RU2290474C1 - Способ контроля и диагностики элемента сооружения - Google Patents

Способ контроля и диагностики элемента сооружения Download PDF

Info

Publication number
RU2290474C1
RU2290474C1 RU2005128545/28A RU2005128545A RU2290474C1 RU 2290474 C1 RU2290474 C1 RU 2290474C1 RU 2005128545/28 A RU2005128545/28 A RU 2005128545/28A RU 2005128545 A RU2005128545 A RU 2005128545A RU 2290474 C1 RU2290474 C1 RU 2290474C1
Authority
RU
Russia
Prior art keywords
measurement
optical fibers
fiber
reference value
destructive
Prior art date
Application number
RU2005128545/28A
Other languages
English (en)
Inventor
Игорь Владимирович Рубцов (RU)
Игорь Владимирович Рубцов
Алексей Павлович Неугодников (RU)
Алексей Павлович Неугодников
Федор Андреевич Егоров (RU)
Федор Андреевич Егоров
Вадим Игоревич Поспелов (RU)
Вадим Игоревич Поспелов
Original Assignee
Игорь Владимирович Рубцов
Алексей Павлович Неугодников
Федор Андреевич Егоров
Вадим Игоревич Поспелов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Игорь Владимирович Рубцов, Алексей Павлович Неугодников, Федор Андреевич Егоров, Вадим Игоревич Поспелов filed Critical Игорь Владимирович Рубцов
Priority to RU2005128545/28A priority Critical patent/RU2290474C1/ru
Application granted granted Critical
Publication of RU2290474C1 publication Critical patent/RU2290474C1/ru

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

Изобретение относится к области контроля деформации элементов сооружений. Оптические световоды закладывают в упомянутые элементы. Соединяют концы световодов между собой для образования змеевидного расположения, по меньшей мере, одного направления. К первому и второму концам змеевидного расположения подключают источник и приемник света соответственно. Первым измерением значений оптической мощности для змеевидного расположения определяют первое эталонное значение. Вторым измерением оптической мощности для каждого световода определяют второе эталонное значение. Проводят третье измерение оптической мощности, которое сравнивают с первым эталонным значением. Определяют наличие деструкции элемента сооружения, периодически повторяя третье измерение. Если первое эталонное значение больше значения по третьему измерению, то деструкция элемента сооружения присутствует. Обеспечивают проведение четвертого измерения значений оптической мощности светового потока для каждого световода. Определяют деструктивные световоды вид и место деструктивного события по месту пересечения деструктивных световодов. Технический результат - повышение точности, надежности и долговечности измерений различных видов деструкции элемента сооружения. 1 з.п. ф-лы, 5 ил.

