RU2290491C2 - Способ отливки скважинного оборудования на месте - Google Patents

Способ отливки скважинного оборудования на месте Download PDF

Info

Publication number
RU2290491C2
RU2290491C2 RU2003137821/03A RU2003137821A RU2290491C2 RU 2290491 C2 RU2290491 C2 RU 2290491C2 RU 2003137821/03 A RU2003137821/03 A RU 2003137821/03A RU 2003137821 A RU2003137821 A RU 2003137821A RU 2290491 C2 RU2290491 C2 RU 2290491C2
Authority
RU
Russia
Prior art keywords
metal
cavity
temperature
solidification
tubular element
Prior art date
Application number
RU2003137821/03A
Other languages
English (en)
Other versions
RU2003137821A (ru
Inventor
Мартен Жерар Рене БОСМА (NL)
Мартен Жерар Рене БОСМА
Эрик Керст КОРНЕЛИССЕН (NL)
Эрик Керст Корнелиссен
Клистенис ДИМИТРИАДИС (NL)
Клистенис Димитриадис
Майк ПИТЕРС (NL)
Майк ПИТЕРС
Роберт Николас УОРРАЛЛ (NL)
Роберт Николас Уорралл
Original Assignee
Шелл Интернэшнл Рисерч Маатсхаппий Б.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Шелл Интернэшнл Рисерч Маатсхаппий Б.В. filed Critical Шелл Интернэшнл Рисерч Маатсхаппий Б.В.
Publication of RU2003137821A publication Critical patent/RU2003137821A/ru
Application granted granted Critical
Publication of RU2290491C2 publication Critical patent/RU2290491C2/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/10Setting of casings, screens, liners or the like in wells
    • E21B43/103Setting of casings, screens, liners or the like in wells of expandable casings, screens, liners, or the like
    • E21B43/106Couplings or joints therefor
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B29/00Cutting or destroying pipes, packers, plugs or wire lines, located in boreholes or wells, e.g. cutting of damaged pipes, of windows; Deforming of pipes in boreholes or wells; Reconditioning of well casings while in the ground
    • E21B29/10Reconditioning of well casings, e.g. straightening
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices or the like
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B36/00Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/10Setting of casings, screens, liners or the like in wells
    • E21B43/103Setting of casings, screens, liners or the like in wells of expandable casings, screens, liners, or the like

Landscapes

  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Powder Metallurgy (AREA)
  • Earth Drilling (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Continuous Casting (AREA)
  • Peptides Or Proteins (AREA)
  • Braking Arrangements (AREA)
  • Dowels (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Piles And Underground Anchors (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Body Structure For Vehicles (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

Изобретение относится к оборудованию для скважин. Обеспечивает повышение надежности устройства. Сущность изобретения: размещают тело из металла, расширяющегося при затвердевании в полости в скважине. Поддерживают тело из металла при температуре выше температуры плавления металла. Охлаждают тело из металла до температуры ниже температуры плавления металла, тем самым обеспечивая затвердевание тела из металла в полости. 9 з.п. ф-лы, 4 ил.

