RU2283471C1 - Ракета - Google Patents

Ракета Download PDF

Info

Publication number
RU2283471C1
RU2283471C1 RU2005107365/02A RU2005107365A RU2283471C1 RU 2283471 C1 RU2283471 C1 RU 2283471C1 RU 2005107365/02 A RU2005107365/02 A RU 2005107365/02A RU 2005107365 A RU2005107365 A RU 2005107365A RU 2283471 C1 RU2283471 C1 RU 2283471C1
Authority
RU
Russia
Prior art keywords
steering
aerodynamic
flat
differential
rocket
Prior art date
Application number
RU2005107365/02A
Other languages
English (en)
Inventor
Владимир Анатольевич Ефремов (RU)
Владимир Анатольевич Ефремов
Виталий Иванович Злобин (RU)
Виталий Иванович Злобин
Виталий Григорьевич Хоменко (RU)
Виталий Григорьевич Хоменко
Владимир Николаевич Ярмолюк (RU)
Владимир Николаевич Ярмолюк
Original Assignee
Открытое акционерное общество "Корпорация "Тактическое ракетное вооружение"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Корпорация "Тактическое ракетное вооружение" filed Critical Открытое акционерное общество "Корпорация "Тактическое ракетное вооружение"
Priority to RU2005107365/02A priority Critical patent/RU2283471C1/ru
Application granted granted Critical
Publication of RU2283471C1 publication Critical patent/RU2283471C1/ru

Links

Images

Landscapes

  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

Изобретение относится к области вооружения. Ракета содержит корпус, двигательную установку, систему наведения и систему управления с неподвижными крыльями и плоскими аэродинамическими рулями. Плоские аэродинамические рули выполнены дифференциальными. На корпусе ракеты закреплены предрулевые стабилизаторы, плоскости которых совпадают с соответствующими плоскостями плоских дифференциальных аэродинамических рулей. Количество предрулевых стабилизаторов равно количеству плоских дифференциальных аэродинамических рулей. Предрулевые стабилизаторы и плоские дифференциальные аэродинамические рули выполнены с определенным соотношением размеров. При использовании изобретения повышается маневренность ракеты при до- и околозвуковых скоростях. 4 з.п. ф-лы, 5 ил.

