RU2293336C2 - Способ определения скорости движения судна и устройство для его осуществления - Google Patents

Способ определения скорости движения судна и устройство для его осуществления Download PDF

Info

Publication number
RU2293336C2
RU2293336C2 RU2005109985/28A RU2005109985A RU2293336C2 RU 2293336 C2 RU2293336 C2 RU 2293336C2 RU 2005109985/28 A RU2005109985/28 A RU 2005109985/28A RU 2005109985 A RU2005109985 A RU 2005109985A RU 2293336 C2 RU2293336 C2 RU 2293336C2
Authority
RU
Russia
Prior art keywords
vessel
speed
radiation
receiving
reflected
Prior art date
Application number
RU2005109985/28A
Other languages
English (en)
Other versions
RU2005109985A (ru
Inventor
Сергей Александрович Вицинский (RU)
Сергей Александрович Вицинский
Тамара Григорьевна Вицинска (RU)
Тамара Григорьевна Вицинская
Андрей Германович Журенков (RU)
Андрей Германович Журенков
н Александр Захарович Зураб (RU)
Александр Захарович Зурабян
Владимир Константинович Качурин (RU)
Владимир Константинович Качурин
Игорь Леонидович Ловчий (RU)
Игорь Леонидович Ловчий
Виктор Александрович Яковлев (RU)
Виктор Александрович Яковлев
Original Assignee
Федеральное государственное унитарное предприятие Научно-исследовательский институт комплексных испытаний оптико-электронных приборов и систем (ФГУП НИИКИ ОЭП)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие Научно-исследовательский институт комплексных испытаний оптико-электронных приборов и систем (ФГУП НИИКИ ОЭП) filed Critical Федеральное государственное унитарное предприятие Научно-исследовательский институт комплексных испытаний оптико-электронных приборов и систем (ФГУП НИИКИ ОЭП)
Priority to RU2005109985/28A priority Critical patent/RU2293336C2/ru
Publication of RU2005109985A publication Critical patent/RU2005109985A/ru
Application granted granted Critical
Publication of RU2293336C2 publication Critical patent/RU2293336C2/ru

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Область применения - навигация, измерение скорости движения судов, в том числе судов на воздушной подушке и заходящих на посадку гидросамолетов. На невозмущенную судном поверхность направляют пучок излучения с заданным диаметром 2а. Прием отраженного светового излучения осуществляют в угле поля зрения, позволяющем регистрировать зеркальные площадки поверхностной волны. При приеме осуществляют угловую фильтрацию отраженного излучения. Находят среднее значение длительности τ импульсов отраженного излучения. Скорость V движения судна определяют по формуле
Figure 00000001
. Устройство для определения скорости движения судна содержит лазерный излучатель с модулятором, оптическую систему, приемную оптическую систему, фотоприемное устройство, последовательно соединенные буферный каскад, резонансный усилитель, детектор, формирователь импульсов стандартной амплитуды, схему совпадения, частотомер и блок индикации. Приемный объектив выполнен в виде линзы Френеля. Апертурная диафрагма выполнена в виде щелевой диафрагмы. Фотоприемное устройство выполнено в виде фотодиода. Детектор выполнен в виде синхронного детектора. Технический результат - повышение точности и надежности измерения скорости судна и упрощение обработки получаемой информации. 2 н.п. ф-лы, 1 ил.