Description

Настоящее изобретение относится к способу отливки скважинного оборудования на месте.
Обычной практикой является отливка цементных облицовок вокруг обсадных труб для создания не проницаемого для текучих сред уплотнения между внутренним пространством скважины и окружающим пластом.
Недостатком этого и многих других способов отливки на месте является то, что происходит усадка цемента или другого затвердевающего вещества во время схватывания или отверждения в результате более плотной упаковки атомов из-за гидратации и/или фазовых превращений.
Известен способ разобщения трубного пространства, включающий спуск в скважину на колонне труб термостойкого пакера с уплотнительным элементом в виде набора из термостойких и низкотемпературных термопластичных уплотнительных колец путем воздействия осевой нагрузки, передаваемой от колонны труб, фиксацию пакера в обсадной колонне, закачку теплоносителя в скважину, воздействие теплоносителя на уплотнительный элемент пакера и расплавление его низкотемпературных уплотнительных колец. При осуществлении данного способа объем расплавленного термопластичного материала уплотнительных колец постоянно восполняется в процессе закачки теплоносителя в скважину готовой расплавленной жидкотекучей фазой указанного термопластичного материала (см., например, авторское свидетельство СССР 1357540 от 07.12.1987).
Данный способ не обеспечивает образование надежного и прочного уплотнения в скважинах.
Целью настоящего изобретения является создание способа отливки на месте скважинного оборудования, обеспечивающего образование надежного и прочного уплотнения в скважинах для добычи жидких или газообразных углеводородов и большую стойкость к перепадам давления в стволе скважины по сравнению с известными способами.
В соответствие с изобретением создан способ отливки скважинного оборудования на месте, в котором используют металл, расширяющийся при затвердевании, содержащий следующие операции:
размещение тела из металла в полости в скважине;
поддержание тела из металла при температуре выше температуры плавления металла;
охлаждение тела из металла до температуры ниже температуры плавления металла, тем самым обеспечивая затвердевание тела из металла в полости.
В данном способе металл после затвердевания в полости в скважине занимает больший объем, чем перед затвердеванием. Металл расширяется в процессе затвердевания, в результате оказывая большее сжимающее усилие на стенку полости при его полном затвердевании и создавая более надежное и прочное уплотнение в стволе скважины, обеспечивающее большую стойкость к перепаду давления в стволе скважины.
В соответствии с изобретением используют сплав, способный к расширению, который расширяется при затвердевании и который имеет температуру плавления, превышающую максимальную ожидаемую температуру в скважине, при этом указанный сплав размещают внутри полости в скважине и поддерживают при температуре выше температуры плавления сплава, после чего сплав охлаждают до температуры окружающей среды в скважине, и тем самым сплав затвердевает и расширяется внутри полости.
Предпочтительно сплав, способный к расширению, содержит висмут. В альтернативном варианте сплав, способный к расширению, содержит галлий или сурьму.
Отмечается, что из патентов США №5137283, 4873895, 4487432, 4484750, 3765486, 3578084, 3333635 и 3273641 известно использование составов с висмутом, которые имеют низкую температуру плавления и которые расширяются при охлаждении.
Однако при использовании технологий, известных из этих документов, относящихся к предшествующему уровню техники, никакое скважинное оборудование, изготовленное из висмутового сплава, не отливают на месте.
Тело из металла можно опускать через скважину в контейнере, в котором поддерживают температуру выше температуры плавления металла, и обеспечивать соединение по текучей среде между выходным каналом контейнера и полостью, после чего заставляют расплавленный металл выходить по выходному каналу в полость.
В другом варианте тело из металла можно размещать в твердом состоянии в полости или рядом с полостью и нагревают в стволе скважины до температуры выше температуры плавления металла, после чего нагрев завершают и обеспечивают возможность затвердевания и, тем самым, расширения металла внутри полости.
В качестве полости можно использовать кольцевую полость между парой соосных скважинных трубчатых элементов.
Можно использовать кольцевую полость, образованную кольцевым пространством между перекрывающимися секциями наружного скважинного трубчатого элемента и расширенным внутренним скважинным трубчатым элементом.
Можно использовать полость, имеющую рядом с нижним концом днище или препятствие для потока, которое препятствует утечке расплавленного металла из полости в другие части ствола скважины. Препятствие для потока может быть образовано посредством гибкого уплотнительного кольца, расположенного рядом с нижним концом кольцевого пространства.
Можно использовать уплотнительное кольцо, содержащее сетку расположенных в шахматном порядке, проходящих не по касательной пазов или отверстий, которые открываются под влиянием радиального расширения трубчатого элемента. В альтернативном варианте кольцо может представлять собой разрезное кольцо с перекрывающимися концами. При нагреве или в результате нагрева, вызванного расширением трубчатого элемента, кольцо будет расплавляться и снова затвердевать и создавать кольцевое уплотнение.
Для создания очень прочного уплотнения в кольцевой полости предпочтительно в качестве тела из металла использовать первое тело из металла, которое удерживают в аксиальном направлении в полости вторым телом из металла, который расширяется при затвердевании, и при этом металл второго тела затвердевает при более высокой температуре по сравнению с металлом первого тела, причем способ дополнительно включает следующие операции:
размещение второго тела из металла в кольцевой полости со смещением от первого тела из металла в аксиальном направлении;
расплавление первого и второго тел из металла путем повышения температуры указанных тел;
отверждение первого и второго тел из металла путем снижения температуры указанных тел, в результате чего металл второго тела затвердевает раньше, чем металл первого тела, тем самым удерживая первое тело в аксиальном направлении;
радиальное расширение трубчатого элемента.
В альтернативном варианте кольцо может представлять собой разрезное кольцо с перекрывающимися концами. При нагреве или в результате нагрева, вызванного расширением трубчатого элемента, кольцо будет расплавляться и снова затвердевать и создавать кольцевое уплотнение.
Таким образом, в соответствии с настоящим изобретением особые способности висмута, галлия или сурьмы и/или их сплавов к расширению могут быть использованы для уплотнения полостей внутри скважинных трубчатых элементов, кольцевых пространств между соосными скважинными трубчатыми элементами или кольцевого пространства между обсадными трубами и пластом или любого небольшого зазора или отверстия внутри скважины или в окружающем пласте, такого как в резьбовых соединениях, неплотных соединениях, а также таких как отверстия пор, гравийные набивки, трещины или перфорации.
Изобретение будет описано более подробно со ссылкой на сопровождающие чертежи, на которых изображено следующее:
фиг.1 показывает продольное сечение расширяемого трубчатого элемента, вокруг которого расположены два кольца из сплавов, способных к расширению;
фиг.2 показывает трубчатый элемент и кольца, показанные на фиг.1, после их расширения внутри другого трубчатого элемента;
фиг.3 подробно показывает кольцевое пространство, изображенное на фиг.2, после расплавления колец из сплавов;
фиг.4 показывает расширение верхнего кольца из сплава, способного к расширению, при затвердевании внутри кольцевого пространства и после этого расширение нижнего кольца при затвердевании.
