого сырьевого материала на ленте ДВЛ 5; блок расчета расхода загружаемого в печь сырьевого материала 6; исполнительные механизмы 7 и 8 соответственно регулирования расхода сырьевого материала (кокса) в печь и объемного расхода топлива (мазута), направляющие аппараты печного дымососа 9; виртуальные регуляторы стабилизации расхода топлива (мазута) 10, коррекции расхода топлива (мазута) по температуре прокаленного материала (кокса) на выходе из печи 11, стабилизации температуры отходящих из печи газов 12, стабилизации расхода сырьевого материала (кокса) в печь 13, коррекции расхода сырьевого материала (кокса) в печь по текущему мгновенному весу на ленте ДВЛ 14, блок определения среднего значения мгновенного веса сырьевого материала на ленте ДВЛ 15, которые реализованы в управляющем вычислительном устройстве (микропроцессорный контроллер и ЭВМ) 16. В нем же реализованы: блок вычисления задания 17 регулятору 14, корректирующему задание регулятору, стабилизирующему расход сырьевого материала (кокса) в печь 13, алгоритм обработки данных 18, база данных нейросетевой математической модели (НСМ) 19, алгоритм адаптации 20, НСМ 21, оптимизационная подсистема управления ОПСУ 22.
Способ управления осуществляется следующим образом.
Изменением положения направляющих аппаратов дымососа регулируется температура отходящих из печи газов.
Стабилизируют также расход загружаемого в печь сырьевого материала на заданном уровне, который корректируется по текущему отклонению мгновенного веса фиксированного объема загружаемого сырьевого материала на ленте ДВЛ, причем задание на коррекцию рассчитывается специальным алгоритмом как среднее значение (за период 80 мин) мгновенного веса фиксированного объема загружаемого в печь сырьевого материала.
Задания регуляторам температуры прокаленного материала на выходе из печи и отходящих из печи газов рассчитываются с помощью оптимизационной подсистемы управления (ОПСУ), основой которой является нейросетевая математическая модель. Математические модели такого типа предназначены для решения очень сложных, нелинейных задач, превышающих возможности общепринятых алгоритмических методов [1].
Работа алгоритма ОПСУ заключается в том, что на основе многофакторной нелинейной модели расчета истинной плотности сырьевого материала (кокса), построенной на базе модифицированной нейронной сети общей регрессии, с учетом показаний датчиков технологических параметров (дискретность измерения 1 минута) и анализов химической лаборатории (дискретность измерения 4 часа), рассчитываются задания регуляторам температуры прокаленного материала на выходе из вращающейся печи
Figure 00000002
и температуры отходящих газов
Figure 00000003
и, с интервалом в 5 мин, выдается оператору прогнозируемое значение истинной плотности прокаленного материала (показателя качества полученного прокаленного продукта). Постановка задачи управления сведена к минимизации квадратичной ошибки между заданными показателями качества готовой продукции и выходом НСМ, т.е. к задаче теории оптимизации. Поиск в пространстве оптимизации происходит по технологическим параметрам
Figure 00000002
и
Figure 00000003
с помощью алгоритма "покоординатного" спуска.
В конце суток алгоритм адаптации, основанный на модифицированном генетическом алгоритме оптимизации, настраивает коэффициенты НСМ в соответствии с "новыми" данными о технологическом процессе, которые обрабатываются алгоритмом обработки данных. Суть данного алгоритма заключается в фильтрации сигналов с датчиков технологических параметров и учете временных сдвигов [2-4] между ними и показаниями датчика расхода сырьевого материала, загружаемого в печь.
Топливо (мазут), воздух и сырьевой материал (кокс) из бункера 23 подают весоизмерителем-дозатором 24 во вращающуюся печь 25, в которой производится прокаливание материала продуктами сгорания летучих веществ (содержатся в коксе) и топлива, движущимися противотоком.
Регулятор стабилизации температуры отходящих из печи газов 12, путем изменения разрежения в печи (положения направляющих аппаратов печного дымососа 9) сводит к нулю отклонения температуры отходящих из печи газов (ТОГ) от заданного значения
Figure 00000004
, которое автоматически рассчитывается блоком 22 (ОПСУ).
Регуляторы 13 и 10 стабилизируют расходы сырьевого материала (кокса) и мазута в печь на уровне, определяемом технологом-оператором исходя из требуемой производительности печи. В зависимости от текущего значения температуры прокаленного материала на выходе из печи ТНГ и ее заданного значения
Figure 00000005
, которое рассчитывается с помощью блока 22, корректирующий виртуальный регулятор 11 изменяет уровень задания (по расходу топлива) регулятору 10.
Как показали исследования процесса прокалки кокса во вращающейся печи [5, 6], одним из основных видов возмущений, действующим на процесс прокалки, является изменение гранулометрического состава загружаемого в печь кокса. Источником их является сегрегация кокса в загрузочном бункере. После наполнения бункера, что происходит 6-9 раз в сутки, из-за сегрегации более крупные куски кокса скапливаются на периферии бункера и поэтому, а также из-за большей подвижности, первым начинает просыпаться (просачиваться) и вырабатываться из бункера мелкий кокс, и только после его почти полной выработки из бункера начинает выгружаться более крупный кокс. Крупный и мелкий кокс имеют разные скорости и характер движения по печи. Чем крупнее куски, тем меньше их скорость движения, кроме того, они содержат меньше летучих, хорошо перемешиваются (движутся "пересыпанием"), а мелкие кусочки имеют слоевое перемещение ("проскальзывание"). В результате крупный кокс имеет более высокую и ровную, в сечении по слою, температуру, мелкий - наоборот. В итоге в широких пределах варьируется истинная плотность и удельное электросопротивление полученного прокаленного кокса (его качество).