Description

Изобретение относится к области навигации и может использоваться для измерения оптическими методами скорости движения судов, в том числе судов на воздушной подушке и заходящих на посадку гидросамолетов.
Традиционно измерение скорости движения судна осуществляется контактными способами и устройствами: гидродинамическим, гидромеханическим и наиболее распространенным электродинамическим [см. книгу С.И.Штернберга и др. Лаги и автосчислители - Л., 1964 г.]. Как правило, контактные датчики устанавливаются в непосредственной близости от корпуса корабля. Их установка достаточно сложна и может вести к снижению ходовых характеристик судна. На высоких скоростях движения судна датчики подвержены разрушающему действию среды. Кроме того, они вносят возмущения в обтекающий поток, которые необходимо учитывать при интерпретации результатов измерений, что достаточно сложно и не всегда реализуемо на практике.
Известен оптический способ измерения скоростей частиц в потоке [см. а.с. СССР № 901910, МПК G 01 Р 5/18, приор. 10.06.80], заключающийся в направлении светового луча в среду, содержащую рассеивающие объекты, приеме отраженного излучения и преобразовании оптического сигнала в электрический. Способ может быть использован и при определении скорости судна относительно водной среды. Согласно способу в потоке с помощью двух световых лучей создается база измерения и регистрируются двумя фотоприемниками моменты пролета частицами границ этой базы. Одновременно регистрируются интенсивности излучения на входах фотоприемников при наличии и отсутствии частиц в зоне измерения. После этого определяют скорость частиц по формуле
Figure 00000003
, где l - размер базы, t - время пролета частицей базы измерения, j1 и
Figure 00000004
- интенсивности излучения на входах фотоприемников при отсутствии и наличии частиц соответственно, K1 и К2 - коэффициенты пропорциональности, зависящие от вида частиц и их распределения по форме и размерам (устанавливаются при тарировочных испытаниях).
Известно устройство, реализующее этот способ [см. а.с. СССР № 901910, МПК G 01 Р 5/18, приор. 10.06.80], содержащее лазерный источник зондирующего излучения с выходной диафрагмой, систему полупрозрачных и глухих зеркал для разделения светового пучка, схему совпадений и регистрирующее устройство с двумя фотоприемниками.
В данных технических решениях для точного измерения скорости мелких, по сравнению с диаметром лазерного луча, частиц излучение необходимо фокусировать в измерительный объем. Без специальной динамической системы сфокусировать лазерный луч через взволнованную поверхность воды невозможно из-за изменения расстояния между источником излучения и поверхностью, а также варьирования кривизны поверхности. Приемник излучения, регистрирующий рассеиваемые частицами малые световые потоки, должен располагаться в непосредственной близости от рассеивателей света, что ведет к тому, что в данном решении измеряется скорость судна не относительно водной поверхности, а относительно водной среды, возмущенной корпусом судна. Кроме того, описанные способ измерения и устройство для его осуществления обладают значительными погрешностями из-за наличия помех от солнечных бликов и возмущенной водной поверхности; конструктивное решение сложно вследствие необходимости регистрации малых световых потоков и не может быть использовано при движении судна в «чистых» водах, с малой концентрацией рассеивающих частиц.
Наиболее близким по технической сущности к заявленному является способ локации водной поверхности [см. Зурабян А.З. и Тибилов А.С. Определение статистических характеристик уклонов морской поверхности при помощи оптического локатора. - Известия АН СССР, Физика атмосферы и океана, 1987 г., т.23, № 2, с.194-199], включающий направление по вертикали на невозмущенную поверхность воды модулированного по интенсивности излучения, прием и симметричную относительно оптической оси угловую фильтрацию отраженного излучения, преобразование оптического сигнала в электрический и определение статистических характеристик водной поверхности.
Наиболее близким по технической сущности к заявленному является оптический локатор зеркальных площадок [см. Зурабян А.З. и Тибилов А.С. Определение статистических характеристик уклонов морской поверхности при помощи оптического локатора - Известия АН СССР, Физика атмосферы и океана, 1987 г., т.23, №2, с.194-199], включающий непрерывный лазерный излучатель с модулятором, приемную оптическую систему, состоящую из оптически сопряженных круглой апертурной диафрагмы, приемного объектива и полевой диафрагмы, фотоприемное устройство, последовательно соединенные буферный каскад, резонансный усилитель, детектор, формирователь импульсов стандартной амплитуды, схему совпадения, частотомер и блок индикации, при этом выход фотоприемного устройства соединен с входом буферного каскада, второй выход формирователя импульсов стандартной амплитуды соединен со вторым входом частотомера.
Этот способ и устройство для его осуществления предназначены для измерения двухточечных плотностей распределения уклонов морской поверхности, по результатам измерений которых можно косвенно судить и о скорости судна. Существенными недостатками данных решений является большая погрешность измерений, связанная с зависимостью времени сканирования площадки лазерным лучом от ее расположения относительно освещенного на поверхности кружка. Кроме того, из-за сложности обработки цикл формирования сигнала одного измерения занимает достаточно длительный промежуток времени.
Технический эффект предложенной группы изобретений «Способ определения скорости движения судна и устройство для его осуществления» заключается в повышении точности и надежности измерения скорости судна и упрощении обработки получаемой информации.
Такой технический эффект достигнут нами, когда:
