WO2017177967A1 - 一种水下探测系统及水下探测方法 - Google Patents

一种水下探测系统及水下探测方法 Download PDF

Info

Publication number
WO2017177967A1
WO2017177967A1 PCT/CN2017/080589 CN2017080589W WO2017177967A1 WO 2017177967 A1 WO2017177967 A1 WO 2017177967A1 CN 2017080589 W CN2017080589 W CN 2017080589W WO 2017177967 A1 WO2017177967 A1 WO 2017177967A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
target object
underwater
laser
module
Prior art date
Application number
PCT/CN2017/080589
Other languages
English (en)
French (fr)
Inventor
周倩
倪凯
胡凯
王立代
王晓浩
李星辉
董昊
王兰兰
Original Assignee
清华大学深圳研究生院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学深圳研究生院 filed Critical 清华大学深圳研究生院
Publication of WO2017177967A1 publication Critical patent/WO2017177967A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V11/00Prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/80Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves

Definitions

  • the invention relates to the field of underwater detection, in particular to an underwater detection system based on photoacoustic signals and an underwater detection method.
  • the technical problem to be solved by the present invention is to make up for the deficiencies of the above prior art, and to provide an underwater detection system and an underwater detection method, which can realize a farther detection distance and a higher detection precision.
  • An underwater detecting system comprising a laser emitting device, an ultrasonic detecting device and a measuring device; the laser emitting device for emitting a laser having a wavelength of 430 to 570 nm to a target object in an area to be detected underwater, the ultrasonic detecting The device is configured to receive an ultrasonic wave generated after the target object absorbs the laser, and an input end of the measuring device is connected to an output end of the ultrasonic detecting device, and is configured to analyze and process the ultrasonic signal output by the ultrasonic detecting device. The information of the target object.
  • the measuring device includes a time difference calculating module and a distance calculating module, wherein the time difference calculating module is configured to calculate a time difference between the laser emitting device emitting laser light and the ultrasonic detecting device receiving ultrasonic wave, and the input terminal of the distance calculating module is connected
  • the output of the time difference calculation module is configured to calculate the time difference of the output of the target object according to the time difference of the time difference calculation module and the propagation speed of the light in the water, and the propagation speed of the ultrasonic signal in the water The distance of the underwater detection system.
  • the measuring device further includes a speed measuring module; an input end of the speed measuring module is connected to an output end of the distance calculating module, and is configured to change a distance of the measured point that is measured and outputted by the distance calculating module according to the distance calculating module Estimating the speed of the target object.
  • the ultrasonic detecting device includes a plurality of ultrasonic detectors; the measuring device includes an orientation determining module; and the plurality of ultrasonic detectors are respectively configured to receive ultrasonic waves generated after the target object surface is absorbing the laser light by the measuring point;
  • the orientation determining module is configured to determine an orientation of the measured point on the surface of the target object according to the time difference of the ultrasonic waves received by the respective ultrasound probes.
  • the underwater detection system further includes a lens and a micro-scanning device; the ultrasonic detecting device includes a plurality of ultrasonic detectors; the measuring device includes a three-dimensional topography reconstruction module; and the lens is configured to emit the laser emitting device
  • the laser is focused
  • the micro-scanning device is configured to perform a point-by-point scan of the target object within a set range by the focused laser;
  • the plurality of ultrasonic detectors are configured to receive the surface of the target object to be measured An ultrasonic wave generated by absorbing the laser;
  • the three-dimensional topography reconstruction module is configured to determine a distance and an orientation of the measured point according to a time when each ultrasonic probe receives the ultrasonic wave and a time difference between each time The point is determined to obtain three-dimensional coordinates of a plurality of points on the surface of the target object, and the three-dimensional shape of the target object is fitted.
  • the measuring device includes a reference power spectrum storage module and a component analysis module, wherein the reference power spectrum storage module is configured to store a power spectrum of the ultrasonic signals of the plurality of objects in the water, and the input end of the component analysis module is connected to the reference power spectrum An output end of the storage module, the component analysis module is configured to detect a power spectrum of the received ultrasonic signal, compare the detected power spectrum with a reference power spectrum, and analyze a component of the target object.
  • the reference power spectrum storage module is configured to store a power spectrum of the ultrasonic signals of the plurality of objects in the water
  • the input end of the component analysis module is connected to the reference power spectrum
  • An output end of the storage module the component analysis module is configured to detect a power spectrum of the received ultrasonic signal, compare the detected power spectrum with a reference power spectrum, and analyze a component of the target object.
  • the laser emitting device is a laser emitting device that emits laser light at a frequency of 200 to 250 kHz.
  • An underwater detecting method comprising the steps of: 1) emitting a laser having a wavelength of 430 to 570 nm to a target object in an area to be detected underwater; 2) receiving an ultrasonic wave generated by the target object absorbing the laser; And performing an analysis process on the ultrasonic signal to acquire information of the target object.