На фиг.1 и 2 показан расширяемый трубчатый элемент 1, который выполнен с кольцеобразным наружным буртиком 2. Буртик 2 имеет кольцеобразную выемку, в которой расположено уплотнительное кольцо 4. Над буртиком 2 расположено кольцо 5, изготовленное из висмутового сплава.
Металл висмут с порядковым номером 83 элемента и его сплавы, содержащие не менее 55 мас.% висмута, расширяются при переходе из расплавленной в твердую фазу.
Чистый висмут (температура плавления = 271°С) расширяется на 3,32 объемного процента при затвердевании в условиях окружающей среды, в то время как его типовые эвтектические сплавы, например, такие как Bi60Cd40 (температура плавления = 144°С), как правило, расширяются на 1,5 объемного процента.
В соответствии с изобретением особая способность висмута (и его сплавов) к расширению может быть использована для уплотнения (герметизации) небольшого кольцевого пространства между наружным скважинным трубчатым элементом 7 и внутренним расширенным элементом 1, как показано на фиг.2.
Кольцо 5 из висмута или висмутового сплава расположено на образованном путем осадки буртике 2 предварительно расширенного расширяемого трубчатого элемента 1. Кольцо 5 может быть сплошным или выполненным с прорезями (пазами) для обеспечения возможности расширения. Буртик 2 может быть перпендикулярен к оси трубы или наклонен под некоторым углом для обеспечения возможности герметизации в отклоняющейся скважине.
Дополнительное верхнее кольцо 6 из висмута или висмутового сплава с температурой плавления, которая выше температуры плавления материала кольца 5, и с плотностью, которая меньше плотности материала кольца 5, размещено внутри гибкого термостойкого пластикового или резинового мешка (например, из жаропрочного пластикового оберточного материала) 8, и комбинация из мешка и кольца 6 помещена на верхнюю поверхность кольца 5, так что при вертикальном расположении трубчатого элемента 1 он имеет следующие элементы, перечисленные в том порядке, в каком они расположены сверху вниз: кольцо 6, кольцо 5 и затем полученный путем осадки буртик 2. Кольца 5 и 6 также могут быть непрерывными (сплошными) или могут быть выполнены с пазами для обеспечения возможности расширения.
Кольца 5 и 6 из висмута и предварительно расширенный трубчатый элемент 1 спускают в скважину обычным образом. Обсадные трубы расширяют путем использования известных способов расширения труб до тех пор, пока буртик 2, уплотнительное кольцо 4 или дополнительные уплотнительные части не войдут в контакт с наружным трубчатым элементом 7. Дополнительные уплотнительные части могут быть выполнены в виде части трубчатого элемента, выполненной в виде буртика или выступа, полученного осадкой, или в виде дополнительной части, такой как эластомерное уплотнительное кольцо 4.
Как только трубчатый элемент 1 будет расширен таким образом, что наружная периферия расширенного трубчатого элемента 1 войдет в контакт с наружным трубчатым элементом 7 или любые другие наружные уплотнительные элементы трубчатого элемента 1 войдут в контакт с наружным трубчатым элементом 7, обеспечивают подвод тепла. Тепло подводят с внутренней стороны трубчатого элемента 1 путем использования химического источника тепла, электрического (резистивного или индукционного) нагревателя или посредством подвода горячей жидкости внутри трубчатого элемента 1. Это тепло обеспечит повышение температуры обоих колец из висмута или висмутового сплава до тех пор, пока, в конце концов, оба кольца не расплавятся и не осядут до самого низкого места в кольцевом пространстве за счет силы тяжести.
Металл из кольца 5 займет самую низкую часть кольцевого пространства, за ним будет следовать металл из кольца 6, хотя последний будет оставаться в пластиковом мешке 8 за счет удерживания его в мешке.
Источник тепла удаляют или прекращают нагрев, и температура в стволе скважины будет медленно снижаться до своего исходного значения. Кольцо 6 затвердевает первым и расширяется (главным образом в вертикальном направлении), однако некоторая сила, действующая снаружи на трубчатый элемент 1, способствует созданию фрикционного сопротивления расширению кольца 6. Этому могут способствовать шероховатость или выступы, образованные путем механической обработки или на наружном, или на внутреннем трубчатом элементе 7 или 1 перед спуском в ствол скважины. Кольцо 5 затвердевает и расширяется после затвердевания кольца 6 и, будучи зажатым, расширяется с большим уплотняющим усилием во всех направлениях, создавая непроницаемое уплотнение с контактом между металлическими элементами, образованное между трубчатыми элементами 1 и 7, как проиллюстрировано на фиг.4.
Висмутовый сплав может быть опущен в скважину в твердом или жидком состоянии или может быть создан на месте посредством экзотермической реакции.
Последний способ может включать следующие операции. Bi2O3 и металл с высокой реакционной способностью, такой как Al, соединяют в виде порошков в соотношении 1:1, так что они имеют очень большую площадь поверхности на единицу объема. Этот порошок опускают в заданное место посредством намотанных труб или желонки для выкачки жидкости. После этого порошок (который может быть подвергнут гранулированию или спеканию с большой осторожностью) "воспламеняют" за счет разряда конденсатора или посредством другого подходящего электрического или химического способа. Алюминий Al будет вступать в реакцию с кислородом в среде Bi2O3 с образованием почти чистого Bi, который будет расплавленным вследствие экзотермического характера данной реакции, и твердый шлак из Al2O3, имеющий низкую плотность, будет всплывать (не вызывая отрицательных последствий) на поверхность ванны из Bi.
В альтернативном случае, если висмутовый сплав опускают в твердом состоянии (в твердой фазе) в скважину, то висмутовый сплав может образовывать часть устройства для заканчивания или обсаживания скважины (в случае уплотнительного кольца) или может быть помещен в скважину посредством намотанных труб, в виде гранул или маленьких кусков. В любом случае очистка поверхностей любых секций труб, подлежащих уплотнению с помощью способного к расширению, висмутового сплава, может быть выполнена посредством промывки сильной струей воды или с помощью химических средств.
После размещения подводят тепло, например, посредством электрического нагрева сопротивлением и/или индукционного нагрева, введения перегретого пара под давлением и/или экзотермической химической реакции. Выработанное тепло обеспечит расплавление сплава, что приводит к образованию столба жидкости, после чего обеспечивают возможность охлаждения столба жидкости, и висмутовый сплав затвердевает и расширяется.
Если висмутовый сплав опускают по существу в жидком состоянии (в жидкой фазе) в скважину, то сплав может быть расплавлен на поверхности и перемещен в заданное место в стволе скважины посредством намотанных труб с двойными стенками и изоляцией и/или с электрическим нагревом.
Если используются определенные сплавы с низкой температурой плавления, такие как сплавы висмута и ртути, существует возможность введения добавок (например, Cu) в эти сплавы, которые действуют как упрочняющие элементы. В данном варианте осуществления жидкие сплавы с температурами плавления, которые ниже температуры в скважине, осаждают на месте посредством намотанных труб. Это может быть осуществлено посредством силы тяжести или с помощью давления, создаваемого за счет действия поршня, или с помощью оборудования на поверхности (насоса). После этого твердые гранулы легирующего элемента могут быть добавлены в "ванну"; если они будут выбраны надлежащим образом, они могут обеспечить создание твердого висмутового сплава.
Ниже приведен ряд соответствующих областей применения способных к расширению висмутовых сплавов в стволе скважины.