Description

Изобретение относится к ракетной технике, в частности к управляемым ракетам, выполненным по нормальной аэродинамической схеме с плоскими дифференциальными аэродинамическими рулями и используемым в широком диапазоне скоростей полета.
Известны ракеты, выполненные по нормальной аэродинамической схеме с плоскими аэродинамическими рулями, которые широко используются и описаны в различных источниках информации, см., например, "Зарубежное военное обозрение" №3,1983, №10, 1986 (ракеты США серии "Maverick"), патент RU № 2117907, МПК7 F 42 B 15/00, F 02 K 7/18 С1, 1998.08.02, патент RU № 2234667, МПК7 F 42 B 15/00 С1, 2002.11.18, "Динамика полета беспилотных летательных аппаратов" А.А.Лебедев, Л.С.Чернобровкин, Москва, Машиностроение, 1973, стр.44-45, 53-55, "Аэродинамика ракет" под общей ред. проф. Н.Ф. Краснова, Москва, Высшая школа, 1968, стр.71-72, рис.II-4-1 (е).
Такие ракеты с нормальной аэродинамической схемой содержат двигательную установку, систему наведения и систему управления с неподвижными крыльями и плоскими аэродинамическими рулями. Подробное описание вариантов расположения крыльев и плоских аэродинамических рулей имеет место в упомянутых ранее книгах "Аэродинамика ракет" стр.60-61 и "Динамика полета беспилотных летательных аппаратов" стр. 45 и 53-55. Из указанных источников информации в общем случае следует, что количество неподвижных крыльев может не совпадать с количеством плоских аэродинамических рулей и они могут лежать в различных плоскостях, при этом их расположение относительно продольной оси корпуса ракеты также весьма разнообразно: равномерное, симметричное, несимметричное. Особо следует выделить две основные схемы: "+" /плюс/-образную и "х" /икс/-образную, или "крестообразную" схему, см. указанную ранее книгу "Аэродинамика ракет", соответственно стр.60, рис.II-2-9 (и, з) и стр.61, рис.II-2-10 (а, и), при этом четыре неподвижных крыла и четыре ПАР располагаются симметрично относительно продольной оси корпуса ракеты; для определенности отметим, что под нормальной аэродинамической схемой понимается размещение плоских аэродинамических рулей сзади относительно крыльев по направлению полета - см. там же стр.71-72, рис.II-4-1(е).
Совокупность признаков указанных технических решений (аналогов), совпадающих с существенными признаками заявленного изобретения, одинакова за исключением количества неподвижных крыльев, плоских аэродинамических рулей и их взаимного расположения, которые, как будет показано ниже, не влияют на достигаемый изобретением технический результат. В качестве прототипа выбрано последнее указанное техническое решение из перечисленных аналогов («Аэродинамика ракет», под общ. ред. проф. Н.Ф. Краснова, Москва, Высшая школа, 1968, стр. 71-72, рис.II-4-1(е), случай компоновки ракеты по нормальной аэродинамической схеме).
Общим недостатком указанных выше технических решений, в том числе и прототипа, является их недостаточная маневренность, особенно при дозвуковых и околозвуковых скоростях полета.
Задачей, на решение которой направлено данное изобретение, является устранение недостатка прототипа, а именно повышение маневренности ракеты, особенно при до- и околозвуковых скоростях.
Указанная задача решается за счет того, что предложена ракета с нормальной аэродинамической схемой, содержащая корпус, двигательную установку, систему наведения и систему управления с неподвижными крыльями и плоскими аэродинамическими рулями, причем плоские аэродинамические рули выполнены дифференциальными, а на корпусе ракеты закреплены предрулевые стабилизаторы, плоскости которых совпадают с соответствующими плоскостями плоских дифференциальных аэродинамических рулей, при этом количество предрулевых стабилизаторов равно количеству плоских дифференциальных аэродинамических рулей, где предрулевые стабилизаторы и плоские дифференциальные аэродинамические рули выполнены таким образом, что имеют место следующие соотношения размеров:
Figure 00000002
Figure 00000003
Figure 00000004
где
Figure 00000005
- относительная площадь предрулевого стабилизатора;
SПС - площадь предрулевого стабилизатора, м2;
SРЛ - площадь плоского дифференциального аэродинамического руля, м2;
Figure 00000006
- относительный размах предрулевого стабилизатора;
LПС - размах предрулевого стабилизатора, м;
LРЛ - размах плоского дифференциального аэродинамического руля, м;
Figure 00000007
- относительный зазор между задней кромкой предрулевого стабилизатора и передней кромкой плоского дифференциального аэродинамического руля;
δПС - зазор между задней кромкой предрулевого стабилизатора и передней кромкой плоского дифференциального аэродинамического руля, м.
В частности, в конкретных формах выполнения изобретения отдельные его признаки характеризуются в следующем виде: величина размаха предрулевых стабилизаторов LПС равна величине размаха плоских дифференциальных аэродинамических рулей LРЛ, а значение стреловидности по передней кромке предрулевого стабилизатора χ0пс находится в интервале 39°-54°. Ракета содержит четыре неподвижных крыла, четыре предрулевых стабилизатора и четыре плоских дифференциальных аэродинамических руля, плоскости которых совпадают с соответствующими плоскостями четырех неподвижных крыльев и расположены на корпусе плюс-образно; ракета содержит четыре неподвижных крыла, четыре предрулевых стабилизатора и четыре плоских дифференциальных аэродинамических руля, плоскости которых совпадают с соответствующими плоскостями четырех неподвижных крыльев и расположены на корпусе икс-образно; ракета содержит гаргрот - п.п.2-4 формулы соответственно.
Технический результат выражается в повышении маневренных свойств ракеты, особенно на дозвуковых и околозвуковых скоростях полета без существенного изменения аэродинамической компоновки ракеты за счет расширения диапазона балансировочных углов атаки ракеты и диапазона располагаемых перегрузок в сторону их увеличения.