  • the step 3) includes the following steps: 31) calculating a time difference between the emitted laser light and the received ultrasonic wave; 32) calculating the propagation speed of the ultrasonic signal in the water according to the time difference and the propagation speed of the light in the water to obtain the target object The distance between the measured point and the location where the underwater detection is performed.
  • the method further includes a step 33), estimating a change in the distance of the measured point calculated according to the step 32) The speed of the target object.
  • the laser light is emitted at a frequency of 200 to 250 kHz.
  • the underwater detection system and the underwater detection method of the invention combine laser detection with sonar detection, and use laser emission to cause the target object to generate ultrasonic effects, detect ultrasonic signals, and realize underwater detection.
  • the high collimation of the laser ensures fine scanning of the target area, which improves the echo signal intensity per unit area of the target area. Compared to traditional simple sonar equipment, it can achieve more precise detection, while ensuring sufficient
  • the laser energy can ensure a certain range of detection distance; compared with the conventional pure laser type underwater detection, the laser is simultaneously used as the emission signal and the detection signal, and the invention uses the ultrasonic signal to detect, and the attenuation of the ultrasonic wave in the water is much smaller than that. Light waves, while also avoiding the effects of seawater backscattering, allow for greater detection distances and higher detection accuracy than laser or video equipment.
  • FIG. 1 is a schematic structural view of an underwater detecting system according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of the principle of an underwater detection system according to an embodiment of the present invention.
  • the laser emitting device emits a pulsed laser or a continuous laser to the target area for scanning, and the emitted laser light adopts a blue-green laser with the lowest absorption rate in the water, so that the ultrasonic source signal is generated after the laser is absorbed by the target object in the target area.
  • the ultrasonic detecting device receives the ultrasonic signal, and the measuring circuit analyzes and processes the ultrasonic signal, thereby obtaining information such as distance, azimuth, three-dimensional shape, velocity, composition and the like of the target.
  • the invention no longer uses the laser as the optical signal to detect the optical signal, or only generates the photoacoustic sound source when the laser is incident on the water surface to replace the sonar sound source, but integrates the characteristics of the laser optical signal transmission and the sound source signal.
  • FIG. 1 is a schematic structural view of an underwater detecting system according to an embodiment of the present invention.
  • the underwater detection system includes a laser emitting device 100, an ultrasonic detecting device 300, and a measuring device 500. As shown in Figure 2, it is a schematic diagram of the working principle of the underwater detection system.
  • the laser emitting device 100 is for emitting laser light having a wavelength of 430 to 570 nm to a target object in an area to be detected underwater.
  • the laser emitting device is controlled by modulation, and the emitted laser light has a wavelength range of 430 nm to 570 nm, which is the blue-green laser having the lowest absorption rate in water, so that the target object absorbs the laser of the wavelength range to generate ultrasonic waves.
  • the absorption rate of the laser according to the actual underwater environment, the required detection distance
  • the target comprehensively adjusts the absorption rate of the laser, the attenuation of the water to the sound wave, and the sensitivity of the ultrasonic detector. The adjustment so that the power is such that the target object absorbs the laser light to produce sufficient intensity of the ultrasonic wave has been detected by the ultrasonic detecting device in the detection system.
  • the ultrasonic detecting device 300 is configured to receive ultrasonic waves generated after the target object absorbs the laser light.
  • An input end of the measuring device 500 is connected to an output end of the ultrasonic detecting device for performing an analysis process on the ultrasonic signal output by the ultrasonic detecting device to acquire information of the target object.
  • the measuring device 500 can set different modules according to the application requirements, thereby realizing the requirements for measuring the distance, speed, orientation, three-dimensional shape, composition and other information of the target.
  • the measuring device 500 may include a time difference calculation module and a distance calculation module.
  • the time difference calculation module is configured to calculate a time difference ⁇ t between the laser light emitted by the laser emitting device and the ultrasonic wave received by the ultrasonic detecting device.
  • the acquisition of the time difference can be calculated by the timing of emitting the laser light transmitted from the laser emitting device 100 and the timing of receiving the ultrasonic wave transmitted from the ultrasonic detecting device 300. Of course, it can also be obtained by other means, and will not be detailed here.
  • the Distance calculation module inputs connected to the output terminal of the time difference calculation module, according to the time difference ⁇ t time difference calculation module and the output speed of light in water v 1, v 2 calculated in the ultrasonic signal propagation velocity of water Obtaining a distance between the measured point on the surface of the target object and the underwater detecting system.
  • the propagation velocity v 2 of the ultrasonic signal in the water can be obtained by the sound velocity calibration module, that is, the detection system can include a sound velocity calibration module to accurately calibrate the propagation speed of the ultrasonic wave in the current underwater detection environment, or can be calibrated by the sound velocity in advance.
  • the module measures that the measured value is stored directly in the measuring device 500 in the detection system.
