RU2284517C2 - Method of measuring electric parameters of high-current pulse processes in electrolyte solutions and computer measurement system - Google Patents

Method of measuring electric parameters of high-current pulse processes in electrolyte solutions and computer measurement system Download PDF

Info

Publication number
RU2284517C2
RU2284517C2 RU2004112849/28A RU2004112849A RU2284517C2 RU 2284517 C2 RU2284517 C2 RU 2284517C2 RU 2004112849/28 A RU2004112849/28 A RU 2004112849/28A RU 2004112849 A RU2004112849 A RU 2004112849A RU 2284517 C2 RU2284517 C2 RU 2284517C2
Authority
RU
Russia
Prior art keywords
voltage
current
interface
electrical parameters
analog
Prior art date
Application number
RU2004112849/28A
Other languages
Russian (ru)
Other versions
RU2004112849A (en
Inventor
Анатолий Иванович Мамаев (RU)
Анатолий Иванович Мамаев
Вера Александровна Мамаева (RU)
Вера Александровна Мамаева
Валерий Николаевич Бориков (RU)
Валерий Николаевич Бориков
Тамара Ивановна Дорофеева (RU)
Тамара Ивановна Дорофеева
гин Павел Игоревич Бут (RU)
Павел Игоревич Бутягин
Original Assignee
Анатолий Иванович Мамаев
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Анатолий Иванович Мамаев filed Critical Анатолий Иванович Мамаев
Priority to RU2004112849/28A priority Critical patent/RU2284517C2/en
Publication of RU2004112849A publication Critical patent/RU2004112849A/en
Application granted granted Critical
Publication of RU2284517C2 publication Critical patent/RU2284517C2/en

Links

Images

Abstract

FIELD: measurement engineering; electrochemistry.
SUBSTANCE: method can be used for measurement and inspection of parameters when carrying different engineering process out, which processes are based onto excitation of high-voltage micro plasma discharges in solutions at pulse mode of operation. Electric parameter of high-current pulse processes are measured in solutions, which processes take part at phase border. At least polarization voltage and current are measured at parts corresponding to pulse fronts by means of computer measurement system. The system has computer connected in series with analog-to-digital converter. The latter has at least two output channels for measurement of current parameters and polarization voltage. To improve precision of measurement of signal front parameters, the system additionally has unit for biasing amplification of signal for amplitude, for example, electronic lens, which has output connected with one of inputs of analog-to-digital converter. A change in active and capacitive components of current, which goes through inspected phase border, is provided.
EFFECT: improved precision of measurement.
22 cl, 11 dwg

Description

Изобретение относится к области измерительной техники электрохимическими методами и может быть использовано для измерения и контроля параметров и управления ими, при проведении различных технологических процессов, основанных на возбуждении высоковольтных микроплазменных разрядов в растворах электролитов в импульсном режиме.The invention relates to the field of measurement technology by electrochemical methods and can be used to measure and control parameters and control them, during various technological processes based on the excitation of high-voltage microplasma discharges in electrolyte solutions in a pulsed mode.

Известен информационно-измерительный комплекс [Мамаев А.И., Рамазанова Ж.М., Бутягин П.И. и др. Информационно-измерительный комплекс для определения параметров микроплазменных процессов в растворах // Защита металлов. 1996. Т.32. №2. С.203-207.], позволяющий измерить величину активной составляющей тока и оценить емкостную составляющую тока. Блок-схема информационно-измерительного комплекса включает источник питания, позволяющий получать биполярные импульсы напряжения прямоугольной формы и предусматривающий плавную регулировку длительности, частоты, а также амплитуды тока и напряжения импульсов, измерительную аппаратуру регистрации и обработки информации, содержащую генератор синхронизирующих импульсов, аналого-цифровой преобразователь, контроллер, ЭВМ и дисплей и электродную электрохимическую систему с электродом сравнения. Данный комплекс позволяет определять величину активного тока процесса и оценивать емкостную составляющую в зависимости от времени процесса, например, с интервалом в 1 минуту. На основе величин активного тока и емкостного тока получали зависимости активного сопротивления и емкости от времени процесса.Known information-measuring complex [Mamaev A.I., Ramazanova Zh.M., Butyagin P.I. and other Information-measuring complex for determining the parameters of microplasma processes in solutions // Protection of metals. 1996.V. 32. No. 2. S.203-207.], Which allows to measure the magnitude of the active component of the current and to evaluate the capacitive component of the current. The block diagram of the information-measuring complex includes a power source that allows you to receive bipolar voltage pulses of rectangular shape and provides for smooth adjustment of the duration, frequency, and amplitude of the current and voltage of the pulses, measuring equipment for recording and processing information, containing a clock generator, an analog-to-digital converter , controller, computer and display, and electrode electrochemical system with a reference electrode. This complex allows you to determine the active current of the process and evaluate the capacitive component depending on the process time, for example, with an interval of 1 minute. Based on the values of the active current and capacitive current, the dependences of the active resistance and capacitance on the process time were obtained.

В связи с большой крутизной фронтов поляризующего импульса напряжения построить вольтамперную зависимость на описанном выше комплексе проблематично. На участке от 0 до 500 В удается получить 3-5 точек с интервалом в 100 В, что явно недостаточно для построения вольтамперных зависимостей. Для построения информативной зависимости, с точки зрения электрохимических процессов, необходимо построить вольтамперную зависимость с дискретизацией точек через 0,025 В.Due to the large steepness of the fronts of the polarizing voltage pulse, it is problematic to construct a current-voltage dependence on the complex described above. In the range from 0 to 500 V, it is possible to get 3-5 points with an interval of 100 V, which is clearly not enough to build current-voltage dependencies. To build an informative relationship, from the point of view of electrochemical processes, it is necessary to build a current-voltage dependence with the discretization of points through 0.025 V.

Перечисленные недостатки снижают возможности использования комплекса, как для проведения исследований, так и для эффективного технологического управления сильнотоковыми импульсными процессами.These shortcomings reduce the possibility of using the complex, both for research and for effective technological management of high-current pulsed processes.

Задачей настоящего изобретения является разработка способа и средств измерения, позволяющих с высокой точностью измерять электрические параметры импульсных электрохимических процессов и адекватно отображать протекающие процессы.The present invention is to develop a method and means of measurement, allowing with high accuracy to measure the electrical parameters of pulsed electrochemical processes and adequately display the ongoing processes.

Технический результат - информативные вольтамперные зависимости, позволяющие оценить в динамике активную и емкостную составляющие тока, протекающего через исследуемую границу раздела фаз.The technical result is informative current-voltage dependences, allowing to evaluate the dynamics of the active and capacitive components of the current flowing through the phase boundary under study.

Поставленная задача решается тем, что, как и в известном, в предлагаемом способе определения электрических параметров сильнотоковых импульсных процессов в растворах электролитов, протекающих на границе раздела твердый электрод - раствор электролита или на границе раздела несмешивающихся жидкостей: жидкость - раствор электролита, осуществляют поляризацию границы раздела импульсным током и измеряют электрические параметры, по крайней мере, поляризационное напряжение и ток.The problem is solved in that, as in the known, in the proposed method for determining the electrical parameters of high current pulse processes in electrolyte solutions occurring at the interface between a solid electrode - an electrolyte solution or at an interface of immiscible liquids: liquid - an electrolyte solution, the interface is polarized pulse current and measure electrical parameters, at least the polarization voltage and current.