Расширяемая пробка для ликвидации скважины. Столб жидкости, состоящей из соответствующего расплавленного висмутового сплава, может быть создан на верхней поверхности обычной механической или цементной пробки внутри колонны обсадных труб. Температура плавления используемого сплава выбрана такой, чтобы она была больше равновесной температуры в скважине на данной глубине. Таким образом, жидкий висмутовый сплав будет затвердевать внутри колонны обсадных труб, и расширение, имеющее место в результате затвердевания, приведет к фиксации пробки из висмутового сплава на месте и образованию газонепроницаемого уплотнения, отделяющего нижнюю секцию колонны обсадных труб от ее части, расположенной вверху.
Расширяемая кольцевая уплотнительная пробка. Столб жидкости, состоящей из соответствующего висмутового сплава, может быть создан сверху над кольцевой цементной колонной или внутри кольцевой цементной колонны между двумя колоннами обсадных труб или колонной труб, не доходящей до устья скважины, закрепляющей стенки скважины ниже башмака предыдущей колонны, и колонной обсадных труб. Кольцевое уплотнение будет создано аналогично тому, как это было описано для пробки для ликвидации.
Временная переставная (извлекаемая) пробка, используемая, например, для временного перекрытия ответвления скважины с множеством ответвлений.
Наружное закрывающее средство. Висмутовый сплав может быть введен под давлением в перфорации, материнскую породу или трещины как закрывающий материал. Сплав может создать что-то вроде искусственного материала для обсаживания в одном варианте осуществления.
Средство для ремонта. Висмутовый сплав можно использовать для ремонта песочных фильтров, неплотных пакеров, подвесных уплотнений или насосно-компрессорных труб или обсадных труб внутри скважины.
Дополнительный пакер или сменное подвесное уплотнение. Аналогично кольцевой уплотнительной пробке могут быть созданы извлекаемые пакеры или сменные подвесные уплотнения. В этом случае ограничение расширения висмутовых сплавов при затвердевании может быть обеспечено с помощью эластомерных уплотнений или висмутовых сплавов с более высокой температурой плавления (и тем самым раньше затвердевающих). Эти элементы в особенности могут быть применены в случае использования концепции создания скважин с одним стволом. Аналогичные уплотнения могут быть использованы в качестве уплотнений для устья скважины.
Далее будет приведено более подробное описание ряда пригодных висмутовых, галлиевых или других сплавов, способных к расширению.
Большое разнообразие способных к расширению висмутовых, галлиевых сплавов может быть использовано для каждой из областей применения их в стволе скважины, описанных выше. Помимо чистого висмута нижеприведенные двухкомпонентные сплавы, подробно описанные ниже в абзацах а)-е), рассматриваются как наиболее вероятные "стандартные блоки", из которых могут быть получены трехкомпонентные, четырехкомпонентные сплавы и сплавы более высокого порядка.
a) Bi100-xSnx, где х=0-5. Это обеспечивает получение сплава со структурой твердого раствора с температурой плавления >141°С. Возможны небольшие количества дополнительных элементов, таких как Sb, In, Ga, Ag, Cu и Pb. Этот сплав обладает способностью упрочняться за счет дисперсионного твердения после застывания, при котором богатая оловом фаза будет выделяться в богатой висмутом основе. Этот сплав обеспечивает наибольшее расширение при затвердевании. Промышленные примеры этих сплавов включают следующее: чистый висмут (продаваемый как Ostalloy 520); Bi95Sn5 (продаваемый как Cerrocast 9500-1 или Ostalloy 524564).
6) Bi100-xCux, где х=0-45. Эти сплавы рассматриваются как используемые для случаев применения при высоких температурах, таких как в геотермальных скважинах. Температура плавления этих сплавов находится в интервале от 271 до приблизительно 900°С.
в) Bi100-хHgх, где х=0-45. Эти сплавы рассматриваются как используемые для случаев применения при низких температурах. Температура плавления этих сплавов находится в интервале от 150 до 271°С. Эти сплавы менее желательны из-за токсичности ртути, однако другие факторы могут влиять на их применение.
г) Bi100-xSnx, где х=5-42. Эти сплавы имеют температуры плавления в интервале от 138 до 271°С. Однако, за исключением случаев переохлаждения, фаза, застывающая последней, будет затвердевать при 138°С (при эвтектической температуре). Этот сплав представляет особый интерес благодаря его температуре плавления, поскольку такая температура позволяет использовать его для большинства областей применения в скважинах. Примеры промышленно производимых сплавов включают в себя: Ostalloy 281, Indalloy 281 или Cerrotru 5800-2.
Свинец (Pb) часто включают в соответствии с Bi100-x-ySnxPby (где х+у<45 - как правило, у<6). Это приводит к получению сплава с более низкой температурой плавления по сравнению с двухкомпонентным Bi-Sn-сплавом. Примеры промышленно производимых сплавов включают в себя: Cerrobase 5684-2 или 5742-3, Ostalloy 250277 или 262271.
Можно ввести дополнительные легирующие добавки, которые позволяют получить многофазный, но имеющий очень низкую температуру плавления сплав, такой как "Wood's Metal" ("деревянный металл") (как правило: Bi50Pb25Sn12,5Cd12,5); при этом существует множество таких металлов. Однако большинство этих сплавов имеет слишком низкие температуры плавления (например, Dalton-металл: Bi60Pb25Sn15 имеет температуру плавления, составляющую 92°С, Indalloy 117 имеет температуру плавления, составляющую 47°С), чтобы представлять интерес в случаях применения в скважинах, за исключением случая, отмеченного выше и относящегося к размещению холодной жидкости.
д) Bi100-хPbх, где х=0-44,5. Эти сплавы могут быть использованы при заданных более низких температурах плавления, поскольку эвтектическая температура составляет 124°С. Часто используют добавки индия (In), кадмия (Cd) или олова (Sn), и все они приводят к дополнительному снижению температуры плавления. Двойная эвтектика продается фирмой Cerro Metal Products как "Cerrobase".
е) Другие: Bi100-хXnх, где х=0-4,5. (Эвтектическая точка при х=4,5.) Эти сплавы рассматриваются как возможные для использования для случаев применения при более высоких температурах, поскольку их температуры плавления находятся в интервале от 257 до 271°С. Bi100-xCdx, где х=0-40. (Эвтектическая точка при х=4,5.) Температура плавления эвтектики составляет 144°С. Bi100-хInх, где х<33. Часто включает в себя другие элементы для получения очень низких (<100°С) температур плавления (например, Indalloy 25).
Таким образом, для специалистов в данной области техники очевидно, что множество висмутовых, галлиевых и других способных к расширению сплавов пригодны для отливки на месте уплотнений и/или других компонентов, предназначенных для использования при сооружении скважин, ремонтных работах, обработке и ликвидации скважин.
Примеры
1) Был проведен эксперимент для проверки того, что висмутовые сплавы способны расширяться и проявляют соответствующие свойства не только при атмосферных условиях. Сплав Bi58Sn42 (висмутооловянный) затвердевал в камере высокого давления при давлении 400 бар. Камера высокого давления составляла часть экспериментального устройства, которое описано в научном докладе 64762 Общества инженеров-нефтяников Американского института горных инженеров ("Improved Experimental Characterization of Cement/Rubber Zonal Isolation Materials", авторы M.G.Bosma, E.K.Cornelissen и A.Schwing). Эксперимент показал, что при условиях проведения испытаний сплав расширился на 1,41 объемного процента.
2) Другой образец сплава Bi58Sn42 был отлит в зону грязного (то есть покрытого густой трубной смазкой АНИ (созданной Американским нефтяным институтом)) участка трубчатого элемента с внутренним диаметром 37,5 см, и после этого обеспечивалась возможность его затвердевания с образованием пробки, имеющей длину 104,6 мм, внутри трубчатого элемента для проверки герметизирующей способности сплава. Вода под давлением была подана к участку трубчатого элемента у одного конца затвердевшей пробки, и был измерен перепад давлений на пробке. Давление воды постепенно увеличивали, и пробка была способна выдерживать перепад давлений, составляющий 80 бар, до того как началось просачивание.

