RU2284869C2 - Двухвальный вибровозбудитель с изменяемой амплитудой колебаний - Google Patents

Двухвальный вибровозбудитель с изменяемой амплитудой колебаний Download PDF

Info

Publication number
RU2284869C2
RU2284869C2 RU2005100166/28A RU2005100166A RU2284869C2 RU 2284869 C2 RU2284869 C2 RU 2284869C2 RU 2005100166/28 A RU2005100166/28 A RU 2005100166/28A RU 2005100166 A RU2005100166 A RU 2005100166A RU 2284869 C2 RU2284869 C2 RU 2284869C2
Authority
RU
Russia
Prior art keywords
shaft
engine
output
angle
control system
Prior art date
Application number
RU2005100166/28A
Other languages
English (en)
Other versions
RU2005100166A (ru
Inventor
Станислав Яковлевич Галицков (RU)
Станислав Яковлевич Галицков
Семен Николаевич Маслов (RU)
Семен Николаевич Маслов
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Самарский государственный архитектурно-строительный университет" (СГАСУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Самарский государственный архитектурно-строительный университет" (СГАСУ) filed Critical Государственное образовательное учреждение высшего профессионального образования "Самарский государственный архитектурно-строительный университет" (СГАСУ)
Priority to RU2005100166/28A priority Critical patent/RU2284869C2/ru
Publication of RU2005100166A publication Critical patent/RU2005100166A/ru
Application granted granted Critical
Publication of RU2284869C2 publication Critical patent/RU2284869C2/ru

Links

Images

Landscapes

  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

Изобретение относится к производству строительных материалов и конструкций и предназначено для вспучивания ячеистобетонной смеси в форме. Сущность: виброплощадка оснащена двухвальным вибровозбудителем. Работа вибровозбудителя автоматически управляется двумя синхронно-следящими системами по программе, формирующей закон изменения амплитуды и частоты колебаний. Устройство позволяет автоматически регулировать частоту и амплитуду колебаний вибростола. Технический результат: повышение показателей качества ячеистобетонных изделий по прочности, экономия электроэнергии и строительных материалов, входящих в состав ячеистобетонной смеси, сокращение времени вибровспучивания. 2 ил.