Новым является то, что электрические параметры измеряют синхронно в моменты времени, соответствующие фронтам импульсов.What is new is that electrical parameters are measured synchronously at time instants corresponding to pulse fronts.

Кроме того, электрические параметры измеряют с частотой дискретизации не менее 2 ГГц.In addition, electrical parameters are measured with a sampling frequency of at least 2 GHz.

Кроме того, осуществляют дополнительную дискретизацию электрических параметров путем выделения исследуемой части фронта импульса и повторного измерения параметров этой части с высокой степенью разрешения по напряжению, току и частоте.In addition, an additional discretization of electrical parameters is carried out by isolating the studied part of the pulse front and re-measuring the parameters of this part with a high degree of resolution in voltage, current and frequency.

Кроме того, поляризацию границы раздела фаз осуществляют импульсами трапециевидной формы при напряжениях до 3000 В, скорости нарастания напряжения до 108 В/с и токах до 100 А.In addition, the polarization of the phase boundary is carried out by trapezoidal pulses at voltages up to 3000 V, voltage rise rates up to 10 8 V / s and currents up to 100 A.

Кроме того, измеряют электрические параметры сильнотокового импульсного процесса, такого как микроплазменный процесс, протекающего на границе раздела твердый электрод - раствор электролита.In addition, the electrical parameters of a high current pulse process, such as a microplasma process, occurring at the interface between a solid electrode and an electrolyte solution are measured.

Кроме того, используют твердый электрод, выполненный из металлов или их сплавов, выбранных из группы, состоящей из алюминия, титана, магния, циркония, тантала.In addition, a solid electrode is used made of metals or their alloys selected from the group consisting of aluminum, titanium, magnesium, zirconium, tantalum.

Кроме того, измеряют электрические параметры импульсного микроплазменного процесса при различных концентрациях составляющих компонентов раствора электролита.In addition, the electrical parameters of the pulsed microplasma process are measured at various concentrations of the constituent components of the electrolyte solution.

Кроме того, измеряют электрические параметры импульсного микроплазменного процесса при различных концентрациях добавок в электролит в виде дисперсных и коллоидных частиц.In addition, the electrical parameters of a pulsed microplasma process are measured at various concentrations of electrolyte additives in the form of dispersed and colloidal particles.

Кроме того, электрические параметры сильнотоковых импульсных процессов в растворах электролитов на границе раздела твердый электрод - раствор определяют в различные моменты времени от начала электрохимического процесса до возникновения микроплазменного процесса.In addition, the electrical parameters of high-current pulsed processes in electrolyte solutions at the solid electrode-solution interface are determined at various points in time from the start of the electrochemical process to the occurrence of the microplasma process.

Кроме того, измеряют электрические параметры импульсного процесса, проходящего на границе раздела двух несмешивающихся жидкостей, например, органическая жидкость - водный раствор электролита, при ее высоковольтной поляризации.In addition, the electrical parameters of a pulsed process taking place at the interface of two immiscible liquids, for example, an organic liquid — an aqueous electrolyte solution, are measured at its high-voltage polarization.

Кроме того, для измерения поляризационного напряжения на границе раздела используют, по крайней мере, один электрод сравнения, располагаемый в непосредственной близости границы раздела.In addition, at least one reference electrode located in the immediate vicinity of the interface is used to measure the polarization voltage at the interface.

Кроме того, определение электрических параметров проводят в режиме измерения электрических параметров одиночного импульса.In addition, the determination of electrical parameters is carried out in the measurement mode of the electrical parameters of a single pulse.

Кроме того, определение электрических параметров проводят в режиме усреднения значений электрических параметров n-го количества импульсов.In addition, the determination of electrical parameters is carried out in the mode of averaging the values of the electrical parameters of the nth number of pulses.

Кроме того, на основе измеренных значений тока и поляризационного напряжения строят циклические вольтамперные зависимости.In addition, based on the measured values of current and polarization voltage, cyclic current-voltage dependencies are built.

Кроме того, на основе построенных вольтамперных зависимостей определяют активную и емкостную составляющую тока,In addition, based on the constructed current-voltage dependencies, the active and capacitive components of the current are determined,

Кроме того, вычисляют удельное активное сопротивление границы раздела.In addition, the specific resistivity of the interface is calculated.

Поставленная задача решается также тем, что, как и известная, заявляемая компьютерная система измерения электрических параметров сильнотоковых импульсных процессов в растворах электролитов, протекающих на границе раздела твердый электрод-раствор электролита или на границе несмешивающихся жидкостей: жидкость - раствор электролита, включающая компьютер и последовательно соединенный с ним аналого-цифровой преобразователь с, по меньшей мере, четырьмя входами, два из которых предназначены для измерения поляризационного напряжения и тока, третий предназначен для измерения задающего напряжения, и, по крайней мере, один электрод сравнения, размещаемый в непосредственной близости у границы раздела, соединенный со вторым входом аналого-цифрового преобразователя, отличающаяся тем, что для повышения точности измерения параметров фронта сигнала, компьютерная система измерения дополнительно содержит блок смещения и усиления сигнала по амплитуде, например, электронную лупу, вход которой соединен с электродом сравнения, а выход соединен с первым входом аналого-цифрового преобразователя, предназначенным для измерения поляризационного напряжения с повышенным разрешением.The problem is also solved by the fact that, like the well-known, the claimed computer system for measuring the electrical parameters of high current pulse processes in electrolyte solutions occurring at the interface between a solid electrode-electrolyte solution or at the interface of immiscible liquids: liquid - an electrolyte solution that includes a computer and connected in series with it an analog-to-digital converter with at least four inputs, two of which are designed to measure polarization voltage and current , the third is designed to measure the reference voltage, and at least one reference electrode placed in the immediate vicinity of the interface connected to the second input of the analog-to-digital converter, characterized in that to increase the accuracy of measuring the parameters of the signal front, a computer measuring system additionally contains a block of bias and amplification of the signal in amplitude, for example, an electronic magnifier, the input of which is connected to the reference electrode, and the output is connected to the first input of the analog-digital converter azovatelya designed to measure the polarization voltage with high resolution.

Кроме того, электронная лупа содержит делитель напряжения, усилитель, микропроцессор и цифроаналоговый преобразователь, причем выход делителя напряжения присоединен к усилителю, к которому подключен также выход цифроаналогового преобразователя, управляющий сигнал на который подается с микропроцессора.In addition, the electronic magnifier contains a voltage divider, an amplifier, a microprocessor and a digital-to-analog converter, the output of the voltage divider being connected to an amplifier, to which a digital-to-analog converter output is also connected, to which a control signal is supplied from the microprocessor.

Кроме того, электрод сравнения, размещаемый в непосредственной близости от границы раздела, соединен с вторым входом аналого-цифрового преобразователя через делитель напряжения и с первым входом аналого-цифрового преобразователя через делитель напряжения, соединенный с электронной лупой.In addition, the reference electrode, located in the immediate vicinity of the interface, is connected to the second input of the analog-to-digital converter through a voltage divider and to the first input of the analog-to-digital converter through a voltage divider connected to an electronic magnifier.

