RU2308107C1 - Проходной изолятор - Google Patents

Проходной изолятор Download PDF

Info

Publication number
RU2308107C1
RU2308107C1 RU2006104257/09A RU2006104257A RU2308107C1 RU 2308107 C1 RU2308107 C1 RU 2308107C1 RU 2006104257/09 A RU2006104257/09 A RU 2006104257/09A RU 2006104257 A RU2006104257 A RU 2006104257A RU 2308107 C1 RU2308107 C1 RU 2308107C1
Authority
RU
Russia
Prior art keywords
insulation
support sleeve
insulator
bushing
silicone rubber
Prior art date
Application number
RU2006104257/09A
Other languages
English (en)
Inventor
Вадим Валерьевич Старцев (RU)
Вадим Валерьевич Старцев
Original Assignee
Закрытое Акционерное Общество "Арматурно-Изоляторный Завод"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое Акционерное Общество "Арматурно-Изоляторный Завод" filed Critical Закрытое Акционерное Общество "Арматурно-Изоляторный Завод"
Priority to RU2006104257/09A priority Critical patent/RU2308107C1/ru
Application granted granted Critical
Publication of RU2308107C1 publication Critical patent/RU2308107C1/ru

Links

Images

Landscapes

  • Insulators (AREA)

Abstract

Изобретение относится к электротехнике. Изолятор содержит электропроводящий стержень (1), изоляцию из трекингостойкой кремнийорганической резины (2), опорную втулку (3), коаксиально охватывающую изоляцию и выполненную из немагнитного металла длиной не менее половины длины токопроводящего стержня. Концы опорной втулки могут быть выполнены расширяющимися по дуге окружности. Втулка охвачена изоляцией из кремнийорганической резины, которая может быть выполнена с кольцевыми ребрами. Концентрические ребра изготовлены отдельно и при изготовлении прикреплены к изоляции с образованием неразъемной детали. 4 з.п. ф-лы, 4 ил.