  • the measuring device 500 can perform the above calculation after performing amplification, filtering, AD conversion, and the like on the ultrasonic signal output by the ultrasonic detecting device 300, thereby improving measurement accuracy.
  • the measuring device 500 can measure the speed of the target object based on the measured distance described above.
  • the measuring device 500 also includes a speed measuring module.
  • the input end of the speed measuring module is connected to the output end of the distance calculating module, and is used for estimating the speed of the target object according to the distance change of the measured point measured and output by the distance calculating module.
  • the ultrasound detecting device can be arranged to include a plurality of ultrasound probes; the measurement device includes an orientation determination module.
  • a plurality of ultrasonic detectors are respectively used for receiving ultrasonic waves generated after the laser beam is absorbed by the measured point on the surface of the target object.
  • the orientation determining module is configured to determine the target according to a time difference of each ultrasonic probe receiving the ultrasonic wave The orientation of the point to be measured on the surface of the object. With the point-by-point scanning module, the position of the target as a whole can be known after the point-by-point scanning measurement.
  • the underwater detection system may be further provided with a lens L and a micro-scanning device MSS.
  • the ultrasonic detecting device includes a plurality of ultrasonic probes; correspondingly, the measuring device includes a three-dimensional topography reconstruction module.
  • the lens L is used for focusing the laser light emitted by the laser emitting device, and the micro scanning device is for causing the focused laser to scan the target object point by point within a set range.
  • a plurality of ultrasonic detectors are configured to receive ultrasonic waves generated after the surface of the target object is absorbed by the laser.
  • the three-dimensional topography reconstruction module is configured to determine a distance and an orientation of the measured point according to a time when the ultrasonic probe receives the ultrasonic wave and a time difference between the respective time points.
  • Point-by-point scanning can obtain the distance and orientation of each point, thereby determining the three-dimensional coordinates of the plurality of points on the surface of the target object, thereby obtaining a point cloud image of the three-dimensional shape of the target object, and according to the three-dimensional shape
  • the point cloud map fits the three-dimensional topography of the target object.
  • the underwater detection system of the present embodiment can also analyze the composition of the target object, and the setting measurement device at this time includes a reference power spectrum storage module and a component analysis module.
  • the reference power spectrum storage module is configured to store a power spectrum of an ultrasonic signal of a plurality of objects in the water
  • an input end of the component analysis module is connected to an output end of the reference power spectrum storage module
  • the component analysis module is configured to detect and receive The power spectrum of the obtained ultrasonic signal compares the detected power spectrum with the reference power spectrum to analyze the composition of the target object.
  • the target is steel material and seabed rock, the power spectrum characteristics of the received photoacoustic signals are different.
  • the photoacoustic signal generation mechanism is more complicated, it can be mainly based on the machine mode.
  • Learning method Firstly, the power spectrum of the photoacoustic signal of common underwater targets is learned, and the power spectrum of the ultrasonic signals of a plurality of common objects in the water is stored as a reference power spectrum. In actual detection, the power spectrum of the measured photoacoustic signal is compared with the reference power spectrum that has been learned, and the material of the target object is roughly determined.
  • the specific embodiment can set the specific composition in the measuring device, thereby applying the photoacoustic signal to detect the distance, velocity, azimuth and three-dimensional shape of the target, and the composition of the target.
  • the underwater detection system and the underwater detection method of the specific embodiment comprehensively utilize the high collimation of the laser and the advantage that the ultrasonic signal attenuates a small propagation distance and has no influence of seawater backscattering, thereby enabling simultaneous detection.
  • Distance and higher detection accuracy It can detect longer distances and have higher detection accuracy when measuring distance information.
  • it can also realize functions such as speed measurement, three-dimensional shape construction and component analysis that have not been used in the past.
  • the laser emitting device 100 is a laser emitting device that emits laser light at a frequency of 200 to 250 kHz.
  • the present invention further provides an underwater detecting method, comprising the steps of: 1) emitting a laser having a wavelength of 430 to 570 nm to a target object in an area to be detected underwater; 2) receiving the target object to absorb the The ultrasonic wave generated after the laser; 3) analyzing and processing the ultrasonic signal to acquire information of the target object.
  • the underwater detection method comprehensively utilizes the high collimation of the laser and the advantage that the ultrasonic signal attenuates a small propagation distance and has no seawater backscattering effect, thereby achieving a larger detection distance and at the same time. Higher detection accuracy.
  • step 3) may comprise the steps of: 31) calculating a time difference ⁇ t between the emitted laser light and the received ultrasonic wave; 32) according to the time difference ⁇ t and the propagation speed v 1 of the light in the water, the propagation speed of the ultrasonic signal in the water v 2 Calculate the distance between the measured point on the target object and the position where the underwater detection is performed.
  • the laser is emitted in step 1) at a frequency of 200 to 250 kHz.