При введении в ракету с нормальной аэродинамической схемой предрулевых стабилизаторов, плоскости которых совпадают с соответствующими плоскостями плоских дифференциальных аэродинамических рулей, и которые выполнены таким образом, что имеют указанные выше соотношения размеров, происходит улучшение маневренных свойств ракеты, особенно на дозвуковых и околозвуковых скоростях полета без существенного изменения аэродинамической компоновки ракеты за счет расширения диапазона балансировочных углов атаки ракеты и диапазона располагаемых перегрузок в сторону их увеличения. Этому способствуют такие факторы, как увеличение эффективности плоских дифференциальных аэродинамических рулей при больших углах атаки и больших углах отклонения дифференциальных плоских аэродинамических рулей за счет уменьшения реальных углов атаки и скольжения плоских дифференциальных аэродинамических рулей, что затягивает наступление срыва потока с поверхности плоских дифференциальных аэродинамических рулей, находящихся в зоне скосов от предрулевых стабилизаторов, а также увеличение статической устойчивости ракеты за счет того, что при указанных выше величинах зазоров между предрулевыми стабилизаторами и плоскими дифференциальными аэродинамическими рулями последние работают как единая стабилизирующая поверхность.
Перечисленные факты приводят к улучшению аэродинамических характеристик ракеты во всем скоростном диапазоне ее применения и, тем самым, расширяют диапазон ее тактического применения и повышают вероятность поражения цели.
На фиг.1 изображен общий вид предлагаемой ракеты;
на фиг.2 - вид ракеты спереди по п.п.4-5 формулы;
на фиг.3 - чертеж предрулевого стабилизатора и плоского дифференциального аэродинамического руля, где обозначены: bбпс - бортовая хорда предрулевого стабилизатора; bКпс - концевая хорда предрулевого стабилизатора; Lрл - размах плоского дифференциального аэродинамического руля; Lпс - размах предрулевого стабилизатора; χ0пс - стреловидность по передней кромке предрулевого стабилизатора;
на фиг.4 приведено графическое изображение зависимостей балансировочных углов атаки αбал ракеты от скорости ее полета Vp: кривая 1 - с предрулевым стабилизатором, кривая 2 - без предрулевого стабилизатора;
на фиг.5 - графическое изображение зависимостей балансировочного коэффициента нормальной силы Субал ракеты от скорости ее полета Vp: кривая 1 - с предрулевым стабилизатором, кривая 2 - без предрулевого стабилизатора.
Ракета с нормальной аэродинамической схемой содержит корпус 1, двигательную установку и систему наведения (на чертежах не показаны). Ракета также содержит систему управления с установленными на корпусе 1 неподвижными крыльями 2 и плоскими дифференциальными аэродинамическими рулями 3. На корпусе 1 закреплены также предрулевые стабилизаторы 4, плоскости которых совпадают с соответствующими плоскостями плоских дифференциальных аэродинамических рулей 3, при этом количество предрулевых стабилизаторов 4 равно количеству плоских дифференциальных аэродинамических рулей 3. На корпусе 1 установлен также гаргрот 5.
Дифференциальными или дифференциально отклоняемыми называются рули, отклонение которых происходит независимо друг от друга как для управления и стабилизации ракеты по основным каналам, так и для стабилизации ее по каналу крена. Они известны - см., например, П.М.Афонин, И.С.Голубев и др. «Беспилотные летательные аппараты». Машиностроение, Москва, 1967, стр.131-135 или журнал «Военный парад», Москва, Издательский дом «Военный Парад», 1998, №10, статья Г. Соколовского «Ракеты класса «Воздух-воздух», стр.15.
Устройство работает следующим образом. По сигналам управления, поступающим на плоские дифференциальные аэродинамические рули 3, ракета осуществляет необходимый маневр согласно заданной программе полета. При этом, как было сказано выше, за счет расширения диапазона балансировочных углов атаки и диапазона располагаемых перегрузок в сторону их увеличения происходит повышение маневренности ракеты, которое значительнее проявляется на дозвуковых и околозвуковых скоростях ее полета. Этому способствует увеличение эффективности плоских дифференциальных аэродинамических рулей 3 на больших углах атаки при больших углах отклонения плоских дифференциальных аэродинамических рулей 3 за счет уменьшения реальных углов атаки и скольжения плоских дифференциальных аэродинамических рулей 3, находящихся в зоне скосов от предрулевых стабилизаторов 4 и увеличение статической устойчивости ракеты за счет того, что при указанных выше величинах зазоров между предрулевыми стабилизаторами 4 и плоскими дифференциальными аэродинамическими рулями 3, последние работают как единая стабилизирующая поверхность.
На фиг.4 приведено графическое изображение зависимостей балансировочных углов атаки αбал ракеты от скорости ее полета Vp: с предрулевым стабилизатором - кривая 1, без предрулевого стабилизатора - кривая 2, иллюстрирующие указанное ранее расширение диапазона балансировочных углов атаки ракеты αбал.
На фиг.5 приведено графическое изображение зависимостей балансировочного коэффициента нормальной силы Субал ракеты от скорости ее полета Vp: с предрулевым стабилизатором - кривая 1, без предрулевого стабилизатора - кривая 2, откуда также однозначно следует указанное выше расширение диапазона располагаемой перегрузки ракеты в сторону ее увеличения.
Гаргрот представляет собой выступающий продольный обтекатель, расположенный в нижней части корпуса ракеты с проходящими внутри него трубопроводами и электрическими жгутами, см., например, "Авиационный портал 2004" - сайт в Интернете от 31.01.2005 - http://aviationz.narod.ru/vo/2/k-5.htm/ и широко используется в ракетостроении.
Таким образом, предложенная ракета обеспечивает повышенную маневренность за счет улучшения аэродинамических характеристик во всем скоростном диапазоне применения, расширяя диапазон ее тактического применения и повышая вероятность поражения цели.