Кроме того, система дополнительно содержит делитель напряжения, соединенный с третьим входом аналого-цифрового преобразователя и предназначенный для подключения его к одному из выходов источника питания.In addition, the system further comprises a voltage divider connected to the third input of the analog-to-digital converter and designed to connect it to one of the outputs of the power source.

Кроме того, система снабжена средством преобразования ток - напряжение, соединенным с источником питания, выход которого соединен с четвертым входом аналого-цифрового преобразователя.In addition, the system is equipped with a current-voltage conversion means connected to a power source, the output of which is connected to the fourth input of the analog-to-digital converter.

В настоящее время отсутствует серийное оборудование для измерения вольтамперных характеристик микроплазменного процесса. Исключением является разработанный ранее информационно-измерительный комплекс [Мамаев А.И., Рамазанова Ж.М., Бутягин П.И. и др. Информационно-измерительный комплекс для определения параметров микроплазменных процессов в растворах // Защита металлов. 1996. Т.32. №2. С.203-207.], позволяющий измерить величину активной составляющей тока и оценить емкостную составляющую тока. Вместе с тем построение вольтамперной зависимости проблематично в связи с низкой разрешающей способностью, т.к. измерение исследуемого сигнала проводится с частотой дискретизации 1 МГц. Это снижает возможности использования его как для проведения исследований, так и для эффективного технологического управления сильнотоковыми импульсными процессами.Currently, there is no serial equipment for measuring the current-voltage characteristics of the microplasma process. An exception is the previously developed information-measuring complex [Mamaev A.I., Ramazanova Zh.M., Butyagin P.I. and other Information-measuring complex for determining the parameters of microplasma processes in solutions // Protection of metals. 1996.V. 32. No. 2. S.203-207.], Which allows to measure the magnitude of the active component of the current and to evaluate the capacitive component of the current. However, the construction of the current-voltage dependence is problematic due to the low resolution, because the measurement of the investigated signal is carried out with a sampling frequency of 1 MHz. This reduces the possibility of using it both for research and for effective technological control of high current pulse processes.

Особый интерес для исследования сильнотоковых электрохимических процессов, например, микроплазменных процессов, протекающих в растворах на границе раздела сред, представляют участки графиков, соответствующие фронтам импульсов, так как они позволяют получать циклические вольтамперные зависимости, которые являются основными в исследовании электрохимических процессов. Информативность вольтамперных характеристик зависит от разрешающей способности.Of particular interest for studying high-current electrochemical processes, for example, microplasma processes occurring in solutions at the interface, are the graph sections corresponding to the pulse fronts, since they allow one to obtain cyclic current-voltage dependences, which are the main ones in the study of electrochemical processes. The information content of the current-voltage characteristics depends on the resolution.

Заявляемая компьютерная система измерения, являющаяся дальнейшим усовершенствованием известного измерительного комплекса (ИИК), за счет своей высокой разрешающей способности (частота дискретизации сигнала 2 ГГц) позволяет реализовать измерение формы высоковольтного сигнала электрохимической ячейки, выявить изменения формы электрических сигналов микроплазменных процессов, например, в случае границы раздела твердый электрод - раствор (нанесение покрытия в режиме микродугового оксидирования) от состава электролита, времени процесса нанесения покрытия и материала твердого (рабочего) электрода (образца).The inventive computer measurement system, which is a further improvement of the known measuring complex (IIC), due to its high resolution (sampling frequency of the signal 2 GHz) allows to measure the shape of the high-voltage signal of the electrochemical cell, to identify changes in the shape of the electrical signals of microplasma processes, for example, in the case of the boundary section solid electrode - solution (coating in microarc oxidation mode) on the electrolyte composition, process time aneseniya coating and the solid material (working) electrode (sample).

Получить дополнительную дискретизацию сигнала позволяет использование в предлагаемом изобретении электронного увеличения, т.е. возможно более детально исследовать любую выделенную область потенциалов. Так, на фиг.6 электронная лупа просматривает участок сигнала на уровне 2825 В поляризующего напряжения UП. При этом часть рассматриваемого сигнала увеличена в 25 раз.To obtain additional sampling of the signal allows the use in the present invention of electronic magnification, i.e. it is possible to examine in more detail any selected region of potentials. So, in Fig.6, an electronic magnifier looks at the signal at a level of 2825 V polarizing voltage U P Moreover, part of the signal under consideration is increased by 25 times.

Поскольку трапециевидный импульс тока имеет участок с линейным возрастанием напряжения, участок с постоянным напряжением и линейно убывающим напряжением, удается получить вольтамперную зависимость для возрастающего напряжения и убывающего напряжения. На участке трапециевидного импульса напряжения, где не происходит изменение напряжения, фиксируется активный ток процесса, соответствующий амплитуде импульса напряжения. Для расчета удельного активного сопротивления Ra величина измеренного тока делится на величину поверхности образца, т.е. определяется плотность тока при максимальном значении напряжения (фиг.8), соответствующем амплитуде импульса напряжения, одновременно оценивается удельный емкостной ток.Since the trapezoidal current pulse has a section with a linear increase in voltage, a section with a constant voltage and a linearly decreasing voltage, it is possible to obtain a current-voltage dependence for an increasing voltage and a decreasing voltage. In the area of the trapezoidal voltage pulse, where the voltage does not change, the active process current corresponding to the amplitude of the voltage pulse is recorded. To calculate the specific active resistance Ra, the measured current is divided by the value of the surface of the sample, i.e. the current density is determined at the maximum voltage value (Fig. 8) corresponding to the amplitude of the voltage pulse; at the same time, the specific capacitive current is estimated.

Поскольку форма задающего поляризационного импульса измеряется с частотой дискретизации 2 ГГц, можно определить величину скорости изменения потенциала ∂U/∂t и оценить величину псевдоемкости по формуле:Since the shape of the driving polarization pulse is measured with a sampling frequency of 2 GHz, we can determine the magnitude of the rate of change of the potential ∂U / ∂t and estimate the pseudocapacity by the formula:

Figure 00000002
Figure 00000002

Возможность вычисления на базе измеренных значений удельного активного сопротивления и удельной емкости воспроизводит и превосходит возможности известного ИИК, но в более удобной форме. Новая компьютерная система измерения позволяет определить активную и емкостную составляющие тока в зависимости от напряжения за время одного импульса. Известный ИИК позволяет оценивать величину емкости и получать величину активного тока, причем только одно значение за импульс при максимальном значении напряжения.The ability to calculate on the basis of the measured values of specific resistivity and specific capacitance reproduces and exceeds the capabilities of the well-known IIC, but in a more convenient form. The new computer-based measurement system allows you to determine the active and capacitive components of the current depending on the voltage during one pulse. The well-known IIC allows you to evaluate the value of the capacitance and obtain the value of the active current, and only one value per pulse at the maximum voltage value.

Как мы отметили выше, предлагаемая система позволяет получать много значений измеренных напряжений и токов на восходящих и нисходящих фронтах, а именно эти участки отвечают за кинетику процесса.As we noted above, the proposed system allows one to obtain many values of the measured voltages and currents at ascending and descending fronts, namely these sections are responsible for the kinetics of the process.