Abstract

一种水下探测系统及水下探测方法。水下探测系统包括激光发射装置(100)、超声探测装置(300)和测量装置(500);激光发射装置(100)用于向水下待探测的区域内的目标物体发射波长在430~570nm的激光,超声探测装置(300)用于接收目标物体吸收激光后产生的超声波,测量装置(500)的输入端连接超声探测装置(300)的输出端,用于对超声探测装置(300)输出的超声信号进行分析处理获取目标物体的信息。利用该水下探测系统及水下探测方法,可实现更远探测距离和更高探测精度。

Description

一种水下探测系统及水下探测方法 【技术领域】
本发明涉及水下探测领域,尤其涉及一种基于光声信号的水下探测系统及水下探测方法。
【背景技术】
近年来,海底地貌探测、大面积海洋坏境监测、水下信息获取、海洋资源勘探、海洋救险与打捞等民用领域,以及探测敌方潜艇、舰艇、航母等军事目标等军用领域均对水下探测技术提出越来越高的要求。目前水下探测器主要有两大类,一种是基于声纳的设备,存在精度低,工作速度慢的缺点;另一种是基于视频的水下电视,受海水透明度影响很大,探测距离只能在数米之内。此外,利用激光进行水下探测的研究虽然有所进展,但受海水后向散射的影响,探测距离和精度难以满足实际需求。
【发明内容】
本发明所要解决的技术问题是:弥补上述现有技术的不足,提出一种水下探测系统及水下探测方法,可实现更远探测距离和更高探测精度。
本发明的技术问题通过以下的技术方案予以解决:
一种水下探测系统,包括激光发射装置,超声探测装置和测量装置;所述激光发射装置用于向水下待探测的区域内的目标物体发射波长在430~570nm的激光,所述超声探测装置用于接收所述目标物体吸收所述激光后产生的超声波,所述测量装置的输入端连接所述超声探测装置的输出端,用于对所述超声探测装置输出的超声信号进行分析处理获取所述目标物体的信息。
优选地,
所述测量装置包括时差计算模块和距离计算模块,所述时差计算模块用于计算所述激光发射装置发射激光和所述超声探测装置接收超声波之间的时差,所述距离计算模块的输入端连接所述时差计算模块的输出端,用于根据所述时差计算模块输出的所述时差以及光在水中的传播速度,超声信号在水中的传播速度计算得到所述目标物体表面的被测点与所述水下探测系统的距离。
所述距离计算模块根据如下式子计算得到所述距离d:d=(Δt×v1×v2)/(v1+v2)。
所述测量装置还包括速度测量模块;所述速度测量模块的输入端连接所述距离计算模块的输出端,用于根据所述距离计算模块多次测量输出的所述被测点的距离的变化估算所述目标物体的速度。
所述超声探测装置包括多个超声探测器;所述测量装置包括方位确定模块;所述多个超声探测器均用于接收所述目标物体表面被测点吸收所述激光后产生的超声波;所述方位确定模块用于根据各个超声探测器接收到所述超声波的时差确定所述目标物体表面的被测点的方位。
所述水下探测系统还包括透镜和微扫描装置;所述超声探测装置包括多个超声探测器;所述测量装置包括三维形貌重构模块;所述透镜用于对所述激光发射装置发射的所述激光进行聚焦,所述微扫描装置用于使聚焦后的激光在设定范围内对所述目标物体进行逐点扫描;所述多个超声探测器用于接收所述目标物体表面被测点吸收所述激光后产生的超声波;所述三维形貌重构模块用于根据各个超声探测器接收到所述超声波的时刻和各时刻间的时差确定所述被测点的距离和方位,逐点确定得到所述目标物体表面多个点的三维坐标,拟合出所述目标物体的三维形貌。
所述测量装置包括参考功率谱存储模块和成分分析模块,所述参考功率谱存储模块用于存储水中多个物体的超声信号的功率谱,所述成分分析模块的输入端连接所述参考功率谱存储模块的输出端,所述成分分析模块用于检测接收到的超声信号的功率谱,将检测到的功率谱与参考功率谱进行比对,分析出目标物体的成分。
所述激光发射装置为按照200~250kHz的频率发射激光的激光发射装置。
本发明的技术问题通过以下进一步的技术方案予以解决:
一种水下探测方法,包括以下步骤:1)向水下待探测的区域内的目标物体发射波长在430~570nm的激光;2)接收所述目标物体吸收所述激光后产生的超声波;3)对所述超声信号进行分析处理获取所述目标物体的信息。
优选地,