Для компенсации указанных возмущений служит система автоматической коррекции загрузки сырьевого материала (кокса) в печь по мгновенному весу сырьевого материала на ленте ДВЛ, которая реализована в микропроцессорном контроллере (МПК) Simatic C7-633 и ЭВМ (фиг.2).
Блок коррекции
Figure 00000006
увеличивает или уменьшает задание стабилизирующему расход загружаемого в печь сырьевого материала (кокса) регулятору
Figure 00000007
в зависимости от того, крупнее или мельче (от заданного значения
Figure 00000008
) загружаемый в печь кокс. Это приводит к тому, что слой в печи загруженного крупного кокса в печь выше, а мелкого ниже. В результате мелкий кокс интенсивнее прогревается (температура кокса в слое повышается и выравнивается) и перемешивается, что приводит к приближению его качественных характеристик (удельного электросопротивления и истинной плотности) к соответствующим характеристикам крупного кокса. Однако из-за частых изменений среднего мгновенного веса загружаемого кокса (особенно это касается ситуаций перехода на кокс другого поставщика) задание
Figure 00000008
корректирующему регулятору
Figure 00000009
требуется изменять оперативно, что вручную удается сделать не всегда. В этом случае печь достаточно долго работает либо в режиме недогрузки, либо - перегрузки, что приводит к снижению ее производительности или к появлению бракованного прокаленного материала (кокса). Этому препятствует специальный алгоритм - "скользящего" среднего, с помощью которого автоматически рассчитывается заданное значение
Figure 00000010
регулятору, корректирующему загрузку в печь сырьевого материала (кокса).
Весоизмеритель-дозатор оснащен типовой системой автоматической стабилизации расхода с ПИД-регулятором
Figure 00000011
Блок коррекции (П-регулятор)
Figure 00000009
увеличивает или уменьшает задание стабилизирующему расход кокса ПИД-регулятору (ΔGk) в зависимости от того, меньший или больший мгновенный вес (от заданного значения) имеет загружаемый в печь кокс.
Расчет заданного значения мгновенного веса осуществляется через нахождение среднего значения мгновенного веса кокса на ленте дозатора за определенное время tус (может изменяться в пределах 1-180 мин). Усреднение скользящее, то есть в МПК или в ЭВМ формируется матрица из значений мгновенного веса кокса mл, определяемых через 1 мин, и состоящая например из 80 строк (значений). По ним находится среднее значение мгновенного веса за tус=80 мин. При текущем опросе датчика мгновенного веса самое "старое" значение веса из матрицы вытесняется, заменяясь новым, и осуществляется пересчет (каждую минуту) среднего значения
Figure 00000012
. После расчета среднего значения веса
Figure 00000012
оно также ежеминутно преобразуется по формуле (1), поступает в качестве задания на корректирующий регулятор
Figure 00000009
, который формирует поправку ΔGk к заданию
Figure 00000013
регулятора автоматической стабилизации загрузки (расхода) кокса в печь
Figure 00000014
.
Figure 00000015
где ki - коэффициент, который может изменяться от 0 до 1; mЗ - средний мгновенный вес кокса на ленте ДВЛ (задается оператором).
В случае работы системы коррекции в автоматическом режиме 0<ki≤1, а в случае определения задания
Figure 00000008
оператором ki=0 и тогда
Figure 00000008
=mЗ.
При первоначальном включении матрица состоит из одного (первого) текущего значения мгновенного веса (остальные ее элементы равны 21,6 (средний мгновенный вес на ленте ДВЛ перерабатываемых коксов)) и начинает ежеминутно пополняться, а
Figure 00000012
соответственно перерассчитываться.
На мониторе рабочей станции осуществляется визуализация работы данного алгоритма.
Работа системы управления в реальных условиях может быть проиллюстрирована графиками на фиг.3, где изменение расхода топлива (1), температуры прокаленного материала на выходе из печи (2), расхода сырьевого материала в печь (3) и мгновенного веса сырьевого материала (кокса) на ленте дозатора (4) при работе АСУ ТП.
Как из них следует, изменения мгновенного веса (гранулометрического состава) кокса на ленте ДВЛ и другие возмущения компенсируются изменениями расхода сырьевого материала (кокса) в печь и расхода топлива (мазута) весьма эффективны.
Система управления также позволяет снизить отклонения от заданного значения истинной плотности прокаленного кокса на 22%.
Изобретение за счет стабилизации теплового режима печи позволяет повысить эффективность и надежность ее работы, стойкость футеровки печи и качество готового продукта
Литература
1. Круглов В.В., Борисов В.В. Искусственные нейронные сети. Теория и практика. - М.: Горячая линия - Телеком, 2001. - 382 с.
2. Лапаев И.И., Манн В.Х., Мурашкин А.И. Разработка АСУ ТП прокаливания кокса во вращающихся печах на основе нейросетей. -Технико-экономический вестник РУСАЛа, 2001. - №16, с.18-19.
3. В.Х.Манн, В.В.Синельников, К.Ф.Никандров, Е.В.Сиваш, И.А.Устинович. Свидетельство №2004611493 об официальной регистрации программного обеспечения "Система управления процессом прокаливания кокса" //. -М., 2004.
4. В.В.Синельников, И.И.Лапаев, К.Ф.Никандров. Нейронные сети в автоматизированной системе управления процессом прокаливания кокса // Х Международная конференция-выставка "Алюминий Сибири - 2004": сборник статей. - Красноярск, 2004. - с.262-264.
5. Янко Э.А. Аноды алюминиевых электролизеров. - М.: Издат. дом "Руда и металлы", 2001. - 672 с.
6. Топчаев В.П. Автоматизация трубчатых вращающихся печей. - М.: Металлургия, 1971. - 278 с.