Description

Изобретение относится к области контроля деформаций элементов сооружений.
Раскрытый в FR 2728677 метод контроля состояния насыпей шоссейных и железных дорог заключается в том, что в полотнища материала, укладываемого в насыпь, заделаны электрические или оптические провода. Наличие деструкции в насыпи определяется по изменению уровня сигнала измеряемого провода. Какие-либо конкретные описания методики измерений отсутствуют, и на сайте заявителя www.bidim.com отсутствуют какие-либо упоминания об этом продукте, что показывает на недоработанность данного метода для реального промышленного применения, поскольку здесь используют полотнища для установки проводов, что затрудняет подключение измерительной аппаратуры.
Раскрытый в RU 2066466 способ контроля бетонного основания плотин посредством оптической томографии показывает методику контроля объектов больших размеров со сложноразветвленной системой световодов. Этот способ требует применения значительного количества дорогостоящих элементов значительной мощности. Эти же недостатки присущи и раскрытому в RU 2148267 способу контроля сейсмических волн, в котором показано расположение световодов узкими петлями, что позволяет выбрать данный способ в качестве ближайшего аналога.
Техническим результатом заявляемого изобретения является повышение точности, надежности и долговечности измерений различных видов деструкции элемента сооружения.
Для достижения указанного технического результата предлагается способ контроля и диагностики элемента сооружения, заключающийся в том, что проводят контроль и диагностику элемента сооружения с использованием волоконно-оптических датчиков, содержащих оптические световоды, заложенные в упомянутый элемент с по меньшей мере одним направлением заложения световодов, производят соединение концов световодов между собой для образования змеевидного расположения световодов по меньшей мере одного направления. К первому свободному концу световодов по меньшей мере одного направления подключают источник света, ко второму свободному концу - приемник света, соединенный с устройством обработки информации, и проводят первое измерение значений оптической мощности светового потока, проходящего через змеевидное расположение световодов, и принимают его за первое эталонное значение оптической мощности светового потока, проводят второе измерения значения оптической мощности светового потока для каждого световода по меньшей мере одного направления и принимают его за второе эталонное значения для каждого световода по меньшей мере одного направления, снова образуют упомянутое змеевидное расположение световодов по меньшей мере одного направления, для которого проводят третье измерение оптической мощности светового потока, которое сравнивают с первым эталонным значением, и если первое эталонное значение равно либо меньше значения по третьему измерению, то деструкция элемента сооружения отсутствует, и через выбранный измерителем (т.е. человеком, оператором, контролером) любой промежуток времени третье измерение повторяют, а если первое эталонное значение больше значения по третьему измерению, то деструкция элемента сооружения присутствует, и тогда проводят четвертое измерение значений оптической мощности светового потока для каждого световода по меньшей мере одного направления, определяют деструктивный световод, в котором значение оптической мощности по четвертому измерению меньше соответствующего второго эталонного значения, и таким образом определяют место деструктивного события при наличии только одного направления заложения световодов, а при наличии более одного направления заложения световодов определяют место деструктивного события по месту пересечения деструктивных световодов. После определения деструктивного световода далее определяют вид деструктивного события с помощью рефлектометров, предназначенных для измерения обратного рассеяния светового потока от места деструктивного события, подключаемых к деструктивным световодам, делают вывод о виде деструктивных изменений упомянутого элемента.
Волоконно-оптический датчик, осуществляющий контроль элемента сооружения, содержит волоконно-оптический световод, который при подключении к нему дополнительной аппаратуры является оптическим тестером, обеспечивающим недорогой способ контроля по принципу "норма-тревога". Топология укладки световода позволяет охватить весь объем контролируемого элемента, например фундаментной плиты. Для закрепления в фундаментной плите световод привязывают к прутам арматуры снизу до заливки бетонной массы. Возможная топология укладки световода 1 в фундаментную плиту 2 представлена на фиг.1, где 1 - световод, 2 - фундаментная плита, 3 - источник света, 4 - приемник света, которым может быть измеритель оптической мощности светового потока, 5 - оптический разъем, 6 - блок обработки информации.
Фактически такой световод - это чувствительный элемент датчика, который реагирует на внутренние механические напряжения и деформации или тепловые нагрузки, а также позволяет регистрировать акустическую эмиссию.
Волоконно-оптический датчик состоит из трех основных частей фиг.1:
1) Источник света 3.
2) Волоконно-оптический световод 1.
3) Приемник света 4, которым может быть измеритель оптической мощности.
Источник излучения, содержащий светодиод, генерирует световой луч, который, проходя по световоду, теряет некоторую часть своего потока вследствие ряда причин и, в частности, в результате внешнего воздействия на световод. Любое механическое или тепловое воздействие на световод порождает геометрическое изменение его формы или микроповреждение, что автоматически влечет изменение (уменьшение) мощности светового потока, фиксируемой измерителем. На фиг.2 показан принцип действия волоконно-оптического датчика на базе оптического тестера, где 7 - зона изменения условий распространения света: микроизгиб, микротрещина, разрыв или изменение геометрических форм и размеров световода, микронеоднородность; 8 - световод в условиях внешнего воздействия; 9 - полный поток излучения, генерируемый источником света; 10 - поток излучения, регистрируемый измерителем мощности.
На этом основан принцип мониторинга контролируемого фрагмента конструкции, оснащенной волоконно-оптическим датчиком. При достижении заданного критического значения, означающего наличие предельной механической или тепловой нагрузки в каком-либо месте конструкции, волоконно-оптические датчики сигнализируют оператору через электронный блок обработки сигналов об аварийной ситуации.
На работу волоконно-оптического датчика не влияют такие внешние факторы, как электромагнитные поля, радиация, химически агрессивные среды. Топология закладки световода может быть разработана таким образом, что в случае его разрыва из контролируемой зоны волоконно-оптических датчиков уходит только строго определенная часть элемента конструкции, остальные области продолжают контролироваться. При этом даже при наличии разрыва неповрежденные отдельные отрезки световода полноценно работают как датчики при использовании рефлектометров - приборов, анализирующих различные виды обратно рассеянного излучения. Принцип действия волоконно-оптического датчика на базе рефлектометра представлен на фиг.3, где 11 - зона изменения условий распространения света: микроизгиб, микротрещина, разрыв или изменение геометрических форм и размеров световода, микронеоднородность; 12 - световод в условиях внешнего воздействия; 13 - полный поток излучения, генерируемый источником света; 14 - обратное рассеяние, регистрируемое рефлектометром.
Потенциально волоконно-оптические датчики могут выполнять более масштабную задачу, чем просто сигнал об аварийной ситуации в фундаментной плите как интегральный показатель ухудшения качества контролируемого объекта. При определенной топологии укладки световода возможно определить место возникновения дефекта с высокой точностью.
Рассмотрим топологию укладки световода, представленную на фиг.4, где 15 - источник света для первого направления заложения световодов, 16 - оптический разъем, 17 - фундаментная плита, 18 - приемник света, которым может быть измеритель оптической мощности, 19 - опорный отрезок световода, 20 - источник света для второго направления заложения световодов, 21 - приемник света, которым может быть измеритель оптической мощности. Здесь предложен вариант образующих волоконно-оптическую сеть волоконно-оптических световодов датчиков с двумя источниками света 15, 20 и двумя измерителями оптической мощности 18, 21 (два различных направления заложения световодов волоконно-оптической сети перпендикулярны друг другу). Каждая пара опорных отрезков световодов соединена оптическим разъемом, который вынесен на поверхность фундаментной плиты.
При поступлении аварийного сигнала, означающего падение оптической мощности в волоконно-оптической сети до критического уровня, оператор приступает к определению места аварийного события. Для этого он снимает оптические разъемы и последовательно пропускает световой сигнал через каждый опорный световод продольной и поперечной сетей с соответствующим измерением оптической мощности. После завершения тестирования всех опорных отрезков световодов определяются деструктивные световоды продольной и поперечной сетей, в зонах влияния которых произошло аварийное событие. Пересечение найденных зон (полос) фиксирует место аварийного события. Методика определения места аварийного события при поступлении аварийного сигнала представлена на фиг.5, где 22 - место аварийного события, 23 - поперечная полоса локализации аварийного события; 24 - продольная полоса локализации аварийного события.
Предложенная топология является базовой и может быть адаптирована для произвольных форм плиты в плане. При этом точность локализации аварийного события может быть повышена путем уменьшения расстояния между опорными отрезками световодов, а также за счет расположения световодов в плоскостях, расположенных на различной высоте (в пределах контролируемого элемента).
Диагностика элемента сооружения осуществляется посредством диагностики состояния волоконно-оптических световодов, входящих в состав датчиков.