Description

Изобретение относится к электротехнике, в частности к высоковольтным проходным изоляторам (вводам) воздушных линий электропередачи, кабельных линий, распределительных устройств на напряжение преимущественно 6-110 кВ.
Традиционно проходные изоляторы изготавливаются из керамических материалов и предназначены для ввода электрического тока в устройства или внутрь помещения. Проходные изоляторы соединяют внешние и внутренние стороны таких установок, выполняют фиксаторную опорную роль для токоведущей системы и одновременно ее изоляции от стен помещения или стенок устройства. Проходные изоляторы должны быть также механически прочными и герметичными, чтобы выдерживать нагрузки натяжения проводов при ветре и коротких замыканиях.
С развитием новых полимерных материалов появилась возможность изготовления проходных изоляторов из некерамических материалов. Известен проходной изолятор GB 2289803, 29.11.1995 состоящий из центрального токопроводящего стержня, изоляции из полимерного материала или резины, опорной втулки из стеклопластика, посредством которой изолятор крепится к стенке внешнего оборудования или стене. Недостатком данного устройства является низкая прочность при изгибе, так как опорная втулка из стеклопластика имеет длину вдоль токопроводящего стержня много меньшую, чем длина стержня. В результате при приложении силы к концу токопроводящего стержня перпендикулярно направлению стержня на опорную шайбу будет действовать в соответствии с правилом рычага сила в несколько раз большая. Учитывая, что эта сила передается через слой полимера или эластичной резины на стеклопластиковую опорную втулку, даже при малых значениях силы конец токопроводящего стержня отклоняется от первоначального значения на большие углы, недопустимые для нормальной эксплуатации. На рисунке, сопровождающем этот патент длина опорной втулки не более одной пятой части от длины токопроводящего стержня. Расчет показывает, что при нормальном усилии 12.5 кН, приложенном к концу стержня, усилие на стеклопластиковую втулку составит величину в пять раз большую, около 60 кН. Такую нагрузку стеклопластиковая втулка может не выдержать. Также эта конструкция при больших напряжениях и токах имеет существенные недостатки из-за неравномерности электрического поля. Неравномерность поля связана с тем, что опорная втулка, контактирующая с заземленной обычно стенкой внешнего оборудования или стеной здания, выполнена из диэлектрического стеклопластикового материала. Это создает концентрацию электрического поля в месте крепления изолятора к заземленной конструкции и приводит к быстрому разрушению его в процессе эксплуатации.
Указанный последний недостаток устранен в конструкции, являющейся наиболее близким аналогом - RU 2195032. В этом проходном изоляторе (вводе) для целей выравнивания электрического поля, создаваемого центральным электропроводящим стержнем, введен трубчатый элемент из электропроводящей резины с удельным, объемным электрическим сопротивлением - 10-40 Ом·см, электрически контактирующий с опорной втулкой и через нее с внешней заземленной конструкцией. Недостатком этого изолятора также является малая механическая прочность из-за малого размера опорной втулки.
Технический результат, достигаемый изобретением, состоит в создании проходного изолятора высокого напряжения с повышенными электрическими и механическими характеристиками, уменьшенной материалоемкостью, высокой термостойкостью и стойкостью к термическим ударам, повышенной надежностью во всех климатических условиях.
Технический результат достигается тем, что проходной изолятор высокого напряжения, содержащий токопроводящий стержень, изоляцию из кремнийорганической резины и опорную втулку из электропроводного и немагнитного материала, длиной не менее половины длины стержня, коаксиально охватывающую изоляцию, выполненную в виде цилиндра или конуса с торообразными закруглениями концов, исполняющими роль экранов для снижения напряженности электрического поля, и креплением к стенке внешней конструкции или здания в середине, причем изоляция может заходить на опорную втулку и иметь радиальные внешние ребра. Опорная втулка в предлагаемой конструкции имеет длину не менее половины длины токопроводящего стержня. Этим достигается ограничение нагрузки на опорную втулку не более чем в два раза, превосходящее усилие на конце токопроводящего стержня. Использование металла для опорной втулки увеличивает прочность всего изолятора и делает технически легким его присоединение к внешним конструкциям. Нагрузка от токопроводящего стержня передается на опорную металлическую втулку, через кремнийорганическую резину. Так как втулка имеет больший диаметр, чем токопроводящий стержень, она является основным силовым элементом изолятора. Материалом токопроводящего стержня может быть любой металл, имеющий малый коэффициент электрического сопротивления, с любой механической прочностью. В большинстве металлы, имеющие малый коэффициент электрического сопротивления, имеют низкую механическую прочность и высокую стоимость, например алюминий, медь, серебро. В предлагаемой конструкции токопроводящий стержень не несет механической нагрузки, поэтому может быть достаточно тонким и выполнен из дорогого металла. Материалом опорной втулки является достаточно прочный немагнитный