Claims (10)

1. Способ отливки скважинного оборудования на месте, в котором используют металл, расширяющийся при затвердевании, содержащий следующие операции: размещение тела из металла в полости в скважине, поддержание тела из металла при температуре выше температуры плавления металла, охлаждение тела из металла до температуры ниже температуры плавления металла, тем самым обеспечивая затвердевание тела из металла в полости.
2. Способ по п.1, в котором металл представляет собой сплав, содержащий висмут.
3. Способ по п.1 или 2, в котором тело из металла опускают через скважину в контейнере, в котором поддерживают температуру выше температуры плавления металла, и обеспечивают соединение по текучей среде между выходным каналом контейнера и полостью, после чего заставляют расплавленный металл выходить по выходному каналу в полость.
4. Способ по п.1 или 2, в котором тело из металла размещают в твердом состоянии в полости или рядом с полостью и нагревают в стволе скважины до температуры выше температуры плавления металла, после чего нагрев завершают и обеспечивают возможность затвердевания и тем самым расширения металла внутри полости.
5. Способ по любому из пп.1-4, в котором в качестве полости используют кольцевую полость между парой соосных скважинных трубчатых элементов.
6. Способ по п.5, в котором используют кольцевую полость, образованную кольцевым пространством между перекрывающимися секциями наружного скважинного трубчатого элемента и расширенным внутренним скважинным трубчатым элементом.
7. Способ по п.5 или 6, в котором используют полость, имеющую рядом с нижним концом днище или препятствие для потока, которое препятствует утечке расплавленного металла из полости в другие части ствола скважины.
8. Способ по п.7, в котором используют препятствие для потока, образованное посредством гибкого уплотнительного кольца, расположенного рядом с нижним концом кольцевого пространства.
9. Способ по п.8, в котором используют уплотнительное кольцо, содержащее сетку расположенных в шахматном порядке, проходящих не по касательной пазов или отверстий, которые открываются под влиянием радиального расширения трубчатого элемента.
10. Способ по любому из пп.5-9, в котором в качестве тела из металла используют первое тело из металла, которое удерживают в аксиальном направлении в полости вторым телом из металла, который расширяется при затвердевании, и при этом металл второго тела затвердевает при более высокой температуре по сравнению с металлом первого тела, причем способ дополнительно включает следующие операции:
размещение второго тела из металла в кольцевой полости со смещением от первого тела из металла в аксиальном направлении;
расплавление первого и второго тел из металла путем повышения температуры указанных тел;
отверждение первого и второго тел из металла путем снижения температуры указанных тел, в результате чего металл второго тела затвердевает раньше, чем металл первого тела, тем самым удерживая первое тело в аксиальном направлении.
RU2003137821/03A 2001-06-05 2002-06-05 Способ отливки скважинного оборудования на месте RU2290491C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP01202121.8 2001-06-05
EP01202121 2001-06-05

Publications (2)

Publication Number Publication Date
RU2003137821A RU2003137821A (ru) 2005-05-27
RU2290491C2 true RU2290491C2 (ru) 2006-12-27

Family

ID=8180416

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2003137821/03A RU2290491C2 (ru) 2001-06-05 2002-06-05 Способ отливки скважинного оборудования на месте

Country Status (13)

Country Link
US (2) US7152657B2 (ru)
EP (1) EP1395732B1 (ru)
CN (1) CN1293282C (ru)
AT (1) ATE302330T1 (ru)
AU (1) AU2002346437B2 (ru)
BR (1) BR0210156B1 (ru)
CA (1) CA2449664C (ru)
DE (1) DE60205621D1 (ru)
DK (1) DK1395732T3 (ru)
MY (1) MY130896A (ru)
NO (1) NO331567B1 (ru)
RU (1) RU2290491C2 (ru)
WO (1) WO2002099247A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018222071A1 (ru) * 2017-05-31 2018-12-06 Владимир Георгиевич КИРЯЧЕК Устройство для разделения ствола скважины на изолированные друг от друга участки
WO2023214175A1 (en) * 2022-05-04 2023-11-09 Bisn Tec Ltd Methods to remove alloy plugs and annular seals and associated apparatus