Claims (2)

1. Способ контроля и диагностики элемента сооружения, заключающийся в том, что проводят контроль и диагностику элемента сооружения с использованием волоконно-оптических датчиков, содержащих оптические световоды, заложенные в упомянутый элемент с по меньшей мере одним направлением заложения световодов, производят соединение концов световодов между собой для образования змеевидного расположения световодов по меньшей мере одного направления, к первому свободному концу световодов по меньшей мере одного направления подключают источник света, ко второму свободному концу - приемник света, соединенный с устройством обработки информации, и проводят первое измерение значений оптической мощности светового потока, проходящего через змеевидное расположение световодов, и принимают его за первое эталонное значение оптической мощности светового потока, проводят второе измерение значения оптической мощности светового потока для каждого световода по меньшей мере одного направления, и принимают его за второе эталонное значение для каждого световода по меньшей мере одного направления, снова образуют упомянутое змеевидное расположение световодов по меньшей мере одного направления, для которого проводят третье измерение оптической мощности светового потока, которое сравнивают с первым эталонным значением, и если первое эталонное значение равно либо меньше значения по третьему измерению, то деструкция элемента сооружения отсутствует, и через выбранный измерителем любой промежуток времени третье измерение повторяют, а если первое эталонное значение больше значения по третьему измерению, то деструкция элемента сооружения присутствует, и тогда проводят четвертое измерение значений оптической мощности светового потока для каждого световода по меньшей мере одного направления, определяют деструктивный световод, в котором значение оптической мощности по четвертому измерению меньше соответствующего второго эталонного значения, и таким образом определяют место деструктивного события при наличии только одного направления заложения световодов, а при наличии более одного направления заложения световодов определяют место деструктивного события по месту пересечения деструктивных световодов.
2. Способ по п.1, отличающийся тем, что после определения деструктивного световода далее определяют вид деструктивного события с помощью рефлектометров, предназначенных для измерения обратного рассеяния светового потока от места деструктивного события, подключаемых к деструктивным световодам, делают вывод о виде деструктивных изменений упомянутого элемента.
RU2005128545/28A 2005-09-14 2005-09-14 Способ контроля и диагностики элемента сооружения RU2290474C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2005128545/28A RU2290474C1 (ru) 2005-09-14 2005-09-14 Способ контроля и диагностики элемента сооружения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2005128545/28A RU2290474C1 (ru) 2005-09-14 2005-09-14 Способ контроля и диагностики элемента сооружения

