RU2284618C1 - Перестраиваемый двухволновый двухканальный со складным резонатором co2 лазер - Google Patents

Перестраиваемый двухволновый двухканальный со складным резонатором co2 лазер Download PDF

Info

Publication number
RU2284618C1
RU2284618C1 RU2005102159/28A RU2005102159A RU2284618C1 RU 2284618 C1 RU2284618 C1 RU 2284618C1 RU 2005102159/28 A RU2005102159/28 A RU 2005102159/28A RU 2005102159 A RU2005102159 A RU 2005102159A RU 2284618 C1 RU2284618 C1 RU 2284618C1
Authority
RU
Russia
Prior art keywords
laser
flange
resonator
diffraction grating
output mirror
Prior art date
Application number
RU2005102159/28A
Other languages
English (en)
Other versions
RU2005102159A (ru
Inventor
Алексей Антонович Сипайло (RU)
Алексей Антонович Сипайло
Валерий Владимирович Кюн (RU)
Валерий Владимирович Кюн
Александр Яковлевич Паюров (RU)
Александр Яковлевич Паюров
Original Assignee
Открытое акционерное общество "Научно-исследовательский институт газоразрядных приборов "Плазма" (ОАО "Плазма")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Научно-исследовательский институт газоразрядных приборов "Плазма" (ОАО "Плазма") filed Critical Открытое акционерное общество "Научно-исследовательский институт газоразрядных приборов "Плазма" (ОАО "Плазма")
Priority to RU2005102159/28A priority Critical patent/RU2284618C1/ru
Publication of RU2005102159A publication Critical patent/RU2005102159A/ru
Application granted granted Critical
Publication of RU2284618C1 publication Critical patent/RU2284618C1/ru

Links

Images

Landscapes

  • Lasers (AREA)

Abstract

Изобретение относится к области лазерной техники и может быть использовано при разработке лазеров и спектрометрических приборов на их основе. Лазер содержит расположенный в корпусе резонатор. Резонатор включает два разрядных канала, выходное зеркало, два поворотных зеркала и спектрально-селективный элемент (дифракционную решетку). Дифракционная решетка расположена напротив первого разрядного канала в юстировочном узле, закрепленном на торце полого цилиндра, соединенного через упруго деформируемый элемент с цилиндрической втулкой. На внешней поверхности полого цилиндра размещены жестко соединенные между собой подвижный рычаг и опорный фланец. Выходное зеркало расположено на механизме юстировки между вторым разрядным каналом и сквозным отверстием в опорном фланце и подвижном рычаге. Один конец подвижного рычага кинематически связан с электромагнитом, другой - с торцевой поверхностью цилиндрического фланца. Технический результат - создание перестраиваемого двухволнового двухканального со складным резонатором СО2-лазера с высокой точностью выбора длин волн и стабильной мощностью излучения. 2 з.п. ф-лы, 5 ил.