所述步骤3)包括以下步骤:31)计算发射激光和接收超声波之间的时差;32)根据所述时差以及光在水中的传播速度,超声信号在水中的传播速度计算得到所述目标物体上的被测点与进行水下探测所在的位置的距离。
所述步骤32)中,根据如下式子计算得到所述距离d:d=(Δt×v1×v2)/(v1+v2)。
还包括步骤33),根据所述步骤32)多次计算的所述被测点的距离的变化估算所 述目标物体的速度。
所述步骤1)中,按照200~250kHz的频率发射激光。
本发明与现有技术对比的有益效果是:
本发明的水下探测系统及水下探测方法,将激光探测与声呐探测相结合,利用激光发射,促使目标物体产生超声效应,探测超声信号,实现水下探测。激光的高准直性可保证对目标区域实现精细扫描,从而提高目标区域单位面积的回波信号强度,相比于传统的单纯声纳设备,可实现更精细化地探测,同时只要保证足够的激光能量即可确保一定范围的探测距离;相比于传统的纯激光式的水下探测,将激光同时作为发射信号和探测信号,本发明则利用超声信号进行探测,超声波在水中的衰减远小于光波,同时也避免了海水后向散射的影响,相比于激光或视频设备,可实现更大的探测距离和更高的探测精度。
【附图说明】
图1是本发明具体实施方式的水下探测系统的结构示意图;
图2是本发明具体实施方式的水下探测系统的原理示意图。
【具体实施方式】
下面结合具体实施方式并对照附图对本发明做进一步详细说明。
本发明的构思是:激光发射装置向目标区域发射脉冲激光或连续激光进行扫描,发射的激光采用水中吸收率最低的蓝绿激光,使得目标区域内目标物体上吸收该激光后产生超声声源信号,利用超声探测装置接收该超声信号,测量电路对超声信号进行分析处理,进而获取目标的距离、方位、三维形貌、速度、组成成分等信息。本发明不再是单纯利用激光作为光信号,探测光信号,或者仅是激光入射到水面时产生光声声源以替代声纳声源,而是综合了激光光信号传输的特性和声源信号检测方面的优点。
如图1所示,为本具体实施方式的水下探测系统的结构示意图。水下探测系统包括激光发射装置100,超声探测装置300和测量装置500。如图2所示,为水下探测系统的工作原理示意图。
激光发射装置100用于向水下待探测的区域内的目标物体发射波长在430~570nm的激光。此处,激光发射装置通过调制控制,发射的激光的波长范围:430nm-570nm,为水中吸收率最低的蓝绿激光,从而使得目标物体吸收该波长范围的激光后产生超声波。对于发射的激光的功率,可根据实际水下环境对激光的吸收率、所需探测距离、 目标对激光的吸收率、水对声波的衰减、超声探测器灵敏度等综合调整设定。调整使得功率满足使所述目标物体吸收所述激光后能产生足够强度的超声波,已被探测系统中的超声探测装置接收检测到。
超声探测装置300用于接收目标物体吸收所述激光后产生的超声波。
测量装置500的输入端连接所述超声探测装置的输出端,用于对所述超声探测装置输出的超声信号进行分析处理获取所述目标物体的信息。测量装置500可根据应用需求设置不同的模块,从而实现测量得到目标的距离、速度、方位、三维形貌、组成成分等信息的要求。
具体地,测量装置500可包括时差计算模块和距离计算模块。时差计算模块用于计算所述激光发射装置发射激光和所述超声探测装置接收超声波之间的时差Δt。该时差的获取可通过从激光发射装置100传输的发射激光的时刻,以及从超声探测装置300传输的接收超声波的时刻计算得到。当然也可通过其它方式获取得到,在此不一一详述。距离计算模块的输入端连接所述时差计算模块的输出端,用于根据所述时差计算模块输出的所述时差Δt以及光在水中的传播速度v1,超声信号在水中的传播速度v2计算得到所述目标物体表面的被测点与所述水下探测系统的距离。上述超声信号在水中的传播速度v2可通过声速标定模块获取得到,即探测系统可包括声速标定模块,以对超声波在当前水下探测环境中的传播速度进行准确标定,也可事先由声速标定模块测量得到,探测系统中的测量装置500中直接存储测量到的数值。获取上述参数后,根据以下公式d/v1+d/v2=Δt,即可计算得到目标物体表面的被测点与水下探测系统的距离d=(Δt×v1×v2)/(v1+v2)。
优选地,测量装置500可对超声探测装置300输出的超声信号进行放大、滤波、AD转换等处理后再进行上述计算,从而提高测量准确度。