металл, например нержавеющая сталь. Использование немагнитного материала позволяет сократить потери электроэнергии на перемагничивание, которое возникает в замкнутых контурах из магнитных материалов при внесении их в поле переменного электрического тока, и как следствие нагрев круговыми токами Фуко. Использование металла для опорной втулки позволяет снизить стоимость в сравнении со стеклопластиком, упростить изготовление, увеличить надежность изолятора в целом. Также использование металла позволяет применять при изготовлении изолятора традиционные широко распространенные методы обработки, такие как прессование, гибка, сварка, или применить при изготовлении серийно выпускающиеся металлические трубы. Сокращение деталей изолятора до трех и использование в изоляторе только двух типов материалов (металла и кремнийорганической резины) увеличивает надежность и срок эксплуатации изолятора. Так как кремнийорганическая резина имеет гарантированный срок эксплуатации более 30 лет, то при использовании в качестве материала для стержня и опорной втулки некорродирующего алюминия следует ожидать гарантированного срока эксплуатации всего изолятора более 30 лет. Кроме этого, по выше указанным причинам изолятор очень устойчив к термическим воздействиям, в том числе к резким перепадам температуры до 350 градусов, что на порядок больше, чем у известных изоляторов. Термическая стойкость изолятора ограничена только температурой стойкости кремнийорганической резины (около 350 градусов Цельсия) или температурой плавления металла. Стойкость к перепадам определяется тем, что изолятор не имеет твердых деталей, контактирующих друг с другом, из разных материалов, имеющих разные коэффициенты термического расширения. Между двумя деталями из металла располагается эластичная изоляция из резины, которая компенсирует все термические расширения. Кремнийорганическая резина в качестве материала изоляции позволяет изготавливать внутреннюю изоляцию и внешние ребра, как одно целое. Это возможно в результате уникальных свойств кремнийорганической резины: высокое значение напряжения пробоя для внутренней изоляции, высокая трекингостойкость и гидрофобность для внешней изоляции. Способность кремнийорганической резины отталкивать загрязнения в сравнении с традиционными фарфором и стеклом позволяет эксплуатировать изоляторы на открытых распределительных устройствах с большим количеством атмосферных загрязнений без перекрытия электрической дугой по поверхности изолятора.
Упругие свойства изолятора и отсутствие хрупких деталей позволяют транспортировать изоляторы без боя. Отсутствие фарфоровой детали исключает хрупкую поломку изолятора и возможность падения провода. Даже при превышении изгибающих нагрузок больше нормированных, деформируется металл опорной втулки и стержня, изолятор изогнется, но стержень будет изолирован от втулки, и изолятор будет продолжать работать. Уменьшение веса изолятора дает экономию на транспортных расходах.
Процесс изготовления предлагаемого проходного изолятора сводится к одной операции: литья резиновой изоляции в форме с предварительно помещенными туда, в виде закладных деталей, токопроводящим стержнем и опорной втулкой, с последующей вулканизацией резины. Форма для литья может предусматривать формирование внешних ребер поверх опорной втулки. В случае применения технологии прямого или конверсионного прессования твердой нелитьевой кремнийорганической резины процесс изготовления сводится к трем операциям: прессование на стержне изоляции с ребрами и последующей вулканизацией резины, надевание на изоляцию опорной втулки, закрепление опорной втулки на изоляторе посредством равномерного радиального обжатия втулки около краев, не затрагивая закругленных экранов.
В сравнении с технологией изготовления фарфоровых изоляторов время изготовления предлагаемого изолятора снижено как минимум в 7-8 раз и не менее чем 1.5 раза в сравнении с прототипом. С учетом снижения материалоемкости в сравнении с фарфоровыми стоимость изготовления изолятора ниже фарфоровых. Одновременно с этим данное решение позволило достичь увеличения надежности, электрической и механической прочности изолятора.
Изобретение иллюстрируется чертежами.
На Фиг.1 представлена конструкция проходного изолятора.
На фиг.2 представлена конструкция проходного изолятора с закругленными концами опорной втулки в виде экранов.
На фиг.3 представлена конструкция проходного изолятора, изготовленного методом литья жидкой резины в форму.
На фиг.4 представлена конструкция проходного изолятора с ребрами, изготовленного методом литья резины в форму.
Проходной изолятор содержит электропроводящий стержень 1, изоляцию 2, опорную втулку 3 и изготовлен методом прямого прессования и вулканизации кремнийорганической резины, надеванием опорной втулки с элементами крепления изолятора к стене, с использованием радиального обжатия опорной втулки около краев.
Часть изоляции 2 (фиг.3) может заходить на внешнюю сторону опорной втулки 3 для увеличения длины утечки тока от электропроводящего стержня до опорной заземленной втулки 3 по изоляционной поверхности из трекингостойкой кремнийорганической резины.
Опорная металлическая втулка 3 (фиг.4) может иметь тороидальные закругления, при этом изоляция 2 заходит на внешнюю сторону опорной втулки 3 и образует кольцевые ребра.