Определение величины активного и емкостного токов основывается на трапециевидном импульсе напряжения. Величина тока на восходящей части фронта импульса определяется соотношением:The determination of the magnitude of the active and capacitive currents is based on a trapezoidal voltage pulse. The current value on the ascending part of the pulse front is determined by the ratio:

Figure 00000003
Figure 00000003

на нисходящей части фронта импульсаon the downward part of the pulse front

Figure 00000004
Figure 00000004

Величина

Figure 00000005
на восходящей части импульса совпадает по величине с величиной
Figure 00000006
на нисходящей части фронта импульса при симметричном трапециевидном импульсе поляризующего напряжения, но имеют разные знаки:Value
Figure 00000005
on the ascending part of the pulse coincides in magnitude with the magnitude
Figure 00000006
on the descending part of the pulse front with a symmetrical trapezoidal pulse of polarizing voltage, but have different signs:

Figure 00000007
Figure 00000007

Сложение вольтамперных зависимостей (1), полученных на восходящей части импульса и нисходящей части импульса (2):The addition of the current-voltage dependences (1) obtained on the ascending part of the pulse and the descending part of the pulse (2):

Figure 00000008
Figure 00000008

позволяет получить зависимость активного тока от напряжения.allows you to get the dependence of the active current on voltage.

Вычитание из вольтамперной зависимости (1) вольтамперной зависимости (2):Subtraction from the current-voltage dependence (1) of the current-voltage dependence (2):

Figure 00000009
Figure 00000009

позволяет определить зависимость емкостного тока от напряжения.allows you to determine the dependence of capacitive current on voltage.

Поскольку нам известна зависимость напряжения от времени, можно определить величину ∂U(φ)/∂t=f(φ). Это позволяет определить зависимость величины удельной емкости от напряжения. Таким образом, полученная циклическая вольтамперная зависимость при симметричном трапециевидном поляризующем импульсе напряжения дает возможность определить зависимость активного тока от напряжения и емкости от напряжения.Since we know the dependence of voltage on time, we can determine the value ∂U (φ) / ∂t = f (φ). This allows you to determine the dependence of the specific capacitance on the voltage. Thus, the obtained cyclic current-voltage dependence with a symmetrical trapezoidal polarizing voltage pulse makes it possible to determine the dependence of the active current on voltage and capacitance on voltage.

Особо следует отметить, что для построения вольтамперных зависимостей нами измеряется поляризационное напряжение. Для измерения поляризационного напряжения нами в приэлектродный слой (место исследования) вводится электрод сравнения - стандартный платиновый сферический электрод ЭПЛ-02, а поляризационное напряжение измеряется между рабочим электродом (твердый электрод) и электродом сравнения (для случая границы раздела твердый электрод - раствор) (фиг.3а).It should be especially noted that to construct the current-voltage dependences, we measure the polarization voltage. To measure the polarization voltage, we introduce a reference electrode — an EPL-02 standard platinum spherical electrode — into the near-electrode layer (the study site), and the polarization voltage is measured between the working electrode (solid electrode) and the reference electrode (for the case of the solid electrode – solution interface) (Fig. .3a).

Для измерений вольтамперных зависимостей на границе раздела двух жидких фаз, например (октан - водный 1М Н3PO4), может использоваться как трехэлектродная система с одним электродом сравнения, так и четырехэлектродная система с двумя электродами сравнения. Для измерения поляризационного напряжения границы раздела в случае трехэлектродной системы электрод сравнения размещают только в органической фазе. В случае четырехэлектродной системы поляризационное напряжение может быть определено по разности потенциалов электродов сравнения, находящихся в водной и органической фазах. Для этого один из электродов сравнения, находящийся в водной фазе, может быть подключен в разъем рабочего вспомогательного электрода схемы (на фиг.3б) позиция 14).To measure the current-voltage dependences at the interface between two liquid phases, for example (octane - water 1M Н 3 PO 4 ), a three-electrode system with one reference electrode can be used, as well as a four-electrode system with two reference electrodes. To measure the polarization voltage of the interface in the case of a three-electrode system, the reference electrode is placed only in the organic phase. In the case of a four-electrode system, the polarization voltage can be determined by the potential difference of the reference electrodes in the aqueous and organic phases. For this, one of the reference electrodes located in the aqueous phase can be connected to the connector of the working auxiliary electrode of the circuit (in Fig. 3b) position 14).

Сущность изобретения в дальнейшем поясняется чертежами:The invention is further illustrated by the drawings:

на фиг.1 приведена блок-схема компьютерной системы;figure 1 shows a block diagram of a computer system;

на фиг.2 - блок-схема электронной лупы;figure 2 is a block diagram of an electronic magnifier;

на фиг.3 - блок-схема проведения измерений с использованием компьютерной измерительной системы: фиг.3а; проведение измерений на границе раздела твердый электрод - раствор, фиг.3б - проведение измерений на границе раздела жидкость - раствор электролита;figure 3 is a block diagram of measurements using a computer measuring system: figa; taking measurements at a solid electrode – solution interface; FIG. 3b — taking measurements at a liquid – electrolyte interface;

на фиг.4 - форма напряжения и тока микроплазменного процесса при нанесении покрытия на образец, выполненный из алюминиевого сплава;figure 4 - the voltage and current of the microplasma process when coating a sample made of aluminum alloy;

на фиг.5 - форма напряжения, разворачиваемого электронной лупой;figure 5 is a form of voltage deployed by an electronic magnifier;

на фиг.6 - работа электронной лупы;figure 6 - the work of an electronic magnifier;

на фиг.7 - вольтамперная зависимость алюминиевого сплава 2021 от концентрации;figure 7 - current-voltage dependence of the aluminum alloy 2021 from concentration;

на фиг.8 - вольтамперная зависимость алюминиевого сплава 2021 от времени процесса нанесения покрытия;on Fig - current-voltage dependence of the aluminum alloy 2021 from the time of the coating process;

на фиг.9 - вольтамперная зависимость в начальный момент времени микроплазменного процесса от состава материала электрода;figure 9 - current-voltage dependence at the initial time of the microplasma process on the composition of the electrode material;

на фиг.10 - вольтамперная зависимость импульсного микроплазменного процесса на титановом сплаве ВТ-5 при различных концентрациях добавок в электролит в виде дисперсных и коллоидных частиц;figure 10 - current-voltage dependence of the pulsed microplasma process on the titanium alloy VT-5 at various concentrations of additives in the electrolyte in the form of dispersed and colloidal particles;

На фиг.11 - вольтамперная зависимость на границе раздела двух несмешивающихся жидкостей (жидких фаз).Figure 11 - current-voltage dependence at the interface of two immiscible liquids (liquid phases).

На фиг.1 изображена блок-схема заявляемой компьютерной системы. Система содержит делитель напряжения (1:100) 1 для измерения напряжения источника питания (задающего напряжения), для измерения поляризационного напряжения исследуемой границы раздела содержит делитель напряжения (1:100) 2; и делитель напряжения (1:100) 3, соединенный с электронной лупой 4; для измерения тока содержит преобразователь ток - напряжение 5, выходы которых присоединены к входам аналого-цифрового преобразователя (АЦП) 6, данные с которого поступают на компьютер 7. Электрод сравнения 8 соединен с одним из входов АЦП в одном случае через делитель 3 и электронную лупу 4, во втором случае через делитель 2.Figure 1 shows a block diagram of the inventive computer system. The system contains a voltage divider (1: 100) 1 for measuring the voltage of the power source (set voltage), for measuring the polarization voltage of the investigated interface contains a voltage divider (1: 100) 2; and a voltage divider (1: 100) 3 connected to an electronic magnifier 4; for measuring current, it contains a current-voltage converter 5, the outputs of which are connected to the inputs of an analog-to-digital converter (ADC) 6, the data from which are sent to a computer 7. A reference electrode 8 is connected to one of the ADC inputs in one case through a divider 3 and an electronic magnifier 4, in the second case through divider 2.