Description

Изобретение относится к лазерной технике и может быть использовано при разработке перестраиваемых по длинам волн лазеров и спектрометрических приборов на их основе.
Известен перестраиваемый лазер, содержащий активный элемент, оптический резонатор, включающий спектрально-селективный элемент с возможностью поворота или продольно-углового перемещения, для перестройки лазера по линиям спектра (см. з-ку РСТ №86/04746, кл. Н 01 S 3/1055, опубл. 14.08.86 г.).
Несмотря на высокую точность перестройки, лазер обладает таким недостатком, как сложность процесса перестройки, связанная с использованием целой группы дополнительных измерительных приборов, схем сравнения и обработки сигналов.
Известен перестраиваемый лазер, содержащий активную среду, резонатор, ограниченный дифракционной решеткой, установленной с возможностью изменения пространственно-углового положения, и внутрирезонаторную регулируемую апертурную диафрагму (см. Гуделев В.Г., Лешенюк Н.С., Невдах В.В. "Стабилизированный по частоте перестраиваемый СО2-лазер". - Журнал прикладной спектроскопии, 1981, т.34, №2, с.370-371).
Недостатком лазера является сложность процесса перестройки, обусловленная необходимостью регулирования апертуры диафрагмы независимо от настройки дифракционной решетки.
Наиболее близким к предлагаемому и принятый за прототип является перестраиваемый лазер, содержащий активную среду, резонатор, включающий спектрально-селективный элемент (дифракционную решетку), установленный с возможностью изменения пространственно-углового положения, и внутрирезонаторную регулируемую апертурную диафрагму. Лазер дополнительно содержит профилированный толкатель, кинематически связанный со спектрально-селективным элементом, а диафрагма снабжена приводным рычагом, кинематически связанным с профилированным толкателем (см. пат. РФ №2046482, кл. H 01 S 3/13, опубл. 20.10.95 г. - прототип).
К недостаткам прототипа следует отнести следующее: в процессе работы приводной рычаг в значительных пределах линейно перемещается (скользит) в фигурном и(или) прямом пазе. Вследствие этого возникает повышенный и неравномерный износ контактирующих поверхностей и ухудшается точность и воспроизводимость выбора длины волны в процессе перестройки, снижается надежность и устойчивость работы перестраиваемого лазера в условиях механоклиматических воздействий.
Кроме того, в процессе перестройки по длинам волн (изменения пространственно-углового положения дифракционной решетки) происходит неконтролируемое и немотонное изменение частоты лазерного излучения, что препятствует настройке на максимум мощности излучения при перестройке с одной длины волны на другую. А также, в процессе переключения с одной длины волны на другую, вследствие произвольного положения частоты излучения относительно центров контура усиления, происходит скачкообразное изменение мощности излучения, что ухудшает стабильность мощности излучения, точность и воспроизводимость контролируемых параметров.
Задача изобретения заключается в создании перестраиваемого двухволнового двухканального со складным резонатором CO2-лазера с высокой воспроизводимостью и точностью выбора длины волны, со стабильной мощностью излучения, устойчиво и надежно работающего в условиях механоклиматических воздействий.
Технический результат может быть получен за счет разнесения взаимно перпендикулярных оси вращения спектрально-селективного элемента и оптической оси резонатора на заданное расстояние, при котором обеспечивается автоматическое (синхронное) воспроизведение относительного положения частоты лазерного излучения в контуре усиления на каждой из длин волн.
Указанный технический результат при осуществлении изобретения достигается тем, что в перестраиваемом двухволновом двухканальном со складным резонатором СО2-лазере, содержащем расположенные в корпусе резонатор с активной средой, выходное зеркало и спектрально-селективный элемент (дифракционную решетку), установленный с возможностью изменения пространственно-углового положения, дифракционная решетка расположена напротив первого разрядного канала в юстировочном узле, закрепленном на торце полого цилиндра, соединенного через упруго деформируемый элемент с цилиндрической втулкой, на внешней поверхности полого цилиндра размещены жестко соединенные между собой подвижный рычаг и опорный фланец, зафиксированный сферическими опорами в цилиндрическом фланце, а выходное зеркало расположено на механизме юстировки между вторым разрядным каналом и сквозным отверстием, выполненным в опорном фланце и подвижном рычаге, одним концом кинематически связанном с электромагнитом, а другим - с торцевой поверхностью цилиндрического фланца, состоящего из двух подвижной и неподвижной частей, связанных между собой резьбовым соединением, при этом неподвижная часть цилиндрического фланца закреплена по периметру несущего фланца корпуса лазера, на котором также закреплены по разные стороны оси лазера цилиндрическая втулка и механизм юстировки выходного зеркала.
Кроме того, лазер отличается тем, что расстояние между осью вращения опорного фланца в сферических опорах и оптической осью резонатора определяется выражением
Figure 00000002
где λ1, λ2 - рабочие (переключаемые) длины волн;
L1 - длина резонатора, соответствующая генерации излучения на длине волны λ1,
m - произвольное целое число;
Figure 00000003
- величина, обратная угловой дисперсии спектрально-селектирующего элемента.
А также, лазер отличается тем, что кинематическая связь подвижного рычага с торцевой поверхностью цилиндрического фланца осуществлена посредством закрепленных на подвижном рычаге стопора и притягивающего элемента.