- в способе определения скорости движения судна, заключающемся в направлении по вертикали на невозмущенную судном поверхность воды модулированного по интенсивности светового излучения, приеме и угловой фильтрации отраженного светового излучения, преобразовании оптического сигнала в электрический и определении статистических характеристик водной поверхности, новым является то, что на невозмущенную судном поверхность направляют пучок излучения с заданным диаметром 2а, выбранным из условия 2а≤λ/2, где λ - длина поверхностной волны,
прием отраженного светового излучения осуществляют в угле поля зрения, позволяющем регистрировать зеркальные площадки поверхностной волны, при приеме осуществляют несимметричную относительно оптической оси угловую фильтрацию отраженного излучения таким образом, что апертурный угол в плоскости, перпендикулярной к направлению движения судна, превышает апертурный угол в плоскости, совпадающей с направлением его движения, измеряют длительность импульсов отраженного излучения, находят среднее значение длительности τ импульсов отраженного излучения и скорость V движения судна определяют по формуле
Figure 00000005
;
- в устройстве для определения скорости движения судна, содержащем непрерывный лазерный излучатель с модулятором, формирующую пучок оптическую систему, приемную оптическую систему, состоящую из оптически сопряженных апертурной диафрагмы, приемного объектива и полевой диафрагмы, фотоприемное устройство, последовательно соединенные буферный каскад, резонансный усилитель, детектор, формирователь импульсов стандартной амплитуды, схему совпадения, частотомер и блок индикации, при этом выход фотоприемного устройства соединен со входом буферного каскада, второй выход формирователя импульсов стандартной амплитуды соединен со вторым входом частотомера, новым является то, что приемный объектив выполнен в виде линзы Френеля, диаметр d которой найден из соотношения d≥γZ,
где Z - высота установки приемной оптической системы относительно водной поверхности;
γ - среднеквадратичный уклон поверхности,
апертурная диафрагма выполнена в виде щелевой диафрагмы шириной
Figure 00000006
, где Xmax - поперечный размер зеркальной площадки на водной поверхности;
r - гауссовский радиус кривизны зеркальной площадки, ориентированной перпендикулярно курсу судна, фотоприемное устройство выполнено в виде фотодиода, детектор выполнен в виде синхронного детектора, второй вход которого соединен с выходом модулятора, который также соединен со вторым входом схемы совпадения.
На чертеже изображено устройство для определения скорости движения судна, реализующее заявленный способ (пример конкретного выполнения), содержащее непрерывный лазерный излучатель с формирующей пучок оптической системой 1, модулятор 2, приемную оптическую систему, состоящую из оптически сопряженных апертурной щелевой диафрагмы 3, ориентированной перпендикулярно курсу судна, приемного объектива 4, выполненного в виде линзы Френеля, полевой диафрагмы 5 и фотодиода 6, выход которого соединен с буферным каскадом 7, последовательно с которым включены резонансный усилитель 8, синхронный детектор 9, формирователь 10 импульсов стандартной амплитуды, схема 11 совпадения, частотомер 12 и блок 13 индикации. Второй выход формирователя 10 импульсов стандартной амплитуды соединен со вторым входом частотомера 12, а второй вход синхронного детектора 9 соединен с выходом модулятора 2, который в свою очередь соединен со вторым входом схемы 11 совпадения, 14 - водная поверхность;
Z - высота установки устройства относительно водной поверхности 14;
r - гауссовский радиус кривизны зеркальной площадки водной поверхности 14;
2a - диаметр пятна засветки водной поверхности 14 (диаметр лазерного луча);
V - скорость судна;
Figure 00000007
- направление перемещения судна;
Х - поперечный размер отражающих зеркальных площадок водной поверхности 14, задаваемый апертурной щелевой диафрагмой 3.
Диаметр d линзы Френеля определяют соотношением d≥γZ, где Z - высота установки устройства относительно водной поверхности 14; γ - среднеквадратичный уклон поверхности.
Устройство, реализующее способ определения скорости движения судна, работает следующим образом.
Выбирают взаимное расположение лазерного излучателя с формирующей пучок оптической системой и элементов приемной оптической системы в зависимости от типа и конструкции носителя (судно, гидросамолет и т.д.). Подходы к решению этой задачи известны.
Лазерный излучатель 1 установлен, например, на носу судна и освещает невозмущенную судном водную поверхность модулированным по интенсивности световым лучом (модулятор 2). Благодаря выбору малого диаметра пятна засветки водной поверхности 2a≤λ/2, где λ - длина поверхностной волны, в световой кружок на водной поверхности могут поочередно попадать площадки в районе вершин и впадин поверхностной волны с нормалью, близкой к вертикали, (зеркальные площадки) и таким образом формировать импульсы отраженного излучения.
При попадании лазерного излучения на зеркальную площадку отраженный свет поступает в приемную оптическую систему, осуществляющую с помощью апертурной щелевой диафрагмы 3 его угловую фильтрацию, и регистрируется фотодиодом 6.
Благодаря несимметричной относительно оптической оси угловой фильтрации отраженного излучения на водной поверхности выделяют зеркальную площадку в виде узкого прямоугольника, ориентированного поперек курса судна, и задают его размеры. Поперечный размер Х зеркальной площадки определяют из соотношения
Figure 00000008
. Здесь
r - гауссовский радиус кривизны зеркальной площадки на водной поверхности 14;
b - ширина щелевой диафрагмы 3;
Z - высота установки устройства относительно водной поверхности 14.
Благодаря большому продольному размеру зеркальной площадки применение щелевой диафрагмы позволяет увеличить интенсивность световых импульсов, что ведет к повышению точности измерений.