В качестве делителей напряжения используются штатные делители осциллографа фирмы Tektronix P-5100, щуп токовый Tektronix A-622, а в качестве АЦП четырехканальный осциллограф фирмы Tektronix TDS2024.Tektronix P-5100 standard oscilloscope dividers, Tektronix A-622 current probe, and four-channel Tektronix TDS2024 oscilloscope as an ADC are used as voltage dividers.

Блок-схема электронной лупы представлена на фиг.2. Входной сигнал с помощью делителя напряжения (1:3) 9 и усилителя 10 (использован УД26) нормируется до напряжения 10В, а цифроаналоговый преобразователь 11 создает напряжение смещения UСМ для входного сигнала. С выхода усилителя 10 на вход аналого-цифрового преобразователя 6 поступает часть входного сигнала, определяемого напряжением смещения. Усилитель 10 выполняет функции электронных ворот, ограничивающих выходной сигнал в пределах напряжения питания усилителя и смещающих исследуемый участок входного сигнала к напряжению 0 В, так как АЦП 6 системы позволяет просматривать с большим разрешением только сигналы относительно нулевого напряжения. В результате, задавая различное напряжение смещения, можно просматривать различные участки электрических сигналов электрохимической системы с большим разрешением АЦП 6 в пределах напряжения смещения. В схеме использован микропроцессор 12 марки AT90S8515. Цифроаналоговый преобразователь (ЦАП) 11 собран на микросхеме фирмы Analog Devices AD660 и представляет собой 16-разрядный ЦАП. С помощью данного ЦАП можно задавать напряжение с дискретностью Δ=10В/(216)=152 мкВ. Учитывая коэффициент входного делителя 1:100 и коэффициент нормирующего усилителя 3, просмотр входного напряжения в 3000 В можно осуществлять через каждые 50 мВ. Дискретность измерения же определяется чувствительностью цифрового осциллографа, используемого в качестве АЦП. Так к примеру, при установке чувствительности 5 мВ/дел и при этом 8-разрядном разрешении можно просматривать участок сигнала в 12 В с дискретностью 50 мВ (фиг.5.). Используя чувствительность АЦП 2 мВ/дел, можно увеличить дискретность измерения.The block diagram of the electronic magnifier is shown in Fig.2. The input signal using a voltage divider (1: 3) 9 and an amplifier 10 (used UD26) is normalized to a voltage of 10V, and the digital-to-analog converter 11 creates a bias voltage U СМ for the input signal. From the output of the amplifier 10, the input of the analog-to-digital converter 6 receives a part of the input signal determined by the bias voltage. The amplifier 10 performs the functions of an electronic gate, limiting the output signal within the supply voltage of the amplifier and biasing the studied section of the input signal to a voltage of 0 V, since the ADC 6 of the system allows you to view with high resolution only signals relative to zero voltage. As a result, by setting different bias voltages, one can view different sections of the electrical signals of the electrochemical system with a high resolution of the ADC 6 within the bias voltage. The circuit used microprocessor 12 brand AT90S8515. The digital-to-analog converter (DAC) 11 is assembled on a chip from Analog Devices AD660 and is a 16-bit DAC. Using this DAC, you can set the voltage with a resolution of Δ = 10V / (2 16 ) = 152 μV. Given an input divider ratio of 1: 100 and a normalizing amplifier coefficient of 3, viewing an input voltage of 3000 V can be done every 50 mV. The measurement resolution is determined by the sensitivity of the digital oscilloscope used as an ADC. So, for example, when setting the sensitivity to 5 mV / div and with this 8-bit resolution, you can view the 12 V signal section with a resolution of 50 mV (Fig. 5). Using the sensitivity of the ADC 2 mV / div, you can increase the resolution of the measurement.

Представление информации в виде графиков тока и напряжения осуществляется программным обеспечением "WaveStar", поставляемого в комплекте с осциллографом.Presentation of information in the form of graphs of current and voltage is carried out by the software "WaveStar", which is supplied with the oscilloscope.

Управление ЦАП осуществляется через второй асинхронный последовательный интерфейс RS232 компьютера 7.The DAC is controlled through the second asynchronous RS232 serial interface of computer 7.

Напряжение смещения вводится с клавиатуры компьютера и автоматически передается в блок электронной лупы.The bias voltage is entered from the computer keyboard and is automatically transmitted to the electronic magnifier unit.

Система работает следующим образом.The system operates as follows.

На фиг.3а) приведена блок-схема проведения измерений с использованием предлагаемой компьютерной системы измерения на границе раздела твердый электрод - раствор электролита.On figa) shows a block diagram of measurements using the proposed computer measurement system at the interface between a solid electrode and an electrolyte solution.

Проводили измерение параметров: I, U, UП, UП* в электрохимической ячейке, в которой в качестве твердого электрода 13 использовали образцы, выполненные из алюминиевого сплава 2021, АМ60В, Амц, АМг, AZ91D, Д16 и титанового сплава ВТ-5, с площадью поверхности 8 см2. Вспомогательный электрод 14 - корпус ванны выполняли из нержавеющей стали с площадью поверхности 8 дм2. Для проведения корректных измерений UП и UП* использовали стандартный платиновый электрод сравнения ЭПЛ-02 (8), который размещали в непосредственной близости у границы раздела.The parameters were measured: I, U, U P , U P * in an electrochemical cell, in which samples made of aluminum alloy 2021, AM60V, Amts, AMg, AZ91D, D16 and titanium alloy VT-5 were used as solid electrode 13, with a surface area of 8 cm 2 . Auxiliary electrode 14 - the bath body was made of stainless steel with a surface area of 8 dm 2 . To carry out the correct measurements of U P and U P *, a standard EPL-02 platinum reference electrode (8) was used, which was placed in close proximity to the interface.

Генератор импульсов ГИ (источник питания для поляризации исследуемой границы раздела в экспериментальных условиях.) формирует импульсы трапециевидной формы с напряжением от 0 В до 3 кВ с частотой от 0 Гц до 10 кГц и диапазоном изменения длительности импульсов от 10 до 2000 мкс.The GI pulse generator (a power source for polarizing the studied interface under experimental conditions.) Generates trapezoidal pulses with a voltage of 0 V to 3 kV with a frequency of 0 Hz to 10 kHz and a pulse duration range of 10 to 2000 μs.

Для проведения измерений импульсы напряжения на образец (твердый электрод 13), размещенный в ванне 14 с электролитом, подавали длительностью 200 мкс.For measurements, voltage pulses were applied to a sample (solid electrode 13) placed in a bath 14 with an electrolyte for a duration of 200 μs.

Основа электролита - трехкомпонентный фосфатно-боратный электролит с добавками борной кислоты различной концентрации: от 6; 2 до 27 г/л.The basis of the electrolyte is a three-component phosphate-borate electrolyte with additives of boric acid of various concentrations: from 6; 2 to 27 g / l.