Families Citing this family (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY130896A (en) * 2001-06-05 2007-07-31 Shell Int Research In-situ casting of well equipment
GB0207371D0 (en) * 2002-03-28 2002-05-08 Rawwater Engineering Company L Sealing method and apparatus
US6926083B2 (en) 2002-11-06 2005-08-09 Homer L. Spencer Cement heating tool for oil and gas well completion
WO2004042188A2 (en) * 2002-11-06 2004-05-21 Canitron Systems, Inc. Down hole induction heating tool and method of operating and manufacturing same
GB0412131D0 (en) * 2004-05-29 2004-06-30 Weatherford Lamb Coupling and seating tubulars in a bore
US7290609B2 (en) * 2004-08-20 2007-11-06 Cinaruco International S.A. Calle Aguilino De La Guardia Subterranean well secondary plugging tool for repair of a first plug
US7469750B2 (en) * 2004-09-20 2008-12-30 Owen Oil Tools Lp Expandable seal
US20080047708A1 (en) * 2006-06-24 2008-02-28 Spencer Homer L Method and apparatus for plugging perforations
US9038720B2 (en) 2006-12-05 2015-05-26 Saudi Arabian Oil Company Apparatus for stage-cementing an oil well
CN101646838B (zh) * 2006-12-05 2014-08-27 沙特阿拉伯石油公司 油井分段水泥灌浆用的金属板
WO2009036520A1 (en) * 2007-09-20 2009-03-26 Cast Centre Pty Ltd Repair method and alloy
US20100006289A1 (en) * 2008-05-13 2010-01-14 Spencer Homer L Method and apparatus for sealing abandoned oil and gas wells
EP2401470A2 (en) 2009-02-25 2012-01-04 Weatherford/Lamb, Inc. Pipe handling system
US20110036570A1 (en) * 2009-08-14 2011-02-17 La Rovere Thomas A Method and apparatus for well casing shoe seal
CA2688635C (en) 2009-12-15 2016-09-06 Rawwater Engineering Company Limited Sealing method and apparatus
US8839871B2 (en) 2010-01-15 2014-09-23 Halliburton Energy Services, Inc. Well tools operable via thermal expansion resulting from reactive materials
GB2480869B (en) 2010-06-04 2017-01-11 Bisn Tec Ltd Method and apparatus for use in well abandonment
CN101864920B (zh) * 2010-06-04 2014-11-05 李国民 井下热熔铸管护壁方法
CN101979818B (zh) * 2010-10-28 2013-02-06 大庆油田有限责任公司 液压整形器
US8474533B2 (en) 2010-12-07 2013-07-02 Halliburton Energy Services, Inc. Gas generator for pressurizing downhole samples
US9010428B2 (en) 2011-09-06 2015-04-21 Baker Hughes Incorporated Swelling acceleration using inductively heated and embedded particles in a subterranean tool
US8893792B2 (en) 2011-09-30 2014-11-25 Baker Hughes Incorporated Enhancing swelling rate for subterranean packers and screens
US8857513B2 (en) 2012-01-20 2014-10-14 Baker Hughes Incorporated Refracturing method for plug and perforate wells
US9169705B2 (en) 2012-10-25 2015-10-27 Halliburton Energy Services, Inc. Pressure relief-assisted packer
GB201223055D0 (en) 2012-12-20 2013-02-06 Carragher Paul Method and apparatus for use in well abandonment
US9587486B2 (en) 2013-02-28 2017-03-07 Halliburton Energy Services, Inc. Method and apparatus for magnetic pulse signature actuation
US9366134B2 (en) 2013-03-12 2016-06-14 Halliburton Energy Services, Inc. Wellbore servicing tools, systems and methods utilizing near-field communication
US9284817B2 (en) 2013-03-14 2016-03-15 Halliburton Energy Services, Inc. Dual magnetic sensor actuation assembly
US20150075770A1 (en) 2013-05-31 2015-03-19 Michael Linley Fripp Wireless activation of wellbore tools
US9752414B2 (en) 2013-05-31 2017-09-05 Halliburton Energy Services, Inc. Wellbore servicing tools, systems and methods utilizing downhole wireless switches
US9447655B2 (en) 2013-10-15 2016-09-20 Baker Hughes Incorporated Methods for hanging liner from casing and articles derived therefrom
AU2013403289B2 (en) * 2013-10-17 2016-09-22 Landmark Graphics Corporation Method and apparatus for well abandonment
US10030467B2 (en) 2014-03-20 2018-07-24 Saudi Arabian Oil Company Method and apparatus for sealing an undesirable formation zone in the wall of a wellbore
GB201406071D0 (en) 2014-04-04 2014-05-21 Bisn Tec Ltd Well Casing / Tubing Disposal
GB201414565D0 (en) 2014-08-15 2014-10-01 Bisn Oil Tools Ltd Methods and apparatus for use in oil and gas well completion
WO2016049424A1 (en) * 2014-09-25 2016-03-31 Schlumberger Canada Limited Downhole sealing tool
WO2016065233A1 (en) * 2014-10-24 2016-04-28 Schlumberger Canada Limited Eutectic flow control devices
US10808523B2 (en) 2014-11-25 2020-10-20 Halliburton Energy Services, Inc. Wireless activation of wellbore tools
US10072477B2 (en) * 2014-12-02 2018-09-11 Schlumberger Technology Corporation Methods of deployment for eutectic isolation tools to ensure wellbore plugs
US10352109B2 (en) * 2015-05-20 2019-07-16 Schlumberger Technology Corporation System and methodology for coupling tubing
CN106522871B (zh) * 2015-09-15 2019-04-05 中国石油化工股份有限公司 一种裸眼封隔器
NO20160763A1 (en) 2016-05-06 2017-11-07 Wellguard As A wellbore system, tool and method
GB2549982B (en) 2016-05-06 2019-10-30 Bisn Tec Ltd Heat sources and alloys for use in down-hole operations
GB2551693B (en) 2016-05-24 2021-09-15 Bisn Tec Ltd Down-hole chemical heater and methods of operating such
US10760374B2 (en) 2016-09-30 2020-09-01 Conocophillips Company Tool for metal plugging or sealing of casing
WO2018063822A1 (en) * 2016-09-30 2018-04-05 Conocophillips Company Nano-thermite well plug
US10738567B2 (en) 2016-09-30 2020-08-11 Conocophillips Company Through tubing P and A with two-material plugs
WO2018169847A1 (en) 2017-03-11 2018-09-20 Conocophillips Company Helical coil annular access plug and abandonment
US10385654B2 (en) 2017-03-23 2019-08-20 Conocophillips Company System and method for sealing multilateral junctions
GB2562208B (en) 2017-04-04 2021-04-07 Bisn Tec Ltd Improvements relating to thermally deformable annular packers
US10316612B2 (en) 2017-04-12 2019-06-11 Conocophillips Company Two-material P and A plug
US11365611B2 (en) 2017-05-01 2022-06-21 Conocophillips Company Metal seal for liner drilling
EP3704345B1 (en) 2017-10-30 2022-08-10 ConocoPhillips Company Through tubing p&a with bismuth alloys
AU2017439376B2 (en) 2017-11-13 2023-06-01 Halliburton Energy Services, Inc. Swellable metal for non-elastomeric O-rings, seal stacks, and gaskets
GB2608269B (en) * 2017-11-17 2023-06-28 Bisn Tec Ltd An expandable eutectic alloy based downhole tool and methods of deploying such
GB2568519B (en) 2017-11-17 2022-09-28 Bisn Tec Ltd An expandable eutectic alloy based downhole tool and methods of deploying such
EP3724445B1 (en) 2017-12-14 2022-01-26 Conocophillips Company P&a setting with exothermic material
WO2019164499A1 (en) 2018-02-23 2019-08-29 Halliburton Energey Services, Inc. Swellable metal for swell packer
CN109611046B (zh) * 2018-03-12 2021-04-06 东营市科创石油装备有限公司 一种石油管具修复装置
WO2019194899A1 (en) * 2018-04-03 2019-10-10 Schlumberger Technology Corporation Methods, apparatus and systems for creating bismuth alloy plugs for abandoned wells
US11643902B2 (en) 2018-04-03 2023-05-09 Schlumberger Technology Corporation Methods, apparatus and systems for creating wellbore plugs for abandoned wells
US11834917B2 (en) 2018-05-11 2023-12-05 Weatherford Technology Holdings, Llc Downhole collar utilizing fusible anchor elements
WO2020002887A1 (en) * 2018-06-25 2020-01-02 Rawwater Engineering Limited Improved well sealing material and method of producing a plug
US10844700B2 (en) 2018-07-02 2020-11-24 Saudi Arabian Oil Company Removing water downhole in dry gas wells
WO2020123786A1 (en) * 2018-12-13 2020-06-18 Schlumberger Technology Corporation Expandable metal alloy plugs for abandoned wells
GB2580587B (en) * 2019-01-10 2021-10-13 Isol8 Holdings Ltd Downhole method and apparatus
AU2019429892B2 (en) 2019-02-22 2024-05-23 Halliburton Energy Services, Inc. An expanding metal sealant for use with multilateral completion systems
US10975658B2 (en) 2019-05-17 2021-04-13 Baker Hughes Oilfield Operations Llc Wellbore isolation barrier including negative thermal expansion material
CA3138868C (en) 2019-07-16 2024-03-19 Halliburton Energy Services, Inc. Composite expandable metal elements with reinforcement
AU2019459040A1 (en) 2019-07-31 2021-11-11 Halliburton Energy Services, Inc. Methods to monitor a metallic sealant deployed in a wellbore, methods to monitor fluid displacement, and downhole metallic sealant measurement systems
US11371623B2 (en) 2019-09-18 2022-06-28 Saudi Arabian Oil Company Mechanisms and methods for closure of a flow control device
US10961804B1 (en) * 2019-10-16 2021-03-30 Halliburton Energy Services, Inc. Washout prevention element for expandable metal sealing elements
US11519239B2 (en) 2019-10-29 2022-12-06 Halliburton Energy Services, Inc. Running lines through expandable metal sealing elements
US11346177B2 (en) * 2019-12-04 2022-05-31 Saudi Arabian Oil Company Repairable seal assemblies for oil and gas applications
US11761290B2 (en) * 2019-12-18 2023-09-19 Halliburton Energy Services, Inc. Reactive metal sealing elements for a liner hanger
US11499399B2 (en) 2019-12-18 2022-11-15 Halliburton Energy Services, Inc. Pressure reducing metal elements for liner hangers
NO20210121A1 (en) * 2020-02-10 2021-08-11 Wellbore Integrity Solutions Llc Patch for joining downhole ends of pipes
US11555571B2 (en) 2020-02-12 2023-01-17 Saudi Arabian Oil Company Automated flowline leak sealing system and method
US11268355B2 (en) 2020-03-05 2022-03-08 Baker Hughes Oilfield Operations Llc Methods and systems for hanging structures in downhole environments
US11332996B2 (en) * 2020-05-06 2022-05-17 Baker Hughes Oilfield Operations Llc Borehole junction support by consolidation of formation materials
WO2021262553A1 (en) * 2020-06-24 2021-12-30 Bp Corporation North America Inc. Sand screen assemblies for a subterranean wellbore
NO347030B1 (en) 2020-07-07 2023-04-24 Interwell P&A As Thermite reaction charge, method for forming a three-phased rock-to-rock well barrier, and a well barrier formed thereof
US11761293B2 (en) 2020-12-14 2023-09-19 Halliburton Energy Services, Inc. Swellable packer assemblies, downhole packer systems, and methods to seal a wellbore
US11572749B2 (en) 2020-12-16 2023-02-07 Halliburton Energy Services, Inc. Non-expanding liner hanger
US11396788B2 (en) 2020-12-17 2022-07-26 Halliburton Energy Services, Inc. Fluid activated metal alloy shut off device
WO2022171604A1 (en) 2021-02-11 2022-08-18 Shell Internationale Research Maatschappij B.V. Method for abandoning a completed wellbore
NO20210353A1 (en) * 2021-03-19 2022-09-20 Interwell P&A As Well tool device comprising pyrotechnic mixture as self-supporting structure
US11578498B2 (en) 2021-04-12 2023-02-14 Halliburton Energy Services, Inc. Expandable metal for anchoring posts
CN113137201B (zh) * 2021-04-29 2023-01-24 扬州工业职业技术学院 一种石油套管化学法修复装置及修复方法
US11879304B2 (en) 2021-05-17 2024-01-23 Halliburton Energy Services, Inc. Reactive metal for cement assurance
DE112021006898T5 (de) * 2021-05-29 2023-11-09 Halliburton Energy Services, Inc. Backup für sich selbst aktivierende dichtungsbaugruppe
EP4180619A1 (en) * 2021-11-10 2023-05-17 Welltec Oilfield Solutions AG Downhole expandable tubular
EP4180620A1 (en) * 2021-11-10 2023-05-17 Welltec Oilfield Solutions AG Downhole closure unit and annular barrier with downhole closure unit
EP4430269A1 (en) * 2021-11-10 2024-09-18 Welltec Manufacturing Center Completions ApS Downhole expandable tubular
US20230349264A1 (en) * 2022-04-29 2023-11-02 Bisn Tec Ltd. Methods to repair well liner hangers