Известно, что средняя скорость хаотично перемещающихся зеркальных площадок равна нулю. В случае измерения длительности импульса, отраженного от непрерывно изменяющейся поверхности, задавая ширину щелевой диафрагмы b из соотношения
Figure 00000009
, обусловленную выбором апертурного угла приемной оптической системы, можно добиться малости поперечных размеров зеркальных площадок Хmax по сравнению с диаметром 2а лазерного луча (например, Хmax≈0,2a). Это весьма существенно при измерении скорости судна, так как при соблюдении данного условия время сканирования зеркальной площадки лазерным лучом не зависит от ее расположения относительного освещенного на поверхности кружка и средняя длительность отраженного светового импульса τ определяется только скоростью судна V
Figure 00000010
. Контроль выполнения этого условия может быть осуществлен, например, по амплитуде отраженных импульсов, поскольку амплитуда импульсов, отраженных зеркальной площадкой размером, сопоставимым с диаметром лазерного луча, существенно (на ~50% и более) больше амплитуды импульсов, отраженных малыми, по сравнению с диаметром лазерного луча, зеркальными площадками.
Полевая диафрагма 5, выделяющая в плоскости изображения водной поверхности, формируемой линзой Френеля 4, участок, освещенный лазерным лучом, служит для ослабления помех от солнечных бликов. Полное подавление данной помехи достигается путем выбора частоты модуляции интенсивности лазерного излучения и селективного приема сигнала этой частоты. Подходы к решению этой задачи известны.
Электрический сигнал с фотодиода 6 поступает в буферный каскад 7 и далее по кабелю на вход резонансного усилителя 8 и затем в синхронный детектор 9. Сигнал с модулятора 2, подаваемый на вход опорного канала синхронного детектора 9, служит для выделения огибающей сигнала от отраженного луча.
После усиления и детектирования в синхронном детекторе 9 полученный низкочастотный сигнал поступает в формирователь импульсов 10. Импульсы стандартной амплитуды с формирователя 10, длительности которых зависят от скорости судна, поступают на один из входов схемы совпадения 11, на второй вход этой схемы подается сигнал с модулятора 2. В результате на выходе схемы совпадения 11 формируются импульсы сигнала, заполненные «метками» сигнала модулятора.
Эти импульсы поступают на вход А частотомера 12, а на его вход Б приходят импульсы с формирователя 10. Частотомер 12 работает в режиме деления частот (А/Б). При этом по входу А считаются импульсы «меток» сигнала модулятора 2 в течение времени, пока на вход В не поступит, например, n=100 импульсов (от 100 зарегистрированных зеркальных площадок). Выбор числа импульсов n осуществляют из условия
Figure 00000011
, где δV - требуемая погрешность измерения скорости судна.
В результате на индикаторе частотомера высвечивается величина τ, пропорциональная среднему значению (по 100 импульсам) длительности импульсов сигнала от зеркальных площадок.
Пересчет значения τ в скорость V движения судна производится по формуле
Figure 00000012
, полученный результат высвечивается на электронном табло блока индикации 13.
Пример конкретного исполнения.
Был изготовлен макетный образец заявленного устройства для определения скорости движения научно-исследовательского судна «Гидрооптик» (водоизмещение 1149 т). В качестве источника излучения использован непрерывный He-Ne лазер с расходимостью ~10-3 рад. При такой расходимости лазерного излучения диаметр луча медленно меняется с расстоянием, и результаты измерений в достаточно широких пределах практически не зависят от расстояния между поверхностью воды и излучателем. Формирующая система (линза - гибкий световод - линза), установленная на выходной апертуре лазерного излучателя (не указана), обеспечивала диаметр пятна засветки на водной поверхности ~4 мм, интенсивность лазерного излучения модулировалась по питанию с частотой ~100 кГц и осуществлялся селективный прием сигнала этой частоты.
Приемная оптическая система с фотодиодом располагалась на высоте Z≈4 м от водной поверхности. В качестве приемного объектива была выбрана линза Френеля диаметром 40 см (размер определен из принятого среднеквадратичного уклона поверхности γ=0,1). Использована полевая диафрагма, выделяющая в плоскости изображения, формируемой линзой Френеля, освещенный лазерным лучом участок водной поверхности диаметром ~4 мм.
Использование щелевой диафрагмы шириной b~0,5 см позволило выделить на водной поверхности зеркальную площадку в виде прямоугольника, ориентированного поперек курса судна, и, таким образом, исключить зависимость времени сканирования площадки лазерным лучом от ее расположения относительно освещенного на поверхности кружка. Кроме того, со щелевой диафрагмой возросла на ~50% амплитуда импульсов сигнала благодаря увеличению продольного размера зеркальной площадки.
Операция усреднения длительностей импульсов сигнала, предшествующая вычислению скорости судна, осуществлялась с помощью частотомера Ч3-36 путем суммирования длительности 100 импульсов с последующим делением ее результата на 100.
В процессе проведения натурных испытаний было установлено, что по результатам измерений прибора можно с достаточно высокой точностью (не хуже 10% в диапазоне изменения скоростей от 3 до 12 узлов) судить о скорости судна.
Таким образом, предложенные способ определения скорости движения судна и устройство для его осуществления позволяют повысить точность и стабильность измерений в условиях реальной эксплуатации. Благодаря неконтактному зондированию невозмущенной корпусом судна водной поверхности и исключению влияния условий и среды проведения измерений обеспечена высокая надежность измерений. Оно имеет высокую помехоустойчивость от солнечных бликов и по своим точностным и функциональным характеристикам может найти широкое применение в области навигации, в том числе для измерения скорости движения судов на воздушной подушке и заходящих на посадку гидросамолетов.