进一步地,测量装置500可在上述测量到的距离的基础上测量目标物体的速度。测量装置500还包括速度测量模块。速度测量模块的输入端连接距离计算模块的输出端,用于根据距离计算模块多次测量输出的所述被测点的距离变化估算目标物体的速度。
当测量方位时,可设置超声探测装置为包括多个超声探测器;测量装置包括方位确定模块。多个超声探测器均用于接收目标物体表面被测点吸收所述激光后产生的超声波。方位确定模块用于根据各个超声探测器接收到所述超声波的时差确定所述目标 物体表面的被测点的方位。配合设置逐点扫描模块,逐点扫描测量后便可知目标整体的方位。
当构建目标物体的三维形貌时,可设置水下探测系统还包括透镜L和微扫描装置MSS。超声探测装置包括多个超声探测器;相应地,测量装置包括三维形貌重构模块。透镜L用于对激光发射装置发射的所述激光进行聚焦,微扫描装置用于使聚焦后的激光在设定范围内对目标物体进行逐点扫描。多个超声探测器用于接收所述目标物体表面被测点吸收所述激光后产生的超声波。三维形貌重构模块用于根据各个超声探测器接收到所述超声波的时刻和各时刻间的时差确定所述被测点的距离和方位。逐点扫描即可得到各点的距离和方位,从而确定得到所述目标物体表面多个点的三维坐标,进而得到所述目标物体的三维形貌的点云图,并可根据所述三维形貌的点云图拟合出所述目标物体的三维形貌。
本具体实施方式的水下探测系统还可分析出目标物体的成分,此时设置测量装置包括参考功率谱存储模块和成分分析模块。所述参考功率谱存储模块用于存储水中多个物体的超声信号的功率谱,所述成分分析模块的输入端连接所述参考功率谱存储模块的输出端,所述成分分析模块用于检测接收到的超声信号的功率谱,将检测到的功率谱与参考功率谱进行比对,分析出目标物体的成分。具体地,同样条件下,当目标分别为钢铁材质和海底岩石时,所接收到的光声信号的功率谱特征是不一样的,由于光声信号的产生机理比较复杂,因此可主要基于机器模式学习的方法:先对水下常见目标的光声信号功率谱进行学习,得到水中多个常见的物体的超声信号的功率谱作为参考功率谱存储起来。实际探测时,将所测光声信号的功率谱与已经学习的参考功率谱进行比对,进而大致判断目标物体的材质。
综上,本具体实施方式可设置测量装置中的具体组成,从而应用光声信号检测得到目标的距离、速度、方位和三维形貌以及目标的组成成分等。本具体实施方式的水下探测系统及水下探测方法,综合利用了激光的高准直性以及超声信号衰减小传播距离远、无海水后向散射影响的优点,从而可同时实现更大的探测距离和更高的探测精度。在测量得到距离信息时探测更远距离和具有更高探测精度,同时,还可实现以往所没有的速度测量、三维形貌构建以及组成成分分析等功能。
优选地,所述激光发射装置100为按照200~250kHz的频率发射激光的激光发射装置。激光发射装置的频率越高,单位时间内产生的信息越多,从而探测系统的探测速 度越快。
本具体实施方式中还提供一种水下探测方法,包括以下步骤:1)向水下待探测的区域内的目标物体发射波长在430~570nm的激光;2)接收所述目标物体吸收所述激光后产生的超声波;3)对所述超声信号进行分析处理获取所述目标物体的信息。该水下探测方法相对于以往的探测方法,综合综合利用了激光的高准直性以及超声信号衰减小传播距离远、无海水后向散射影响的优点,从而可同时实现更大的探测距离和更高的探测精度。
具体地,步骤3)可包括以下步骤:31)计算发射激光和接收超声波之间的时差Δt;32)根据所述时差Δt以及光在水中的传播速度v1,超声信号在水中的传播速度v2计算得到所述目标物体上的被测点与进行水下探测所在的位置的距离。步骤32)中计算时,根据如下式子计算得到所述距离d:d=(Δt×v1×v2)/(v1+v2)。通过这些步骤,即可简便快速地计算得到目标物体表面的被测点与水下探测系统之间的距离。
优选地,步骤1)中按照200~250kHz的频率发射激光。发射激光的频率越高,单位时间内产生的信息越多,从而探测时的探测速度越快。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下做出若干替代或明显变型,而且性能或用途相同,都应当视为属于本发明的保护范围。