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2298129A (en) * 1938-03-29 1942-10-06 Dow Chemical Co Treatment of wells
US3578084A (en) * 1969-06-23 1971-05-11 Exxon Production Research Co Thermal well completion method and apparatus
US4489784A (en) * 1983-02-02 1984-12-25 Messenger Joseph U Well control method using low-melting alloy metals
SU1357540A1 (ru) 1985-07-11 1987-12-07 Научно-производственное объединение по термическим методам добычи нефти "Союзтермнефть" Способ разобщени межтрубного пространства скважины
GB8725670D0 (en) 1987-11-03 1987-12-09 Reed Tool Co Manufacture of rotary drill bits
JP3002753B2 (ja) * 1991-02-05 2000-01-24 四国化工機株式会社 紙主体積層体製容器およびこれの底部圧着装置
WO1993005268A1 (de) * 1991-09-03 1993-03-18 Hans Joachim Altmeyer Vorrichtung zum verschliessen eines von einem medium durchströmten rohrendes, insbesondere einer ölquelle
US5295541A (en) * 1992-12-22 1994-03-22 Mobil Oil Corporation Casing repair using a plastic resin
NO303742B1 (no) * 1996-12-06 1998-08-24 Nodeco As Anordning for innfaring av ön eller flere skrapeplugger i et forlengelsesraar
FR2780751B1 (fr) 1998-07-06 2000-09-29 Drillflex Procede et dispositif de tubage d'un puits ou d'une canalisation
NZ514561A (en) * 1999-04-09 2003-08-29 Shell Int Research Method for annular sealing by expanding thermoset or thermoplastic material
US6474414B1 (en) * 2000-03-09 2002-11-05 Texaco, Inc. Plug for tubulars
US6384389B1 (en) 2000-03-30 2002-05-07 Tesla Industries Inc. Eutectic metal sealing method and apparatus for oil and gas wells
GB0023543D0 (en) * 2000-09-26 2000-11-08 Rawwater Engineering Company L Sealing method and apparatus
MY130896A (en) * 2001-06-05 2007-07-31 Shell Int Research In-situ casting of well equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018222071A1 (ru) * 2017-05-31 2018-12-06 Владимир Георгиевич КИРЯЧЕК Устройство для разделения ствола скважины на изолированные друг от друга участки
WO2023214175A1 (en) * 2022-05-04 2023-11-09 Bisn Tec Ltd Methods to remove alloy plugs and annular seals and associated apparatus