Claims (5)

1. Проходной изолятор, содержащий токопроводящий металлический стержень, изоляцию из трекингостойкой кремнийорганической резины, опорную втулку, коаксиально охватывающую изоляцию, отличающийся тем, что опорная втулка выполнена из немагнитного металла длиной не менее половины длины токопроводящего стержня.
2. Проходной изолятор по п.1, отличающийся тем, что концы опорной втулки выполнены расширяющимися по дуге окружности для снижения напряженности электрического поля на торцах опорной втулки.
3. Проходной изолятор по п.1 или 2, отличающийся тем, что втулка охвачена изоляцией из кремнийорганической резины.
4. Проходной изолятор по п.3, отличающийся тем, что изоляция из кремнийорганической резины выполнена с кольцевыми ребрами.
5. Проходной изолятор по п.4, отличающийся тем, что концентрические ребра изготовлены отдельно и при изготовлении приклеены к изоляции с образованием неразъемной детали.
RU2006104257/09A 2006-02-14 2006-02-14 Проходной изолятор RU2308107C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2006104257/09A RU2308107C1 (ru) 2006-02-14 2006-02-14 Проходной изолятор

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2006104257/09A RU2308107C1 (ru) 2006-02-14 2006-02-14 Проходной изолятор

Publications (1)

Publication Number Publication Date
RU2308107C1 true RU2308107C1 (ru) 2007-10-10

Family

ID=38953040

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006104257/09A RU2308107C1 (ru) 2006-02-14 2006-02-14 Проходной изолятор

Country Status (1)

Country Link
RU (1) RU2308107C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA020304B1 (ru) * 2013-02-28 2014-10-30 Закрытое Акционерное Общество "Нпо "Изолятор" Проходной изолятор
WO2019025023A1 (de) * 2017-08-03 2019-02-07 Südkabel GmbH Steckbare durchführung

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA020304B1 (ru) * 2013-02-28 2014-10-30 Закрытое Акционерное Общество "Нпо "Изолятор" Проходной изолятор
WO2019025023A1 (de) * 2017-08-03 2019-02-07 Südkabel GmbH Steckbare durchführung

Similar Documents

Publication Publication Date Title
US10355470B2 (en) Cable fitting for connecting a high-voltage cable to a high-voltage component
JP6588063B2 (ja) 保護用漏洩電流検出器を備えた架空電力線碍子
JP2011087447A (ja) 架空線取合いブッシング
JPS6245649B2 (ru)
KR101735870B1 (ko) 고전압 부싱 조립체
WO2007107119A1 (en) Current carrier combined with heat-pipe
CN109727730A (zh) 高压高强瓷绝缘子
RU2308107C1 (ru) Проходной изолятор
RU2319245C1 (ru) Кремнийорганический проходной изолятор
RU2608836C2 (ru) Узел и устройство короностойкой высоковольтной изоляционной втулки
US20200343024A1 (en) Hollow insulator and method for production thereof
RU2343578C1 (ru) Опорный изолятор
CN2788313Y (zh) 一种新型伞裙结构的复合绝缘外套
US1687449A (en) Tower construction
CN109488101A (zh) 一种用于10kV配电网的高耐雷水平绝缘横担
RU2291506C1 (ru) Штыревой изолятор
RU61463U1 (ru) Проходной изолятор с силиконовым изолирующим слоем
US1129465A (en) Transformer.
CN207718957U (zh) 一种耐腐蚀性能好的复合绝缘子
RU2319241C1 (ru) Опорный полимерный изолятор увеличенной жесткости
WO2019105126A1 (zh) 复合绝缘子及其制造方法、复合套管
CN106129658B (zh) 高温大电流引出线装置
US2643283A (en) Insulator tie
RU2319242C1 (ru) Опорный полимерный изолятор повышенной надежности
CN208422538U (zh) 一种全密封支柱绝缘子