Связь дифракционной решетки через юстировочный узел и полый цилиндр с опорным фланцем обеспечивает юстировку плоскости дисперсии дифракционной решетки перпендикулярно оси вращения последнего. Ось вращения опорного фланца в свою очередь перпендикулярна оптической оси резонатора (достигается точностью изготовления и предварительной юстировкой в процессе сборки). Таким образом обеспечивается юстировка и воспроизводимость углового положения дифракционной решетки в процессе переключения длин волн излучения. Разнесение взамно перпендикулярных оптической оси резонатора и оси вращения дифракционной решетки на расстояние δ позволяет автоматически воспроизвести при перестройке с одной длины волны на другую относительное положение частоты лазерного излучения относительно центра контура усиления на каждой из длин волн, а тем самым и уровень мощности лазерного излучения.
Наличие на другом конце подвижного рычага стопора позволяет прецизионно установить заданную длину волны λ1, a притягивающий элемент, выполненный в виде пружины или электромагнита, облегчает работу упруго деформирующего элемента и исключает его "усталость" в процессе длительной работы.
Проведенный заявителем анализ уровня техники, включающий поиск по патентным и научно-техническим источникам информации, и выявление источников, содержащих сведения об аналогах заявленного изобретения, позволили установить, что заявителем не обнаружен аналог, характеризующийся признаками, идентичными всем существенным признакам заявленного изобретения, а определение из перечня выявленных аналогов прототипа, как наиболее близкого по совокупности признаков аналога, позволил выявить совокупность существенных по отношению к усматриваемому заявителем техническому результату отличительных признаков в заявленном объекте, изложенных в формуле изобретения. Следовательно заявленное изобретение соответствует требованию "новизна" по действующему законодательству.
Для проверки соответствия заявленного изобретения требованию изобретательского уровня заявитель провел дополнительный поиск известных решений с целью выявления признаков, совпадающих с отличительными от прототипа признаками заявленного изобретения, результаты которого показывают, что заявленное решение не следует для специалиста явным образом из известного уровня техники, поскольку из уровня техники, определенного заявителем, не выявлено влияние предусматриваемых существенными признаками заявленного изобретения преобразований на достижение технического результата, в частности не выявлен перестраиваемый двухволновый двухканальный со складным резонатором СО2-лазер, в котором повышение точности перестройки длин волн и стабильность мощности на этих длинах волн обеспечивается за счет разнесения взаимно перпендикулярных оси вращения спектрально-селективного элемента и оптической оси резонатора на расстояние δ, при котором обеспечивается автоматическое воспроизведение относительного положения частоты лазерного излучения относительно центра контура усиления на каждой из длин волн.
Следовательно, заявленное изобретение соответствует требованию "изобретательский уровень" по действующему законодательству.
На фиг.1 изображен в сечении перестраиваемый двухволновый двухканальный со складным резонатором CO2-лазер, излучающий на длине волны λ1.
На фиг.2 представлен вид с торца лазера.
На фиг.3 изображен дополнительный вид с торца лазера без опорного фланца, подвижного рычага и электромагнита.
На фиг.4 представлен в сечении вид сверху перестраиваемого двухволнового двухканального со складным резонатором СО2-лазера.
На фиг.5 изображен в сечении заявляемый лазер, излучающий на длине волны λ2.
В корпусе 1 лазера сформированы два разрядных канала 2, 3, фиг.4. Резонатор лазера образован выходным светоделительным зеркалом 4, поворотными зеркалами 5, 6 и спектрально-селективным элементом (дифракционной решеткой) 7. Выходное зеркало 4 размещено на механизме юстировки 8, фиг.3, 4, в котором расположены три юстировочных винта 9. Дифракционная решетка 7 в оправе 10, фиг.1, 5, расположена в юстировочном узле 11, закрепленном на торце полого цилиндра 12, фиг.5. Полый цилиндр 12 соединен через упруго деформируемый элемент 13 с цилиндрической втулкой 14, фиг.1. Механизм юстировки 8 выходного зеркала 4 и цилиндрическая втулка 14 зафиксированы на несущем фланце 15 корпуса лазера 1 по разные стороны геометрической оси L-L лазера, фиг.3, 4. По периметру несущего фланца 15 закреплена неподвижная часть цилиндрического фланца 16 и связанная с ним через резьбовое соединение подвижная часть цилиндрического фланца 17, фиг.4. На внешней поверхности полого цилиндра 12 размещены жестко связанные между собой опорный фланец 18 и подвижный рычаг 19, фиг.1 Опорный фланец 18 имеет возможность вращения вокруг оси O1O2, проходящей через расположенные в подвижной части цилиндрического фланца 17 сферические опоры 20, фиг.4. Один конец подвижного рычага 19 кинематически связан с возвратно-поступательным механизмом (электромагнит) 21, фиг.1, а противоположный конец рычага 19 кинематически связан с торцевой поверхностью подвижной части цилиндрического фланца 17. Винты 22 обеспечивают настройку узла юстировки 11, несущего дифракционную решетку 7, а винты 23 жестко соединяют подвижный рычаг 19 и опорный фланец 18, фиг.2. 24 - опора электромагнита, 25 - кронштейн для крепления притягивающего элемента 26, фиг.1, 5 (пружина, резина, электромагнит и т.д.) Другой конец притягивающего элемента 26 связан с подвижным рычагом 19, в котором расположен стопор 27, фиг.1. Прижимные винты 28 позволяют регулировать скольжение опорного фланца 18 в сферических опорах 20, исключая при этом люфт, фиг.2, 4. Сквозное отверстие 29 в опорном фланце 18 и подвижном рычаге 19 служит для вывода излучения, фиг.2.
Переключение длины волны происходит следующим образом.