Description

Изобретение относится к производству строительных материалов и предназначено для вспучивания ячеистобетонной смеси.
Известен одновальный дебалансный вибровозбудитель со встроенным электродвигателем, включающий в себя асинхронный двигатель, на валу которого расположены спаренные дебалансы одинаковой массы (Строительные машины: Справочник: В 2-х т. Т.1.: Машины для строительства промышленных, гражданских сооружений и дорог / Под общ.ред. Э.Н.Кузина. - 5-е изд., перераб. - М.: Машиностроение, 1991. - С.34) [1].
К недостаткам данного устройства, относится то, что в нем используется ручное разведение дебалансов для изменения амплитуды колебаний рабочего органа, что в процессе вибровспучивания невозможно, так как необходимо останавливать электродвигатель, что приведет к нарушению процесса вспучивания ячеистобетонной смеси, потере времени и электроэнергии. При использовании одного положения дебалансов на валу двигателя, т.е. вспучиванию на одной амплитуде невозможно повысить показатели качества изделий по прочности на этапе вибровспучивания.
Известен одновальный дебалансный вибровозбудитель с направленной вынуждающей силой, включающий в себя асинхронный двигатель, на валу которого закреплено по одному одинаковому дебалансу, соединенный через маятниковый амортизатор с вибростолом (Механическое оборудование предприятий строительных материалов, изделий и конструкций / С.Г.Силенок, А.А.Борщевский, М.Н.Горбовец. - М.: Машиностроение, 1990 - С.240) [2].
Недостатком данного устройства является отсутствие возможности изменения массы дебалансов в процессе вибрирования и, как, следствие, невозможность изменения амплитуды колебаний рабочего органа, т.е. повысить показатели качества изделий по прочности на этапе вибровспучивания невозможно.
Наиболее близким устройством того же назначения к заявленному изобретению по совокупности признаков является вибровозбудитель состоящий из двух соосно расположенных асинхронных электродвигателей, в котором на внутренних концах валов закреплены по одному дебалансу. Регулирование амплитуды осуществляется путем автоматического изменения угла рассогласования дебалансов с помощью САУ. (С1 2157756 RU В 28 В 1/087. Виброплощадка для уплотнения бетонных смесей в форме / Галицков С.Я., Голубев В.И., Караваев А.В., Радомский В.М. - №98117630; Заявл. 24.09.1998 // БИ - 2000. - №29) [3] - принято за прототип.
К причинам, препятствующим достижению указанного ниже технического результата при использовании известного устройства, относится то, что в при некоторых режимах работы на данном вибровозбудителе возникает вращающий момент, который может привести к раскачиванию виброплощадки (особенно на низких частотах) и, как следствие, нарушению структуры бетона и снижению прочности изделия.
Технический результат - повышение показателей качества ячеистобетонных изделий по прочности, экономия электроэнергии и строительных материалов, входящих в состав ячеистобетонной смеси, сокращение времени вибровспучивания.
Технический результат достигается тем, что в известном вибровозбудителе с изменяемой амплитудой колебаний, содержащем два дебалансных вибровозбудителя с асинхронными двигателями и два управляемых силовых преобразователя частоты, питающих эти двигатели, вибровозбудители установлены на вибростоле соосно, на валах которых установлены дебалансы и они снабжены датчиками углов поворота и оснащены системой автоматического управления двигателями, в которую включены задатчик частоты вибрирования, задатчик амплитуды колебаний рабочего органа, первый и второй регуляторы системы управления углом поворота вала первого двигателя, оснащенного датчиком угла поворота, первый и второй регуляторы системы управления углом поворота вала второго двигателя, оснащенного датчиком угла поворота, два блока суммирования, причем выход задатчика частоты вибрирования соединен с прямым входом первого регулятора системы управления углом поворота вала первого двигателя и с первым входом первого блока суммирования, выход задатчика амплитуды колебаний рабочего органа соединен с прямым входом второго блока суммирования, выход которого соединен с прямым входом первого регулятора системы управления углом поворота вала второго двигателя, выход первого регулятора системы управления углом поворота первого двигателя соединен с прямым входом второго регулятора системы управления углом поворота вала первого двигателя, аналогично выход первого регулятора системы управления углом поворота вала второго двигателя соединен с прямым входом второго регулятора системы управления углом поворота вала второго двигателя, выход второго регулятора системы управления углом поворота вала первого двигателя соединен со входом частотного силового преобразователя первого двигателя, выход второго регулятора системы управления углом поворота вала второго двигателя соединен со входом частотного силового преобразователя второго двигателя, выход частотного силового преобразователя первого двигателя соединен со входом первого двигателя, выход