Задающее напряжение U с генератора импульсов ГИ подается через делитель напряжения (1:100) 1 на один из четырех входов (на фиг.1 третий вход) аналого-цифрового преобразователя (АЦП) 6 и позволяет контролировать напряжение, подаваемое на твердый электрод 13. Поляризационное напряжение на электроде сравнения 8 - Uп подается в одном случае через делитель напряжения (1:100) 2 на второй вход АЦП для измерения параметров напряжения с грубым разрешением, а во втором случае (UП*) через делитель (1:100) 3 на электронную лупу 4 для измерения параметров напряжения с повышенным разрешением. Электронная лупа 4 производит смещение исследуемой части измеряемого сигнала к напряжению 0 В и подает этот сигнал на первый вход АЦП 6. На четвертый вход АЦП подается напряжение от преобразователя ток - напряжение 5, которое прямо пропорционально току, протекающему в электрохимической системе.The voltage U from the pulse generator GI is supplied through a voltage divider (1: 100) 1 to one of the four inputs (figure 1, the third input) of the analog-to-digital converter (ADC) 6 and allows you to control the voltage supplied to the solid electrode 13. Polarization the voltage at the reference electrode 8 - U p is supplied in one case through a voltage divider (1: 100) 2 to the second input of the ADC to measure the voltage parameters with a coarse resolution, and in the second case (U P *) through the divider (1: 100) 3 on an electronic magnifier 4 for measuring voltage parameters with high resolution. An electronic magnifier 4 biases the studied part of the measured signal to a voltage of 0 V and supplies this signal to the first input of the ADC 6. The fourth input of the ADC is supplied with voltage from the current-voltage converter 5, which is directly proportional to the current flowing in the electrochemical system.

Компьютерная система измерения (КСИ) производит измерение напряжения U, поступающего с ГИ на образец поляризационного напряжения Uп и Uп*, снимаемого с электрода сравнения 8, и тока микроплазменного процесса I, снимаемого при помощи бесконтактного преобразователя ток - напряжение 5. Uп и Uп* являются одним и тем же напряжением, но Uп используется для измерения сигнала с грубым разрешением, а Uп* - с точным разрешением.The computer measurement system (CSI) measures the voltage U supplied from the GU to the sample of the polarization voltage U p and U p * taken from the reference electrode 8 and the microplasma process current I taken using a non-contact current-voltage converter 5. U p and U p * are the same voltage, but U p is used to measure the signal with coarse resolution, and U p * - with the exact resolution.

Все четыре сигнала оцифровываются восемью разрядами и передаются в компьютер через асинхронный последовательный интерфейс RS232 либо через скоростной приборный интерфейс GPIB (фиг.1). В результате работы системы в компьютер вводятся одновременно данные, соответствующие поляризационному напряжению на границе раздела (фиг.3), и данные тока, соответствующие входному сигналу напряжения (задающее напряжение), протекающего через электрохимическую систему в моменты времени, соответствующие фронтам импульсов.All four signals are digitized by eight bits and transmitted to the computer via an asynchronous serial interface RS232 or through a high-speed instrument interface GPIB (figure 1). As a result of the system’s operation, data corresponding to the polarization voltage at the interface (Fig. 3) and current data corresponding to the input voltage signal (voltage setting) flowing through the electrochemical system at time moments corresponding to pulse fronts are simultaneously entered into the computer.

Измерение проводили в режиме усреднения значений электрических параметров 128 импульсов.The measurement was carried out in the mode of averaging the electrical parameters of 128 pulses.

Данные поступают в память компьютера, где производится построение вольтамперных зависимостей и вычисление удельного активного сопротивления и удельной емкости.The data enter the computer’s memory, where the current-voltage dependences are built and the specific resistivity and specific capacitance are calculated.

На фиг.7 приведена вольтамперная зависимость алюминиевого сплава 2021 от концентрации электролита, г/л: 1 - 6; 2 - 18; 3 - 27.Figure 7 shows the current-voltage dependence of the aluminum alloy 2021 on the concentration of the electrolyte, g / l: 1 - 6; 2 to 18; 3 - 27.

На фиг.8 приведена вольтамперная зависимость алюминиевого сплава 2021 от времени процесса нанесения покрытия процесса нанесения покрытия, мин: 1 - 0; 2 - 1; 3 - 2; 4 - 3; 5 - 4; 6 - 5.On Fig shows the current-voltage dependence of the aluminum alloy 2021 from the time of the coating process of the coating process, min: 1 - 0; 2 to 1; 3 to 2; 4 to 3; 5 to 4; 6 - 5.

На фиг.9 приведена вольтамперная зависимость в начальный момент времени микроплазменного процесса от состава материала образца: 1 - 2021; 2 - АМ60В; 3 - АМц, 4 - АМг; 5 - AZ91D; 6 - Д1 и показаны значения величины активного и емкостного тока Ia и Ic, на основании которых можно вычислить значение активного сопротивления границы раздела в определенные моменты времени.Figure 9 shows the current-voltage dependence at the initial time of the microplasma process on the composition of the sample material: 1 - 2021; 2 - AM60V; 3 - AMts, 4 - AMg; 5 - AZ91D; 6 - D1 and shows the values of the active and capacitive currents Ia and Ic, based on which it is possible to calculate the value of the active resistance of the interface at certain points in time.

На фиг.10а) приведена вольтамперная зависимость на титановом сплаве ВТ-5 в растворе КОН с добавками различных веществ: 1 - гидроксиапатит; 2 - флюорат кальция; 3 - глюконат кальция и Na3PO4.Figure 10a) shows the current-voltage dependence on the VT-5 titanium alloy in a KOH solution with additives of various substances: 1 - hydroxyapatite; 2 - calcium fluorate; 3 - calcium gluconate and Na 3 PO 4 .

На фиг.10б) приведена вольтамперная зависимость на титановом сплаве ВТ-5 в растворе Н3PO4 с добавками различных веществ: 1 - гидроксиапатит; 2 - Са3(PO4)2; 3 - глюконат кальция.On figb) shows the current-voltage dependence on the titanium alloy VT-5 in a solution of H 3 PO 4 with additives of various substances: 1 - hydroxyapatite; 2 - Ca 3 (PO 4 ) 2 ; 3 - calcium gluconate.

На фиг.3б) приведена блок-схема проведения измерений с использованием компьютерной измерительной системы на границе раздела жидкость - раствор электролита.On figb) shows a block diagram of measurements using a computer measuring system at the interface of the liquid - electrolyte solution.

Проводили измерение параметров I, U, UП, UП* трехэлектродной электрохимической системы жидкость октан - водный 1М Н3PO4. Для проведения корректных измерений Uп использовали также стандартный платиновый электрод сравнения ЭПЛ-02, размещаемый в непосредственной близости у границы раздела в органической фазе.We measured the parameters I, U, U P , U P * of the three-electrode electrochemical system liquid octane - water 1M Н 3 PO 4 . To carry out correct measurements of U p , we also used the standard EPL-02 platinum reference electrode placed in the immediate vicinity of the interface in the organic phase.

Измерение также проводили в режиме усреднения значений электрических параметров 128 импульсов.The measurement was also carried out in the mode of averaging the electrical parameters of 128 pulses.