Claims (2)

1. Способ определения скорости движения судна, заключающийся в направлении по вертикали на невозмущенную судном поверхность воды модулированного по интенсивности светового излучения, приеме и угловой фильтрации отраженного светового излучения, преобразовании оптического сигнала в электрический и определении статистических характеристик водной поверхности, отличающийся тем, что на невозмущенную судном поверхность направляют пучок излучения с заданным диаметром 2а, выбранным из условия 2a≤λ/2, где λ - длина поверхностной волны, прием отраженного светового излучения осуществляют в угле поля зрения, позволяющем регистрировать зеркальные площадки поверхностной волны, при приеме осуществляют несимметричную относительно оптической оси угловую фильтрацию отраженного излучения таким образом, что апертурный угол в плоскости, перпендикулярной к направлению движения судна, превышает апертурный угол в плоскости, совпадающей с направлением его движения, измеряют длительность импульсов отраженного излучения, находят среднее значение длительности τ импульсов отраженного излучения и скорость V движения судна определяют по формуле
Figure 00000013
.
2. Устройство для определения скорости движения судна, содержащее непрерывный лазерный излучатель с модулятором, формирующую пучок оптическую систему, приемную оптическую систему, состоящую из оптически сопряженных апертурной диафрагмы, приемного объектива и полевой диафрагмы, фотоприемное устройство, последовательно соединенные буферный каскад, резонансный усилитель, детектор, формирователь импульсов стандартной амплитуды, схему совпадения, частотомер и блок индикации, при этом выход фотоприемного устройства соединен со входом буферного каскада, второй выход формирователя импульсов стандартной амплитуды соединен со вторым входом частотомера, отличающееся тем, что приемный объектив выполнен в виде линзы Френеля, диаметр d которой найден из соотношения d≥γZ, где Z - высота установки приемной оптической системы относительно водной поверхности; γ - среднеквадратичный уклон поверхности, апертурная диафрагма выполнена в виде щелевой диафрагмы шириной
Figure 00000014
,
где Хmax - поперечный размер зеркальной площадки на водной поверхности;
r - гауссовский радиус кривизны зеркальной площадки, ориентированной перпендикулярно курсу судна,
фотоприемное устройство выполнено в виде фотодиода, детектор выполнен в виде синхронного детектора, второй вход которого соединен с выходом модулятора, который также соединен со вторым входом схемы совпадения.
RU2005109985/28A 2005-04-06 2005-04-06 Способ определения скорости движения судна и устройство для его осуществления RU2293336C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2005109985/28A RU2293336C2 (ru) 2005-04-06 2005-04-06 Способ определения скорости движения судна и устройство для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2005109985/28A RU2293336C2 (ru) 2005-04-06 2005-04-06 Способ определения скорости движения судна и устройство для его осуществления