частотного силового преобразователя второго двигателя соединен со входом второго двигателя, выход датчика угла поворота вала первого двигателя соединен с инверсными входами первого и второго регуляторов системы управления углом поворота вала первого двигателя, выход датчика угла поворота вала второго двигателя соединен с инверсными входами первого и второго регуляторов системы управления углом поворота вала второго двигателя, выход датчика вибрации соединен с инверсным входом второго блока суммирования, особенностью является то, что вся конструкция вибровозбудителя находится в одном корпусе, который с торцов закрыт щитами и включает в себя внешний вал и вращающийся внутри него на подшипниковых опорах внутренний вал, внешний вал вращается на подшипниковых опорах, встроенных в корпус вибратора, а в корпус вибровозбудителя запресованы статоры трехфазных асинхронных электродвигателей, причем статорная обмотка внутреннего вала разделена и разнесена по концам вала; на среднюю часть внешнего вала закреплен короткозамкнутый ротор двигателя, к обмоткам статора внутреннего вала устроены роторы двигателя внутреннего вала, при этом на внешнем валу симметрично относительно его середины закреплена пара дебалансов одинаковой массы, а также на валу закреплен датчик угла поворота вала, на внутренний вал закреплена пара дебалансов, которые расположены симметрично относительно его середины, также на валу установлен датчик угла поворота внутреннего вала, вся конструкция вибратора находится в одном корпусе, который с торцов закрыт щитами, дополнительно в систему управления включены два блока суммирования, соединенных между собой, и регулятор амплитуды колебаний.
На фиг.1 представлена конструкция вибровозбудителя.
Конструкция устройства состоит из двух расположенных один в другом валов: внешний вал 1 и вращающийся внутри него на подшипниковых опорах внутренний вал 2. Внешний вал вращается на подшипниковых опорах 3, встроенных в корпус вибровозбудителя. В корпус вибровозбудителя запресованны статоры 4 трехфазного асинхронного электродвигателя, статорная обмотка внутреннего вала разделена и разнесена по концам вала. На среднюю часть внешнего вала 1 закреплен короткозамкнутый ротор 5 двигателя, к обмоткам статора 4 внутреннего вала 2 устроены роторы 6 двигагеля внутреннего вала. На внешнем валу 1 симметрично относительно его середины закреплена пара дебалансов 7 одинаковой массы и датчик угла поворота 8 вала. Внутренний вал 2 вращается во внешнем в подшипниковых опорах 9 и включает в себя пару дебалансов 10, закрепленных симметрично относительно его середины, также на нем установлен датчик угла поворота 11. Вся эта конструкция вибровозбудителя находится в одном корпусе, который с торцов закрыт щитами. Дебалансы жестко соединены с валами при помощи шпонок.
На фиг.2 изображена структурная схема системы управления синхронным вращением небалансов и их смещением относительно друг друга в процессе вращения.
Структурная схема системы управления синхронным вращением дебалансов и их смещением относительно друг друга в процессе вращения включает в себя задатчик частоты вибрирования 12, задатчик амплитуды колебаний рабочего органа 13, второй блок суммирования 14, регулятор амплитуды колебаний рабочего органа 15, первый блок суммирования 16, узлы сравнения 17 и 18 соответственно в первом и во втором каналах, и два идентичных канала управления. Первый канал - для управления углом поворота внешнего вала, второй - углом поворота внутреннего вала. Каждый из них содержит интегральный регулятор 19 и 20, соответственно в первом и во втором каналах, узлы сравнения 21 и 22, соответственно в первом и во втором каналах, пропорционально-дифференциальный регулятор 23 и 24, соответственно в первом и во втором каналах, частотный силовой преобразователь 25 и 26, соответственно в первом и во втором каналах, асинхронный двигатель 27 и 28, соответственно в первом и во втором каналах, внешний вал 1 и внутренний вал 2, соответственно в первом и во втором каналах, датчик угла поворота 8 внешнего и датчик угла поворота 11 внутреннего валов, соответственно в первом и во втором каналах.
Выход задатчика частоты вибрации 12 соединен с прямым входом узла сравнения 17 и с первым входом первого блока суммирования 16, выход задатчика амплитуды колебаний 13 рабочего органа соединен с прямым входом второго блока суммирования 14, выход второго блока суммирования 14 соединен с входом регулятора амплитуды 15, выход регулятора амплитуды 15 соединен со вторым входом первого блока суммирования 16, выход первого блока суммирования 16 соединен с прямым входом узла сравнения 18. В прямом входе первого канала управления последовательно установлены узел сравнения 17, интегральный регулятор 19, узел сравнения 21, пропорционально-дифференциальный регулятор 23, частотный силовой преобразователь 25, асинхронный двигатель 27, внешний вал 1, а в обратной связи установлен датчик угла поворота 8 внешнего вала, выход датчика 8 соединен с инверсными входами узлов сравнения 17 и 21, а выход датчика 11 соединен с инверсными входами узлов сравнения 18 и 22.