Claims (13)

  1. 一种水下探测系统,其特征在于:包括激光发射装置,超声探测装置和测量装置;所述激光发射装置用于向水下待探测的区域内的目标物体发射波长在430~570nm的激光,所述超声探测装置用于接收所述目标物体吸收所述激光后产生的超声波,所述测量装置的输入端连接所述超声探测装置的输出端,用于对所述超声探测装置输出的超声信号进行分析处理获取所述目标物体的信息。
  2. 根据权利要求1所述的水下探测系统,其特征在于:所述测量装置包括时差计算模块和距离计算模块,所述时差计算模块用于计算所述激光发射装置发射激光和所述超声探测装置接收超声波之间的时差,所述距离计算模块的输入端连接所述时差计算模块的输出端,用于根据所述时差计算模块输出的所述时差以及光在水中的传播速度,超声信号在水中的传播速度计算得到所述目标物体表面的被测点与所述水下探测系统的距离。
  3. 根据权利要求2所述的水下探测系统,其特征在于:所述距离计算模块根据如下式子计算得到所述距离d:d=(Δt×v1×v2)/(v1+v2)。
  4. 根据权利要求2所述的水下探测系统,其特征在于:所述测量装置还包括速度测量模块;所述速度测量模块的输入端连接所述距离计算模块的输出端,用于根据所述距离计算模块多次测量输出的所述被测点的距离的变化估算所述目标物体的速度。
  5. 根据权利要求1所述的水下探测系统,其特征在于:所述超声探测装置包括多个超声探测器;所述测量装置包括方位确定模块;所述多个超声探测器均用于接收所述目标物体表面被测点吸收所述激光后产生的超声波;所述方位确定模块用于根据各个超声探测器接收到所述超声波的时差确定所述目标物体表面的被测点的方位。
  6. 根据权利要求1所述的水下探测系统,其特征在于:所述水下探测系统还包括透镜和微扫描装置;所述超声探测装置包括多个超声探测器;所述测量装置包括三维形貌重构模块;所述透镜用于对所述激光发射装置发射的所述激光进行聚焦,所述微扫描装置用于使聚焦后的激光在设定范围内对所述目标物体进行逐点扫描;所述多个超声探测器用于接收所述目标物体表面被测点吸收所述激光后产生的超声波;所述三维形貌重构模块用于根据各个超声探测器接收到所述超声波的时刻和各时刻间的时差确定所述被测点的距离和方位,逐点确定得到所述目标物体表面多个点的三维坐标, 拟合出所述目标物体的三维形貌。
  7. 根据权利要求1所述的水下探测系统,其特征在于:所述测量装置包括参考功率谱存储模块和成分分析模块,所述参考功率谱存储模块用于存储水中多个物体的超声信号的功率谱,所述成分分析模块的输入端连接所述参考功率谱存储模块的输出端,所述成分分析模块用于检测接收到的超声信号的功率谱,将检测到的功率谱与参考功率谱进行比对,分析出目标物体的成分。
  8. 根据权利要求1所述的水下探测系统,其特征在于:所述激光发射装置为按照200~250kHz的频率发射激光的激光发射装置。
  9. 一种水下探测方法,其特征在于:包括以下步骤:1)向水下待探测的区域内的目标物体发射波长在430~570nm的激光;2)接收所述目标物体吸收所述激光后产生的超声波;3)对所述超声信号进行分析处理获取所述目标物体的信息。
  10. 根据权利要求9所述的水下探测方法,其特征在于:所述步骤3)包括以下步骤:31)计算发射激光和接收超声波之间的时差;32)根据所述时差以及光在水中的传播速度,超声信号在水中的传播速度计算得到所述目标物体上的被测点与进行水下探测所在的位置的距离。
  11. 根据权利要求10所述的水下探测方法,其特征在于:所述步骤32)中,根据如下式子计算得到所述距离d:d=(Δt×v1×v2)/(v1+v2)。
  12. 根据权利要求10所述的水下探测方法,其特征在于:还包括步骤33),根据所述步骤32)多次计算的所述被测点的距离的变化估算所述目标物体的速度。
  13. 根据权利要求9所述的水下探测方法,其特征在于:所述步骤1)中,按照200~250kHz的频率发射激光。
PCT/CN2017/080589 2016-04-15 2017-04-14 一种水下探测系统及水下探测方法 WO2017177967A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610235054.5 2016-04-15
CN201610235054.5A CN105738972B (zh) 2016-04-15 2016-04-15 一种水下探测系统及水下探测方法

Publications (1)

Publication Number Publication Date
WO2017177967A1 true WO2017177967A1 (zh) 2017-10-19

Family

ID=56255422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/080589 WO2017177967A1 (zh) 2016-04-15 2017-04-14 一种水下探测系统及水下探测方法

Country Status (2)