Claims (3)

1. Способ автоматического управления процессом прокаливания сырьевого материала во вращающейся печи, включающий измерение температуры отходящих из печи газов, ее регулирование изменением разрежения в печи, измерение и регулирование температуры прокаленного материала на выходе из печи изменением расхода топлива при стабилизированном заданном расходе загружаемого в печь сырьевого материала дозатором-весоизмерителем, отличающийся тем, что дополнительно измеряют и стабилизируют расход топлива на заданном уровне, измеряют мгновенный вес фиксированного объема загружаемого в печь сырьевого материала на ленте дозатора-весоизмерителя и по отклонению от вычисленного его среднего значения за установленный период корректируют расход загружаемого в печь сырьевого материала.
2. Способ управления по п.1, отличающийся тем, что регулирование температуры прокаленного материала на выходе из печи и температуры отходящих из печи газов осуществляют изменением заданий регуляторам температуры прокаленного материала на выходе из печи и температуры отходящих из печи газов, которые рассчитывают в автоматическом режиме, с дискретностью 8 мин с использованием оптимизационной нейросетевой подсистемы управления.
3. Способ управления по п.1, отличающийся тем, что в качестве задания для оптимизационной нейросетевой подсистемы управления устанавливают требуемые по технологии показатели качества прокаленного материала.
RU2006112050/02A 2006-04-11 2006-04-11 Способ автоматического управления процессом прокаливания сырьевого материала во вращающейся печи RU2308651C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2006112050/02A RU2308651C1 (ru) 2006-04-11 2006-04-11 Способ автоматического управления процессом прокаливания сырьевого материала во вращающейся печи