Задатчик частоты 12, задатчик и регулятор амплитуды 13 и 15, интегральные регуляторы 19 и 20, узлы сравнения 17, 18, 21, 22, блоки суммирования 16 и 14, пропорционально-дифференциальные регуляторы 23, 24, выполнены, например, программно. Частотные силовые преобразователи 25 и 26 выполнены, например, в виде стандартных транзисторных управляемых частотно-импульсных преобразователей со встроенными стандартными цифроаналоговыми преобразователями, датчики угла поворота 8 и 11 выполнены, например, в виде фотоэлектрических преобразователей. При программной реализации блоков 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 может быть использован, например, программируемый контроллер С-60 (Программируемый контроллер С60/ Техническое описание, - 64.10.0600000.000 ТО.- АО Автоваз) [4], обладающий необходимым количеством встроенных цифроаналоговых преобразователей и устройств сопряжения с фотоэлектрическими датчиками угла. - В качестве силового частотного преобразователя может быть использован преобразователь Siemens.
Установка работает следующим образом: по заданному закону изменения частоты колебаний рабочего органа вибростола vзад и амплитуды колебаний xзад на выходе задатчика частоты 12 формируется сигнал задания угла поворота внешнего вала 1α1зад=ψ(vзад), а на выходе задатчика амплитуды 13 формируется сигнал задания величины амплитуды колебаний Азад=ψ(xзад), сигнал после сравнения углов поступает в блок суммирования 14 и поступает на регулятор амплитуды, который формирует угол рассогласования дебалансов φрас=χ(ΔА), далее сигнал φрас суммируется с α1зад в первом блоке суммирования 16, что дает на его выходе сигнал задания угла поворота внутреннего вала 2 α2зад.
Выходные сигналы с задатчика 12 и первого блока суммирования 16 поступают соответственно на входы следящих приводов первого и второго двигателей. Сигнал с выхода узла сравнения 17 подается на вход интегрального регулятора 19, который необходим для придания следящей системе требуемого быстродействия. Сигнал с выхода узла сравнения 21 поступает на вход пропорционально-дифференциального регулятора 23, предназначенного для компенсации наибольшей постоянной времени объекта управления. Сигнал с регулятора 23 подается на вход частотного силового преобразователя 25, который изменяет частоту и амплитуду напряжения питания асинхронного двигателя 27 и тем самым регулирует его скорость вращения и угол поворота внешнего вала 1. На выходе внешнего вала формируется действительное значение угла поворота его дебалансов α1 которое контролируется с помощью датчика 8.
Сигнал с выхода узла сравнения 18 подается на вход интегрального регулятора 20, который необходим для придания следящей системе требуемого быстродействия. Сигнал с выхода узла сравнения 22 поступает на вход пропорционально-дифференциального регулятора 24, предназначенного для компенсации наибольшей постоянной времени объекта управления. Сигнал с регулятора 24 подается на вход частотного силового преобразователя 26, который изменяет частоту и амплитуду напряжения питания асинхронного двигателя 28 и тем самым регулирует его скорость вращения и угол поворота вала двигателя и соответственно угол поворота внутреннего вала 2. На выходе внутреннего вала формируется действительное значение угла поворота его дебалансов α2, которое контролируется с помощью датчика 11. Разность углов α1 и α2 дает действительный угол φ разведения дебалансов внешнего 1 и внутреннего 2 валов, который должен быть близким по значению с φрас.
Валы 1 и 2 вращаются синхронно с равной скоростью. Скорость их вращения регулируется автоматически задатчиком 12. Амплитуда регулируется автоматически с помощью задатчика 13. Угол φ разведения дебалансов регулируется автоматически при вращении валов с помощью регулятора 26. В результате автоматически регулируются частота и амплитуда колебаний вибростола, что обеспечивает повышение показателей качества бетонных изделий по прочности, экономию электроэнергии и строительных материалов, входящих в состав ячеистобетонной смеси, сокращение времени вибровспучивания.
Использование двухвального вибровозбудителя с автоматически регулируемой амплитудой позволит найти ее широкое применение в производстве строительных материалов, изделий и конструкций.
ИСТОЧНИКИ ИНФОРМАЦИИ
1. Строительные машины: Справочник: В 2-х т. Т.1.: Машины для строительства промышленных, гражданских сооружений и дорог / Под общ. ред. Э.Н.Кузина. - 5-е изд., перераб. - М.: Машиностроение, 1991. - С.349.
2. Механическое оборудование предприятий строительных материалов, изделий и конструкций / С.Г.Силенок, А.А.Борщевский, М.Н.Горбовец. - М.: Машиностроение, 1990 - С.240.
3. С1 2157756 RU В 28 В 1/087. Виброплощадка для уплотнения бетонных смесей в форме / Галицков С.Я., Голубев В.И., Караваев А.В., Радомский В.М. - №98117630; Заявл. 24.09.1998 // БИ №29, 2000.
4. Программируемый контроллер С60 / Техническое описание, - 64.10.0600000.000 ТО. - АО Автоваз.