Publications (2)

Publication Number Publication Date
RU2005109985A RU2005109985A (ru) 2006-10-20
RU2293336C2 true RU2293336C2 (ru) 2007-02-10

Family

ID=37437400

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005109985/28A RU2293336C2 (ru) 2005-04-06 2005-04-06 Способ определения скорости движения судна и устройство для его осуществления

Country Status (1)

Country Link
RU (1) RU2293336C2 (ru)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115901178B (zh) * 2023-01-06 2023-06-06 中国海洋大学 多体海工结构间波浪共振流场特性的测量系统和分析方法

Also Published As

Publication number Publication date
RU2005109985A (ru) 2006-10-20

Similar Documents

Publication Publication Date Title
CN111289955B (zh) 一种基于mems振镜的三维扫描激光雷达
US20050150309A1 (en) Blood flow velocity measurement
US4263511A (en) Turbidity meter
CN107356320B (zh) 一种脉冲超声声场检测装置与方法
WO2017177967A1 (zh) 一种水下探测系统及水下探测方法
EP0060280A1 (en) AERIAL SURVEY OF OCEANIC BOTTOMS USING A LASER RADIUS.
US7453569B2 (en) Method and apparatus for measuring particle motion using scattered radiation
US4026655A (en) Pseudo-backscatter laser doppler velocimeter employing antiparallel-reflector in the forward direction
KR101879641B1 (ko) 수심 라이다 파형 분석을 통한 탁도 측정 방법
RU2293336C2 (ru) Способ определения скорости движения судна и устройство для его осуществления
US7012688B2 (en) Method and apparatus for measuring particle motion optically
CN115856349A (zh) 基于激光多普勒效应的湍流水体剖面流速探测方法及装置
US6094266A (en) Detector for determining particle size distribution in an oscillating flow field
RU2020520C1 (ru) Способ определения скорости движения судна относительно водной поверхности и устройство для его осуществления
RU2790930C1 (ru) Способ определения вертикального профиля интенсивности оптической турбулентности в атмосфере
Martinsen et al. Optical measurements of ripples using a scanning-laser slope gauge: Part I--instrumentation and preliminary results
SU1435942A1 (ru) Способ измерени скорости движени рассеивающих объектов в прозрачных средах
US20240094387A1 (en) Optical sensing system, optical sensing device, and optical sensing method
KR101836674B1 (ko) 유체유속 가시화를 위한 다축 레이저 도플러 속도계, 속도측정방법 및 시스템
CN115166283A (zh) 一种利用调制激光进行强背景干扰下颗粒速度测量的装置
JP2877119B2 (ja) 移動体の速度測定装置
SU481836A1 (ru) Доплеровский измеритель скорости потока
JP2660788B2 (ja) 海中濁度分布測定装置
SU1485069A1 (ru) Фотоэлектрический способ определения размеров и концентрации взвешенных частиц
JP3554856B2 (ja) 低干渉光源を利用した流体の流速ベクトル測定システム及び測定方法

Legal Events

Date Code Title Description
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20121224

MM4A The patent is invalid due to non-payment of fees

Effective date: 20140407