В исходном положении на электромагнит 21 подается управляющее напряжение и подвижный рычаг 19 находится в контакте с электромагнитом 21, фиг.5. Между стопором 27 и подвижной частью цилиндрического фланца 17 существует зазор "d". В этом положении дифракционная решетка 7 настраивается с помощью юстировочного узла 11 на λ2, фиг.5. При снятии управляющего напряжения с электромагнита 21 подвижный рычаг 19 под действием упруго деформируемого элемента 13 или под действием притягивающего элемента 26, или под действием того и другого контактирует с торцевой поверхностью подвижной части цилиндрического фланца 17, т.е. появляется зазор "d" между подвижным рычагом 19 и электромагнитом 21 и исчезает зазор между стопором 27 и торцевой поверхностью подвижной части цилиндрического фланца 12. В таком положении юстировкой стопора 27 выводится длина волны λ1. Далее подвижный рычаг 19 работает по принципу "качелей ". При подаче управляющего сигнала на электромагнит 21 лазер излучает длину волны λ2, а при снятии управляющего сигнала лазер перестраивается на длину волны λ1. Дифракционная решетка 7 предварительно съюстирована таким образом, чтобы ее штрихи были параллельны оси вращения O1O2, фиг.2. Это условие является необходимым и достаточным для исключения разъюстировки штрихов дифракционной решетки относительно оптической оси резонатора при переключении длин волн. В процессе предварительной настройки дифракционной решетки 7 устанавливается расстояние между осью вращения O1O2 и оптической осью резонатора таким образом, чтобы выполнялось соотношение
Figure 00000002
где λ1, λ2 - рабочие (переключаемые) длины волн;
L1 - длина резонатора, соответствующая генерации излучения на длине волны λ1;
m - произвольное целое число;
Figure 00000003
- величина, обратная угловой дисперсии спектрально-селективного элемента. Разделение цилиндрического фланца на подвижную 17 и неподвижную 16 части позволяет в процессе оптимизации выходных параметров излучения изменить длину резонатора в небольших пределах, тем самым обеспечивая подавление нежелательных длин волн за счет улучшения его селектирующих свойств.
Притягивающий элемент, выполненный в виде пружины 26 или электромагнита (на фиг. не показан), позволяет упруго деформируемому элементу 13 преодолевать силы трения в сферических опорах 20, а также исключить потерю упругости в течение длительной эксплуатации.
Таким образом, обеспечивается юстировка и воспроизводимость углового положения дифракционной решетки в процессе переключения длин волн излучения. Разнесение взаимно перпендикулярных оптической оси резонатора и оси вращения дифракционной решетки на расстояние δ позволяет автоматически воспроизвести при перестройке с одной длины волны на другую относительное положение частоты лазерного излучения относительно центра контура усиления на каждой из длин волн, а тем самым и уровень мощности лазерного излучения.
В процессе переключения длин волн обеспечивается высокая стабильность воспроизведения уровня мощности лазерного излучения независимо от длины волны. Предлагаемые условия и конструкция лазера обеспечивают высокую стабильность и воспроизводимость его спектрально-энергетических характеристик в условиях механоклиматических воздействий.
Пример конкретной реализации изобретения.
Перестраиваемый двухволновый двухканальный со складным резонатором СО2-лазер типа LCD-10WG2TM содержит два разрядных канала, образованных керамическими пластинами и металл-диэлектрическими электродами. Активная среда (рабочая смесь газов CO2:N2:He:Xe) возбуждается ВЧ-емкостным разрядом. Выходное светоделительное зеркало расположено на механизме юстировки, представляющем собой фланец с двумя деформируемыми шейками и тремя юстировочными винтами. Механизм юстировки и цилиндрическая втулка расположены на несущем фланце с одной стороны корпуса лазера. С другой стороны на торцевом фланце расположены поворотные металлические зеркала, выполненные из молибдена. В резонаторе, образованном выходным зеркалом из ZnSe с коэффициентом пропускания 18-20% в области 9,2÷10,8 мкм, двумя поворотными зеркалами из Мо и нарезной отражательной дифракционной решеткой с постоянной 150 штр./мм и коэффициентом отражения в "-1" порядок ≈95%, возникает генерация на длине волны, соответствующей углу автоколлимации по схеме Литтрова. Для вывода излучения в опорном фланце и подвижном рычаге выполнено сквозное отверстие, расположенное напротив выходного зеркала.
Изменением угла установки дифракционной решетки добиваются генерации лазерного излучения на заданной длине волны λ1=10,784 мкм. При этом между рабочей поверхностью электромагнита (управляющий сигнал не подается) и подвижным рычагом обеспечивается зазор d1≈0,08 мм, а зазор между противоположным концом рычага и торцевой поверхностью цилиндрического фланца d2 равен нулю. При подаче на электромагнит управляющего сигнала подвижный рычаг, а следовательно, и жестко связанная с ним дифракционная решетка поворачиваются до устранения зазора d1, т.е. d1=0. В этом случае угол установки дифракционной решетки соответствует режиму генерации лазерного излучения на λ2=10,8 мкм. Расстояние между осью вращения подвижного рычага и оптической осью резонатора δ=1,26 мм и длина резонатора L1=857 мм определяются конструктивными размерами и устанавливаются в процессе сборки прибора. В этом случае при переключении генерации с λ1 на λ2 и обратно колебания мощности лазерного излучения не превышают 2-3%, что подтверждает практически сохранение относительного положения частоты излучения в контурах усиления. При отклонении δ и L1 от указанных значений колебания мощности лазерного излучения при переключении длин волн достигают 10-15%, что не приемлемо для большинства областей применения.
Геометрические размеры разрядного канала (2,2×2,2) обеспечивают одномодовый режим генерации лазерного излучения. Корпус лазера, детали механизма переключения выполнены из инварового сплава типа 36Н, декоративные элементы изготовлены из алюминиевых сплавов типа AM. Охлаждение лазера может осуществляться проточной водой либо воздухом.
Приведенный пример доказывает, что заявленное изобретение соответствует требованию "промышленная применимость" по действующему законодательству.