Claims (1)

  1. Двухвальный вибровозбудитель с изменяемой амплитудой колебаний, содержащий два дебалансных вибровозбудителя с асинхронными двигателями и два управляемых силовых преобразователя частоты, питающие эти двигатели, вибровозбудители установлены на вибростоле соосно, на валах которых установлены дебалансы и снабженные датчиками углов поворота и оснащенных системой автоматического управления этими двигателями, в которую включены задатчик частоты вибрирования, задатчик амплитуды колебаний рабочего органа, первый и второй регуляторы системы управления углом поворота вала первого двигателя, оснащенного датчиком угла поворота, первый и второй регуляторы системы управления углом поворота вала второго двигателя, оснащенного датчиком угла поворота, два блока суммирования, причем выход задатчика частоты вибрирования соединен с прямым входом первого регулятора системы управления углом поворота вала первого двигателя и с первым входом первого блока суммирования, выход задатчика амплитуды колебаний рабочего органа соединен с прямым входом второго блока суммирования, выход которого соединен с прямым входом первого регулятора системы управления углом поворота вала второго двигателя, выход первого регулятора системы управления углом поворота первого двигателя соединен с прямым входом второго регулятора системы управления углом поворота вала первого двигателя, аналогично выход первого регулятора системы управления углом поворота вала второго двигателя соединен с прямым входом второго регулятора системы управления углом поворота вала второго двигателя, выход второго регулятора системы управления углом поворота вала первого двигателя соединен со входом частотного силового преобразователя первого двигателя, выход второго регулятора системы управления углом поворота вала второго двигателя соединен со входом частотного силового преобразователя второго двигателя, выход частотного силового преобразователя первого двигателя соединен со входом первого двигателя, выход частотного силового преобразователя второго двигателя соединен со входом второго двигателя, выход датчика угла поворота вала первого двигателя соединен с инверсными входами первого и второго регуляторов системы управления углом поворота вала первого двигателя, выход датчика угла поворота вала второго двигателя соединен с инверсными входами первого и второго регуляторов системы управления углом поворота вала второго двигателя, выход датчика вибрации соединен с инверсным входом второго блока суммирования, отличающийся тем, что вся конструкция вибратора находится в одном корпусе, который с торцов закрыт щитами и включает в себя внешний вал и вращающийся внутри него на подшипниковых опорах внутренний вал, внешний вал вращается на подшипниковых опорах, встроенных в корпус вибратора, а в корпус вибровозбудителя запрессованы статоры трехфазных асинхронных электродвигателей, причем статорная обмотка внутреннего вала разделена и разнесена по концам вала, на среднюю часть внешнего вала закреплен короткозамкнутый ротор двигателя, к обмоткам статора внутреннего вала устроены роторы двигателя внутреннего вала, при этом на внешнем валу симметрично относительно его середины закреплена пара дебалансов одинаковой массы, а также на валу закреплен датчик угла поворота вала, на внутренний вал закреплена пара дебалансов, которые расположены симметрично относительно его середины, также на валу установлен датчик угла поворота внутреннего вала, дополнительно в систему управления включены два блока суммирования, соединенных между собой, и регулятор амплитуды колебаний.
RU2005100166/28A 2005-01-11 2005-01-11 Двухвальный вибровозбудитель с изменяемой амплитудой колебаний RU2284869C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2005100166/28A RU2284869C2 (ru) 2005-01-11 2005-01-11 Двухвальный вибровозбудитель с изменяемой амплитудой колебаний