На фиг.11 приведены циклические вольтамперные характеристики на границе раздела октан - водный 1М Н3PO4 при различном значении амплитуды напряжения, В: 1 - 400, 2 - 300, 3 - 200.Figure 11 shows the cyclic current-voltage characteristics at the octane-water interface 1M Н 3 PO 4 at different voltage amplitudes, V: 1 - 400, 2 - 300, 3 - 200.

Таким образом, предлагаемая компьютерная система за счет высокой степени разрешения по напряжению и по частоте позволяет регистрировать значения тока и поляризационного напряжения на крутых фронтах импульса и соответственно строить циклические вольтамперные зависимости в режиме усреднения и в течение одного импульса напряжения, позволяет вычислить активную и емкостную составляющие тока для любых сильнотоковых импульсных процессов.Thus, the proposed computer system, due to the high degree of resolution in voltage and frequency, makes it possible to record the current and polarization voltage values at steep pulse edges and, accordingly, construct cyclic current-voltage dependences in the averaging mode and during one voltage pulse, allows us to calculate the active and capacitive components of the current for any high current pulse processes.

Claims (21)

1. Способ определения электрических параметров сильнотоковых импульсных процессов в растворах электролитов, протекающих на границе раздела твердый электрод-раствор электролита или на границе раздела несмешивающихся жидкостей: жидкость - раствор электролита, включающий поляризацию границы раздела импульсным током и измерение электрических параметров, по крайней мере, поляризационного напряжения и тока, отличающийся тем, что электрические параметры измеряют синхронно в моменты времени, соответствующие фронтам импульсов.1. A method for determining the electrical parameters of high-current pulsed processes in electrolyte solutions occurring at a solid electrode-electrolyte interface or at an interface of immiscible liquids: a liquid is an electrolyte solution that includes polarization of the interface by a pulsed current and measurement of electrical parameters, at least polarizing voltage and current, characterized in that the electrical parameters are measured synchronously at times corresponding to the fronts of the pulses. 2. Способ по п.1, отличающийся тем, что электрические параметры измеряют с частотой дискретизации не менее 2 ГГц.2. The method according to claim 1, characterized in that the electrical parameters are measured with a sampling frequency of at least 2 GHz. 3. Способ по п.1 или 2, отличающийся тем, что осуществляют дополнительную дискретизацию электрических параметров путем выделения исследуемой части фронта импульса и повторного измерения параметров этой части с высокой степенью разрешения по напряжению, току и частоте.3. The method according to claim 1 or 2, characterized in that they further discretize the electrical parameters by isolating the studied part of the pulse front and re-measuring the parameters of this part with a high degree of resolution in voltage, current and frequency. 4. Способ по п.1, отличающийся тем, что поляризацию границы раздела осуществляют импульсами трапециевидной формы при напряжениях до 3000 В, скорости нарастания напряжения до 108 В/с и токах до 100 А.4. The method according to claim 1, characterized in that the polarization of the interface is carried out by trapezoidal pulses at voltages up to 3000 V, voltage rise rates up to 10 8 V / s and currents up to 100 A. 5. Способ по п.1, отличающийся тем, что определяют электрические параметры сильнотокового импульсного процесса, такого как микроплазменного процесса, протекающего на границе раздела твердый электрод-раствор электролита.5. The method according to claim 1, characterized in that the electrical parameters of a high current pulse process, such as a microplasma process, occurring at the interface between a solid electrode and an electrolyte solution are determined. 6. Способ по п.5, отличающийся тем, что используют твердый электрод, выполненный из металлов или их сплавов, выбранных из группы, состоящей из алюминия, титана, магния, циркония, тантала.6. The method according to claim 5, characterized in that they use a solid electrode made of metals or their alloys selected from the group consisting of aluminum, titanium, magnesium, zirconium, tantalum. 7. Способ по п.5 или 6, отличающийся тем, что электрические параметры импульсного микроплазменного процесса определяют при различных концентрациях составляющих компонентов раствора электролита.7. The method according to claim 5 or 6, characterized in that the electrical parameters of the pulsed microplasma process are determined at various concentrations of the constituent components of the electrolyte solution. 8. Способ по п.7, отличающийся тем, что электрические параметры импульсного микроплазменного процесса определяют при различных концентрациях добавок в раствор электролита в виде дисперсных и коллоидных частиц.8. The method according to claim 7, characterized in that the electrical parameters of the pulsed microplasma process are determined at various concentrations of additives in the electrolyte solution in the form of dispersed and colloidal particles. 9. Способ по п.1, отличающийся тем, что электрические параметры сильнотоковых импульсных процессов в растворах электролитов на границе раздела твердый электрод-раствор электролита определяют в различные моменты времени от начала электрохимического процесса до возникновения микроплазменного процесса.9. The method according to claim 1, characterized in that the electrical parameters of high-current pulsed processes in electrolyte solutions at the interface between a solid electrode and an electrolyte solution are determined at various points in time from the start of the electrochemical process to the occurrence of the microplasma process. 10. Способ по п.1, отличающийся тем, что измеряют электрические параметры импульсного процесса, проходящего на границе раздела двух несмешивающихся жидкостей, например органическая жидкость-водный раствор электролита, при ее высоковольтной поляризации.10. The method according to claim 1, characterized in that the electrical parameters of the pulse process taking place at the interface of two immiscible liquids, for example, an organic liquid-aqueous electrolyte solution, are measured at its high-voltage polarization. 11. Способ по п.1, отличающийся тем, что для измерения поляризационного напряжения на границе раздела используют, по крайней мере, один электрод сравнения, располагаемый в непосредственной близости границы раздела.11. The method according to claim 1, characterized in that for measuring the polarization voltage at the interface, use at least one reference electrode located in the immediate vicinity of the interface. 12. Способ по п.1, отличающийся тем, что определение электрических параметров проводят в режиме измерения электрических параметров одиночного импульса.12. The method according to claim 1, characterized in that the determination of electrical parameters is carried out in the measurement mode of the electrical parameters of a single pulse. 13. Способ по п.1, отличающийся тем, что определение электрических параметров проводят в режиме усреднения измеренных значений электрических параметров n-го количества импульсов.13. The method according to claim 1, characterized in that the determination of electrical parameters is carried out in the mode of averaging the measured values of the electrical parameters of the n-th number of pulses. 14. Способ по п.1, отличающийся тем, что на основе определенных значений тока и поляризационного напряжения строят циклические вольтамперные зависимости.14. The method according to claim 1, characterized in that on the basis of certain values of current and polarization voltage, cyclic current-voltage dependencies are built. 15. Способ по п.14, отличающийся тем, что на основе построенных вольтамперных зависимостей определяют активную и емкостную составляющую тока.15. The method according to 14, characterized in that on the basis of the constructed current-voltage dependencies determine the active and capacitive component of the current. 16. Способ по п.15, отличающийся тем, что на основе определенного значения активной составляющей тока вычисляют удельное активное сопротивление границы раздела фаз.16. The method according to clause 15, characterized in that on the basis of a certain value of the active component of the current calculate the specific active resistance of the phase boundary. 17. Компьютерная система измерения электрических параметров сильнотоковых импульсных процессов в растворах электролитов, протекающих на границе раздела твердый электрод-раствор электролита или на границе несмешивающихся жидкостей: жидкость-раствор электролита, включающая компьютер и последовательно соединенный с ним аналого-цифровой преобразователь с, по меньшей мере, четырьмя входами, два из которых предназначены для измерения поляризационного напряжения и тока, третий для измерения задающего напряжения и, по крайней мере, один электрод сравнения, размещаемый в непосредственной близости у границы раздела, соединенный со вторым входом аналого-цифрового преобразователя, отличающаяся тем, что для повышения точности измерения параметров фронта сигнала компьютерная система измерения дополнительно содержит блок смещения и усиления сигнала по амплитуде, например электронную лупу, вход которой соединен с электродом сравнения, а выход соединен с первым входом аналого-цифрового преобразователя, предназначенным для измерения поляризационного напряжения с повышенным разрешением.17. Computer system for measuring the electrical parameters of high-current pulse processes in electrolyte solutions occurring at the interface between a solid electrode-electrolyte solution or at the interface of immiscible liquids: a liquid-electrolyte solution comprising a computer and an analog-to-digital converter connected in series with it, at least , four inputs, two of which are designed to measure polarization voltage and current, the third to measure the reference voltage and at least one ele A comparison electrode located in the immediate vicinity of the interface connected to the second input of an analog-to-digital converter, characterized in that, to increase the accuracy of measuring the parameters of the signal front, the computer measurement system further comprises an amplitude offset and amplification unit, for example, an electronic magnifier, the input of which connected to the reference electrode, and the output connected to the first input of the analog-to-digital Converter, designed to measure the polarization voltage with increased p Permissions. 18. Компьютерная система по п.17, отличающаяся тем, что электронная лупа содержит делитель напряжения, усилитель, микропроцессор и цифроаналоговый преобразователь, причем выход делителя напряжения присоединен к усилителю, к которому подключен также выход цифроаналогового преобразователя, управляющий сигнал, на который подается с микропроцессора.18. The computer system according to 17, characterized in that the electronic magnifier contains a voltage divider, amplifier, microprocessor and digital-to-analog converter, and the output of the voltage divider is connected to an amplifier, to which is also connected the output of the digital-to-analog converter, a control signal to which is supplied from the microprocessor . 19. Компьютерная система по п.17, отличающаяся тем, что электрод сравнения, размещаемый в непосредственной близости от границы раздела, соединен с вторым входом аналого-цифрового преобразователя через делитель напряжения и с первым входом аналого-цифрового преобразователя через делитель напряжения, соединенный с электронной лупой.19. The computer system according to 17, characterized in that the reference electrode placed in the immediate vicinity of the interface is connected to the second input of the analog-to-digital converter via a voltage divider and to the first input of the analog-to-digital converter through a voltage divider connected to an electronic magnifying glass. 20. Компьютерная система по п.17, отличающаяся тем, что система дополнительно содержит делитель напряжения, соединенный с третьим входом аналого-цифрового преобразователя и предназначенный для подключения его к одному из выходов источника питания.20. The computer system according to 17, characterized in that the system further comprises a voltage divider connected to the third input of the analog-to-digital Converter and designed to connect it to one of the outputs of the power source. 21. Компьютерная система по п.17, отличающаяся тем, что система снабжена средством преобразования ток-напряжение, соединенным с источником питания, выход которого соединен с четвертым входом аналого-цифрового преобразователя.21. The computer system according to 17, characterized in that the system is equipped with a current-voltage conversion means connected to a power source, the output of which is connected to the fourth input of the analog-to-digital converter.
RU2004112849/28A 2004-04-26 2004-04-26 Method of measuring electric parameters of high-current pulse processes in electrolyte solutions and computer measurement system RU2284517C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2004112849/28A RU2284517C2 (en) 2004-04-26 2004-04-26 Method of measuring electric parameters of high-current pulse processes in electrolyte solutions and computer measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2004112849/28A RU2284517C2 (en) 2004-04-26 2004-04-26 Method of measuring electric parameters of high-current pulse processes in electrolyte solutions and computer measurement system