Claims (3)

1. Перестраиваемый двухволновый двухканальный со складным резонатором СО2-лазер, содержащий расположенный в корпусе резонатор, включающий активную среду, выходное зеркало и спектрально-селективный элемент (дифракционную решетку), установленный с возможностью изменения пространственно-углового положения, отличающийся тем, что дифракционная решетка расположена напротив первого разрядного канала в юстировочном узле, закрепленном на торце полого цилиндра, соединенного через упругодеформируемый элемент с цилиндрической втулкой, на внешней поверхности полого цилиндра размещены жестко связанные между собой подвижный рычаг и опорный фланец, зафиксированный сферическими опорами в цилиндрическом фланце, а выходное зеркало расположено на механизме юстировки между вторым разрядным каналом и сквозным отверстием, выполненным в опорном фланце и подвижном рычаге, одним концом кинематически связанным с электромагнитом, а другим с торцевой поверхностью цилиндрического фланца, состоящего из двух - подвижной и неподвижной - частей, связанных между собой резьбовым соединением, при этом неподвижная часть цилиндрического фланца закреплена по периметру несущего фланца корпуса лазера, на котором также закреплены по разные стороны оси лазера цилиндрическая втулка и механизм юстировки выходного зеркала.
2. Лазер по п.1, отличающийся тем, что расстояние между осью вращения опорного фланца в сферических опорах и оптической осью резонатора определяется выражением:
Figure 00000004
где λ1, λ2 - рабочие (переключаемые) длины волн;
L1 - длина резонатора, соответствующая генерации излучения на длине волны λ1;
m - произвольное целое число;
Figure 00000005
- величина, обратная угловой дисперсии спектрально-селективного элемента.
3. Лазер по п.1, отличающийся тем, что кинематическая связь подвижного рычага с торцевой поверхностью цилиндрического фланца осуществлена посредством закрепленных на подвижном рычаге стопора и притягивающего элемента.
RU2005102159/28A 2005-01-28 2005-01-28 Перестраиваемый двухволновый двухканальный со складным резонатором co2 лазер RU2284618C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2005102159/28A RU2284618C1 (ru) 2005-01-28 2005-01-28 Перестраиваемый двухволновый двухканальный со складным резонатором co2 лазер