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2005100166/28A RU2284869C2 (ru) 2005-01-11 2005-01-11 Двухвальный вибровозбудитель с изменяемой амплитудой колебаний

Publications (2)

Publication Number Publication Date
RU2005100166A RU2005100166A (ru) 2006-06-20
RU2284869C2 true RU2284869C2 (ru) 2006-10-10

Family

ID=36713727

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005100166/28A RU2284869C2 (ru) 2005-01-11 2005-01-11 Двухвальный вибровозбудитель с изменяемой амплитудой колебаний

Country Status (1)

Country Link
RU (1) RU2284869C2 (ru)

Also Published As

Publication number Publication date
RU2005100166A (ru) 2006-06-20

Similar Documents

Publication Publication Date Title
KR970704983A (ko) 진동 보상용 장치
JPH05504291A (ja) 振動励起装置
RU2284869C2 (ru) Двухвальный вибровозбудитель с изменяемой амплитудой колебаний
US6263750B1 (en) Device for generating directed vibrations
Biluk et al. Construction and Adjustment of a Vibration Machine Based on a Complete Electric Drive
RU2284870C1 (ru) Вибровозбудитель с управляемой частотой и направлением колебаний
CN109701697B (zh) 一种四机驱动双质体振动冲击破碎机及其参数确定方法
RU2233738C2 (ru) Виброплощадка с изменяемой амплитудой колебаний
CN109614725B (zh) 一种紧凑型振动干燥/冷却流化床的参数确定方法
RU2157756C2 (ru) Виброплощадка для уплотнения бетонных смесей в форме
CN106000850A (zh) 一种激振力调节装置
CN100377493C (zh) 旋转磁场式转动轴系扭振主动控制驱动装置
RU2236937C1 (ru) Виброплощадка с управляемой частотой и направлением колебаний
CN109649965A (zh) 一种亚共振双质体四机驱动振动筛分输送机的参数确定方法
Gordeev et al. Conditions for stable synchronization of three and more motors mounted on one foundation
RU2516262C2 (ru) Способ пуска вибрационной машины с двумя самосинхронизирующимися дебалансными вибровозбудителями
CN111262385A (zh) 一种振动电机
Starikov et al. Research of the Effect of the Inverter Resonance Frequency Skip Function on the Operation of a Vibration Stand in Acceleration and Braking Modes
JPH07289993A (ja) 振動テーブルの起振装置及びその駆動方法
ul Haq et al. Optimal damping of horizontal mode resonance of an electric drive train using reactive torque
Gerasimov et al. Estimation of two-and three-stage vibration device's parameters with asymmetric oscillations in terms of system's dynamic factor
SU1291915A1 (ru) Устройство дл вибрационного возбуждени сейсмических волн
CA2287851A1 (en) Unbalanced vibrator for stone forming machines
CN205201745U (zh) 振动平台
SU787750A1 (ru) Устройство дл испытани многосв занной механической передачи с разветвленной кинематической цепью с гибкими звень ми

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20100112