Publications (1)

Publication Number Publication Date
RU2290474C1 true RU2290474C1 (ru) 2006-12-27

Family

ID=37759818

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005128545/28A RU2290474C1 (ru) 2005-09-14 2005-09-14 Способ контроля и диагностики элемента сооружения

Country Status (1)

Country Link
RU (1) RU2290474C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2639602C2 (ru) * 2012-02-24 2017-12-21 Оптасенс Холдингз Лимитед Мониторинг инфраструктуры транспортной сети
RU2644964C1 (ru) * 2017-01-10 2018-02-15 Акционерное общество "Всероссийский научно-исследовательский институт гидротехники имени Б.Е. Веденеева" Способ определения местоположения повреждений и их контроль в днище бассейна суточного регулирования
RU192427U1 (ru) * 2019-02-05 2019-09-17 федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный университет" Стационарное устройство диагностирования контура днища резервуара с использованием участков волоконно-оптических кабелей

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2639602C2 (ru) * 2012-02-24 2017-12-21 Оптасенс Холдингз Лимитед Мониторинг инфраструктуры транспортной сети
RU2644964C1 (ru) * 2017-01-10 2018-02-15 Акционерное общество "Всероссийский научно-исследовательский институт гидротехники имени Б.Е. Веденеева" Способ определения местоположения повреждений и их контроль в днище бассейна суточного регулирования
RU192427U1 (ru) * 2019-02-05 2019-09-17 федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный университет" Стационарное устройство диагностирования контура днища резервуара с использованием участков волоконно-оптических кабелей

Similar Documents

Publication Publication Date Title
Henault et al. Quantitative strain measurement and crack detection in RC structures using a truly distributed fiber optic sensing system
CN101788352B (zh) 复合光纤检测模块与装置
Yun et al. Recent R&D activities on structural health monitoring for civil infra-structures in Korea
KR100756056B1 (ko) 광섬유 복합 강연선. 그 광섬유 복합 강연선의 제조방법 및변형률 측정 방법
CN103557973B (zh) 在役结构预应力原位检测系统及方法
JP2000097737A (ja) 落石・崩落監視システム
EP2112047A2 (en) A method and installation for the measuring and extended monitoring of the stress state of a continuously welded rail (CWR)
KR100978383B1 (ko) 광섬유 센서를 이용한 쓰레기 매립지용 침출수 누출 및 안전감시 시스템
Barrias et al. SHM of reinforced concrete elements by Rayleigh backscattering DOFS
JP4027107B2 (ja) 土砂異常検出装置、土砂異常検出システム、及び土砂異常検出方法
Bassil Distributed fiber optics sensing for crack monitoring of concrete structures
Regier Application of fibre optics on reinforced concrete structures to develop a structural health monitoring technique
RU2290474C1 (ru) Способ контроля и диагностики элемента сооружения
JP6553479B2 (ja) モニタリングシステム、モニタリング方法
Casas et al. Management and safety of existing concrete structures via optical fiber distributed sensing
KR20210073881A (ko) 분포형 광섬유센서-기반 스마트 정착판을 이용한 프리스트레스 강연선의 긴장력 모니터링 시스템 및 그 방법
KR102197696B1 (ko) 광섬유 기반 하이브리드 신경망 센서를 이용한 시설물 건전도 모니터링 시스템 및 그 방법
AU2021204686A1 (en) Methods and systems for damage evaluation of structural assets
Li et al. High spatial resolution distributed fiber optic technique for strain and temperature measurements in concrete structures
CN110849719B (zh) 基于光纤感测技术的受力杆件压缩和拉伸变形的监测方法
KR100789924B1 (ko) 광섬유 센서가 장착된 부착형 보강재를 이용한 구조물보강상태 분석방법
KR20140059064A (ko) 광섬유 브래그 격자를 이용한 원전 환경 모니터링 시스템
Burger et al. Performance assessment of existing prestressed concrete bridges utilizing distributed optical fiber sensors
US20140354973A1 (en) Structural health monitoring method and apparatus based on optical fiber bend loss measurement
Gebremichael et al. Multiplexed fibre Bragg grating sensor system for structural integrity monitoring in large civil engineering applications

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20100915