Also Published As

Publication number Publication date
NO20035387D0 (no) 2003-12-04
CN1293282C (zh) 2007-01-03
BR0210156B1 (pt) 2011-07-26
CN1514905A (zh) 2004-07-21
AU2002346437B2 (en) 2007-03-22
DK1395732T3 (da) 2005-12-19
US7152657B2 (en) 2006-12-26
US7640965B2 (en) 2010-01-05
CA2449664A1 (en) 2002-12-12
BR0210156A (pt) 2004-06-08
NO331567B1 (no) 2012-01-23
EP1395732B1 (en) 2005-08-17
RU2003137821A (ru) 2005-05-27
MY130896A (en) 2007-07-31
WO2002099247A1 (en) 2002-12-12
US20040149418A1 (en) 2004-08-05
CA2449664C (en) 2010-04-13
US20070137826A1 (en) 2007-06-21
EP1395732A1 (en) 2004-03-10
ATE302330T1 (de) 2005-09-15
DE60205621D1 (de) 2005-09-22

Similar Documents

Publication Publication Date Title
RU2290491C2 (ru) Способ отливки скважинного оборудования на месте
AU2002346437A1 (en) In-situ casting of well equipment
NL2021796B1 (en) Swellable metal for non-elastomeric O-rings, seal stacks, and gaskets
US11441384B2 (en) Tool for metal plugging or sealing of casing
US20060144591A1 (en) Method and apparatus for repair of wells utilizing meltable repair materials and exothermic reactants as heating agents
GB2586796A (en) Downhole barrier
US20100006289A1 (en) Method and apparatus for sealing abandoned oil and gas wells
WO2018063829A1 (en) Tool for metal plugging or sealing of casing
US11149517B2 (en) Expanding thermite reactions for downhole applications
AU2005315670A1 (en) Method of sealing an annular space in a wellbore
RU2653156C1 (ru) Заколонный пакер (варианты)
US12098610B2 (en) Bore sealing method and apparatus
US20240318524A9 (en) Tool for metal plugging or sealing of casing
US20230116346A1 (en) Well Tool Actuation Chamber Isolation
Lowry et al. Formed-in-place Ceramic Systems for Sealing and Flow Control in Geothermal Applications
WO2023033817A1 (en) Controlled actuation of a reactive metal
AU2021463035A1 (en) Controlled actuation of a reactive metal
CA3100843A1 (en) Settable and unsettable device and method
CA2665921A1 (en) Method and apparatus for sealing abandoned oil and gas wells

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180606