Country Link
CN (1) CN105738972B (zh)
WO (1) WO2017177967A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110398204A (zh) * 2019-09-05 2019-11-01 嘉陵江亭子口水利水电开发有限公司 一种水下结构光测量标定装置
CN112379447A (zh) * 2021-01-11 2021-02-19 北京航空航天大学 基于主动电场的水下目标侵入异常测量系统及方法
CN113556177A (zh) * 2020-09-25 2021-10-26 哈尔滨工业大学(威海) 跨介质的空中至水下激光致声通信方法及装置
CN113848557A (zh) * 2021-08-27 2021-12-28 南京理工大学 一种用于复合探测的干扰识别方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105738972B (zh) * 2016-04-15 2017-11-17 清华大学深圳研究生院 一种水下探测系统及水下探测方法
CN106896356B (zh) 2016-08-17 2019-11-19 阿里巴巴集团控股有限公司 确定距离变化的方法、位置提示方法及其装置和系统
CN110007306B (zh) * 2018-09-18 2022-06-17 臻迪科技股份有限公司 一种水下声纳探测系统
CN109581787B (zh) * 2018-12-14 2021-01-15 大连海事大学 一种使用激光点扫描的水下成像装置及方法
CN109620078A (zh) * 2018-12-18 2019-04-16 广东美的白色家电技术创新中心有限公司 洗碗机智能控制方法、洗碗机及具有存储功能的装置
CN117111070B (zh) * 2023-10-19 2023-12-26 广东海洋大学 基于声呐和激光的水下目标定位方法及其装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4991149A (en) * 1989-12-07 1991-02-05 The United States Of America As Represented By The Secretary Of The Navy Underwater object detection system
US5646907A (en) * 1995-08-09 1997-07-08 The United States Of America As Represented By The Secretary Of The Navy Method and system for detecting objects at or below the water's surface
CN102053254A (zh) * 2009-10-30 2011-05-11 中国石油化工股份有限公司 一种激光超声波检测系统及其检测方法
CN103438862A (zh) * 2013-08-13 2013-12-11 北京师范大学 一种适用于激流环境下的水下地形自动探测装置
CN104251883A (zh) * 2013-06-28 2014-12-31 中国石油化工股份有限公司 一种非接触式检测岩石声波速度的方法
CN105738972A (zh) * 2016-04-15 2016-07-06 清华大学深圳研究生院 一种水下探测系统及水下探测方法
CN205787179U (zh) * 2016-04-15 2016-12-07 清华大学深圳研究生院 一种水下探测系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100370241C (zh) * 2004-12-10 2008-02-20 华南师范大学 水下金属物探测方法及其装置
KR20150018787A (ko) * 2012-04-17 2015-02-24 커먼웰쓰 사이언티픽 앤 인더스트리알 리서치 오거니제이션 3차원 스캐닝 빔 및 촬상 시스템
CN104808208B (zh) * 2015-04-16 2017-04-12 浙江大学 一种基于激光声源探测水下目标方位及尺寸的测量系统及其测量方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4991149A (en) * 1989-12-07 1991-02-05 The United States Of America As Represented By The Secretary Of The Navy Underwater object detection system
US5646907A (en) * 1995-08-09 1997-07-08 The United States Of America As Represented By The Secretary Of The Navy Method and system for detecting objects at or below the water's surface
CN102053254A (zh) * 2009-10-30 2011-05-11 中国石油化工股份有限公司 一种激光超声波检测系统及其检测方法
CN104251883A (zh) * 2013-06-28 2014-12-31 中国石油化工股份有限公司 一种非接触式检测岩石声波速度的方法
CN103438862A (zh) * 2013-08-13 2013-12-11 北京师范大学 一种适用于激流环境下的水下地形自动探测装置
CN105738972A (zh) * 2016-04-15 2016-07-06 清华大学深圳研究生院 一种水下探测系统及水下探测方法
CN205787179U (zh) * 2016-04-15 2016-12-07 清华大学深圳研究生院 一种水下探测系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110398204A (zh) * 2019-09-05 2019-11-01 嘉陵江亭子口水利水电开发有限公司 一种水下结构光测量标定装置
CN113556177A (zh) * 2020-09-25 2021-10-26 哈尔滨工业大学(威海) 跨介质的空中至水下激光致声通信方法及装置
CN113556177B (zh) * 2020-09-25 2023-07-04 哈尔滨工业大学(威海) 跨介质的空中至水下激光致声通信方法及装置
CN112379447A (zh) * 2021-01-11 2021-02-19 北京航空航天大学 基于主动电场的水下目标侵入异常测量系统及方法
CN113848557A (zh) * 2021-08-27 2021-12-28 南京理工大学 一种用于复合探测的干扰识别方法

Also Published As

Publication number Publication date
CN105738972A (zh) 2016-07-06
CN105738972B (zh) 2017-11-17

Similar Documents

Publication Publication Date Title
WO2017177967A1 (zh) 一种水下探测系统及水下探测方法
CN109164430B (zh) 利用激光回波与光斑探测目标位置与姿态的系统及方法
EP3006953B1 (en) Laser radar device and method for generating laser image
CN104808208B (zh) 一种基于激光声源探测水下目标方位及尺寸的测量系统及其测量方法
CN102012529B (zh) 基于激光脉冲后向散射的水中目标尾迹探测系统及方法
CN103175629B (zh) 一种快速测量海水温度的方法
CN104541181A (zh) 雷达装置
JPH07229963A (ja) 航跡の検出方法
CN106646500B (zh) 一种自适应闭环调整激光测距方法及装置
JP2007024715A (ja) 河川データ測定方法及び装置
CN103969694A (zh) 基于激光后向散射多普勒频移的水中目标尾迹探测方法
CN205787179U (zh) 一种水下探测系统
CN109507683A (zh) 机载浅水水深的激光探测方法及装置
KR101879641B1 (ko) 수심 라이다 파형 분석을 통한 탁도 측정 방법
CN111856489B (zh) 一种基于激光多普勒的气泡尾流探测方法
CN102788678B (zh) 一种海洋湍流参数的非接触测量方法及系统
CN115290175B (zh) 一种海水声速测量装置、方法以及海洋测距系统
WO2023082374A1 (zh) 一种凝视型快速高光谱脉冲激光雷达系统
US9702819B1 (en) Surface vessel wake detection
CN113552069B (zh) 基于干涉合成孔径的激光超声水下目标探测方法及系统
RU2353954C1 (ru) Способ дистанционного определения характеристик среды открытого водоема
CN101533105A (zh) 基于激光光斑漂移的水中动态目标尾迹探测系统及方法
CN111103592B (zh) 一种高灵敏度的点元化阵列关联检测激光测深系统
Sathishkumar et al. Echo sounder for seafloor object detection and classification
CN104199048B (zh) 条纹管激光成像雷达海面回波畸变测量浅层海水衰减系数的遥感方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17781943

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC , EPO FORM 1205A DATED 13.03.2019.

122 Ep: pct application non-entry in european phase

Ref document number: 17781943

Country of ref document: EP

Kind code of ref document: A1