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2006112050/02A RU2308651C1 (ru) 2006-04-11 2006-04-11 Способ автоматического управления процессом прокаливания сырьевого материала во вращающейся печи

Publications (1)

Publication Number Publication Date
RU2308651C1 true RU2308651C1 (ru) 2007-10-20

Family

ID=38925381

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006112050/02A RU2308651C1 (ru) 2006-04-11 2006-04-11 Способ автоматического управления процессом прокаливания сырьевого материала во вращающейся печи

Country Status (1)

Country Link
RU (1) RU2308651C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2445668C2 (ru) * 2009-12-22 2012-03-20 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный горный институт имени Г.В. Плеханова (технический университет)" Нейросетевой регулятор для управления процессом обжига известняка в печах шахтного типа
WO2018048377A1 (ru) * 2016-09-09 2018-03-15 Научно-Производственная Фирма "Прогрет" Стоматологическая печь для обжига зубных реставрационных деталей

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2445668C2 (ru) * 2009-12-22 2012-03-20 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный горный институт имени Г.В. Плеханова (технический университет)" Нейросетевой регулятор для управления процессом обжига известняка в печах шахтного типа
WO2018048377A1 (ru) * 2016-09-09 2018-03-15 Научно-Производственная Фирма "Прогрет" Стоматологическая печь для обжига зубных реставрационных деталей

Similar Documents

Publication Publication Date Title
CN103017530B (zh) 烧结终点预测方法及系统
JP5065971B2 (ja) 水分量測定装置及び水分量測定方法
US4022569A (en) Calcination of coke
CN110090728B (zh) 用于控制水泥生料立磨中喂料量的方法、装置及设备
RU2308651C1 (ru) Способ автоматического управления процессом прокаливания сырьевого материала во вращающейся печи
US3437325A (en) Heat balance control of a rotary kiln
JP4922908B2 (ja) 水分量測定装置及び水分量測定方法
CN106957953B (zh) 一种烧结混合料中自动配加红泥的系统及控制方法
CN103045855B (zh) 烧结矿层厚度预测方法及系统
CN104006651A (zh) 回转窑控制系统
CN113637814B (zh) 高炉中心气流波动的调控方法
Agrawal et al. Improving the burdening practice by optimization of raw flux calculation in blast furnace burden
RU2445668C2 (ru) Нейросетевой регулятор для управления процессом обжига известняка в печах шахтного типа
RU2796772C1 (ru) Способ управления технологическим режимом процесса обжига сульфидных концентратов в печи кипящего слоя
RU2484157C2 (ru) Способ управления плавкой медно-никелевого сульфидного сырья в печи ванюкова при дискретном запаздывающем контроле качества продуктов плавки
CN108955257B (zh) 烧结系统主抽风机控制方法、装置及系统
JPH0692545B2 (ja) カーボンブラックのプロセス制御方法及び装置
RU2081818C1 (ru) Способ управления процессом получения фосфора в электротермической печи
SU785617A1 (ru) Способ автоматического регулировани процесса сушки в конвективной сушилке
JPH0485392A (ja) コークス炉の投入熱量制御方法
JPH02235988A (ja) コークス炉の装炭方法およびその装置
CN108955260B (zh) 烧结系统主抽风机控制方法、装置及系统
SU1218281A1 (ru) Способ управлени работой шахтной печи
JPH09235627A (ja) 焼結原料の通気度計測装置と造粒水分制御方法
RU2229074C1 (ru) Способ управления процессом обжига окатышей на конвейерной машине

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20131024