Publications (2)

Publication Number Publication Date
RU2004112849A RU2004112849A (en) 2005-10-20
RU2284517C2 true RU2284517C2 (en) 2006-09-27

Family

ID=35862954

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2004112849/28A RU2284517C2 (en) 2004-04-26 2004-04-26 Method of measuring electric parameters of high-current pulse processes in electrolyte solutions and computer measurement system

Country Status (1)

Country Link
RU (1) RU2284517C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142550A1 (en) 2006-06-05 2007-12-13 State Educational Institution Of Higher Professional Education 'tomsk State University' Method for vacuum-compression micro-plasma oxidation and device for carrying out said method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
МАМАЕВ А.И. и др. Информационно-измерительный комплекс для определения параметров микроплазменных процессов в растворах // Защита металлов. 1996, т.32, №2, с.203-207. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142550A1 (en) 2006-06-05 2007-12-13 State Educational Institution Of Higher Professional Education 'tomsk State University' Method for vacuum-compression micro-plasma oxidation and device for carrying out said method
US8163156B2 (en) 2006-06-05 2012-04-24 Tomsk State University (Tsu) Method for vacuum-compression micro plasma oxidation

Also Published As

Publication number Publication date
RU2004112849A (en) 2005-10-20

Similar Documents

Publication Publication Date Title
Frankel et al. Potential control under thin aqueous layers using a Kelvin Probe
JPS62273444A (en) Method of analyzing additive concentration
EP0068101B1 (en) Electrochemical analytical apparatus
Jones Polarization in high resistivity media
EP0645623B1 (en) Method of monitoring acid concentration in plating baths
GB1580229A (en) Method and means for determining the immersed surface area of an electrode of an electrochemical bath
EP0598380B1 (en) Method of monitoring constituents in plating baths
SU1404901A1 (en) Device for accelerated determination of corrosion resistance of metals by electrochemical etching
Smith et al. Investigation of the effect of impingement angle on tribocorrosion using single impacts
RU2284517C2 (en) Method of measuring electric parameters of high-current pulse processes in electrolyte solutions and computer measurement system
Thurzo et al. Introduction to a kinetics-sensitive double-step voltcoulometry
EP0626577B1 (en) Method of monitoring metal ion content in plating baths
EP0597475B1 (en) Method of monitoring major constituents in plating baths containing codepositing constituents
JPH03176678A (en) Evaluating method with ac for ic tester
Ramos et al. Pitting corrosion characterization by SVET applying a synchronized noise suppression technique
Mamaev et al. A computer system measuring the electrical parameters of microplasma processes in solutions
Kubiak et al. Study of the flow dependence of microelectrode and semi-microelectrode voltammetric signals
Williams et al. Hand-held instrumentation for environmental monitoring
RU2101697C1 (en) Method of volt-amperometric analysis
RU2279067C1 (en) Method and device for local electrochemical express-analysis of metal alloys
Jadreško Simulation of Alternative Differential Multi-pulse Voltammetry. Evaluation of the Electrochemical Reversibility by the Voltammogram Symmetry
Mikhailova et al. Analysis of the Applicability of the Picoampere Current Measurement Method Based on an Integrated Amplifier for Recording Ion Current Values
Last Coulostatic coulometer with digital counter
Katzenberger et al. Differential coulostatic polarography
Bertocci Noise in Electrochemical Systems

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Effective date: 20100621

PC4A Invention patent assignment

Effective date: 20100922