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2005102159/28A RU2284618C1 (ru) 2005-01-28 2005-01-28 Перестраиваемый двухволновый двухканальный со складным резонатором co2 лазер

Publications (2)

Publication Number Publication Date
RU2005102159A RU2005102159A (ru) 2006-07-10
RU2284618C1 true RU2284618C1 (ru) 2006-09-27

Family

ID=36830359

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005102159/28A RU2284618C1 (ru) 2005-01-28 2005-01-28 Перестраиваемый двухволновый двухканальный со складным резонатором co2 лазер

Country Status (1)

Country Link
RU (1) RU2284618C1 (ru)

Also Published As

Publication number Publication date
RU2005102159A (ru) 2006-07-10

Similar Documents

Publication Publication Date Title
US5594744A (en) Singlemode laser source tunable in wavelength with a self-aligned external cavity
US7733924B2 (en) Piezo activated mode tracking system for widely tunable mode-hop-free external cavity mid-IR semiconductor lasers
US6026100A (en) External cavity-type of wavelength tunable semiconductor laser light source and method for tuning wavelength therefor
US5257279A (en) Adjustable focus technique and apparatus using a moveable weak lens
US6282213B1 (en) Tunable diode laser with fast digital line selection
US8804780B2 (en) Method for adjusting spectral line width of narrow-band laser
JPH11307864A (ja) 外部共振器型波長可変光源
EP1734624A1 (en) External cavity laser with flexure tuning element
JPH0766482A (ja) 可変波長光源
EP0491777B1 (en) Method for ascertaining mode hopping free tuning of resonance frequency and the q-value of an optical resonator and a device for carrying out the method
CN111786255A (zh) 一种稳频和稳光强双压电陶瓷调谐外腔半导体激光器
US4556979A (en) Piezoelectrically tuned short cavity dye laser
US20070127539A1 (en) Narrow band laser with wavelength stability
US6192059B1 (en) Wavelength-tunable laser configuration
US20210006038A1 (en) Optical frequency comb setup and use of an external cavity for dispersion compensation and frequency tuning
JPH11330596A (ja) 連続的に波長を調整可能な単モ―ドレ―ザ源
JP7457723B2 (ja) 外部共振器レーザ装置、対応するシステム及び方法
RU2284618C1 (ru) Перестраиваемый двухволновый двухканальный со складным резонатором co2 лазер
US3617926A (en) Laser using a cube corner reflector at one end of the discharge tube so that both cavity reflectors are at the other end to compensate for thermal distortion
RU2279166C1 (ru) Перестраиваемый двухволновый co2 лазер
US9297639B2 (en) Mechanism for movement of a mirror in an interferometer, an interferometer incorporating the same and a fourier transform spectrometer incorporating the same
Lazar et al. The design of a compact and tunable extended-cavity semiconductor laser
US20050243875A1 (en) Piezoelectric-tuned external cavity laser
JPH1168248A (ja) 外部共振器型波長可変半導体レーザ光源
RU80073U1 (ru) Перестраиваемый двухволновый со складным резонатором co2-лазер