Claims (5)

1. Ракета с нормальной аэродинамической схемой, содержащая корпус, двигательную установку, систему наведения и систему управления, с неподвижными крыльями и плоскими аэродинамическими рулями, отличающаяся тем, что плоские аэродинамические рули выполнены дифференциальными, а на корпусе ракеты закреплены предрулевые стабилизаторы, плоскости которых совпадают с соответствующими плоскостями плоских дифференциальных аэродинамических рулей, при этом количество предрулевых стабилизаторов равно количеству плоских дифференциальных аэродинамических рулей, где предрулевые стабилизаторы и плоские дифференциальные аэродинамические рули выполнены таким образом, что имеют место следующие соотношения размеров:
Figure 00000008
Figure 00000009
Figure 00000010
где
Figure 00000011
- относительная площадь предрулевого стабилизатора;
Sпс - площадь предрулевого стабилизатора, м2;
Sрл - площадь плоского дифференциального аэродинамического руля, м2;
Figure 00000012
- относительный размах предрулевого стабилизатора;
Lпс - размах предрулевого стабилизатора, м;
Lрл - размах плоского дифференциального аэродинамического руля, м;
Figure 00000013
- относительный зазор между задней кромкой предрулевого стабилизатора и передней кромкой плоского дифференциального аэродинамического руля;
δпс - зазор между задней кромкой предрулевого стабилизатора и передней кромкой плоского дифференциального аэродинамического руля, м.
2. Ракета по п.1, отличающаяся тем, что величина размаха предрулевого стабилизатора Lпс равна величине размаха плоского дифференциального аэродинамического руля Lрл, а значение стреловидности по передней кромке предрулевого стабилизатора χ0пс находится в интервале 39°-54°.
3. Ракета по п.1, отличающаяся тем, что содержит четыре неподвижных крыла, четыре предрулевых стабилизатора и четыре плоских дифференциальных аэродинамических руля, плоскости которых совпадают с соответствующими плоскостями неподвижных крыльев и расположены на корпусе "плюс" - образно.
4. Ракета по п.1, отличающаяся тем, что содержит четыре неподвижных крыла, четыре предрулевых стабилизатора и четыре плоских дифференциальных аэродинамических руля, плоскости которых совпадают с соответствующими плоскостями неподвижных крыльев и расположены на корпусе "икс" - образно.
5. Ракета по п.1, отличающаяся тем, что содержит гаргрот.
RU2005107365/02A 2005-03-17 2005-03-17 Ракета RU2283471C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2005107365/02A RU2283471C1 (ru) 2005-03-17 2005-03-17 Ракета

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2005107365/02A RU2283471C1 (ru) 2005-03-17 2005-03-17 Ракета

Publications (1)

Publication Number Publication Date
RU2283471C1 true RU2283471C1 (ru) 2006-09-10

Family

ID=37112964

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005107365/02A RU2283471C1 (ru) 2005-03-17 2005-03-17 Ракета

Country Status (1)

Country Link
RU (1) RU2283471C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2539709C1 (ru) * 2014-01-22 2015-01-27 Открытое акционерное общество "Государственное машиностроительное конструкторское бюро "Вымпел" имени И.И. Торопова" Управляемая ракета
RU2546740C1 (ru) * 2014-03-20 2015-04-10 Открытое акционерное общество "Государственное машиностроительное конструкторское бюро "Вымпел" имени И.И. Торопова" Управляемая ракета
RU2683402C1 (ru) * 2017-10-05 2019-03-29 Акционерное общество "Корпорация "Тактическое ракетное вооружение" Крыло для авиационного средства поражения

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
КРАСНОВ Н.Ф. Аэродинамика ракет. - М.: Высшая школа, 1968. с.60-61, рис.П-2-9в, рис.II-2-10л. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2539709C1 (ru) * 2014-01-22 2015-01-27 Открытое акционерное общество "Государственное машиностроительное конструкторское бюро "Вымпел" имени И.И. Торопова" Управляемая ракета
RU2546740C1 (ru) * 2014-03-20 2015-04-10 Открытое акционерное общество "Государственное машиностроительное конструкторское бюро "Вымпел" имени И.И. Торопова" Управляемая ракета
RU2683402C1 (ru) * 2017-10-05 2019-03-29 Акционерное общество "Корпорация "Тактическое ракетное вооружение" Крыло для авиационного средства поражения

Similar Documents

Publication Publication Date Title
RU2283471C1 (ru) Ракета
RU2722329C1 (ru) Ракета
Moore et al. Approximate method to calculate nonlinear rolling moment due to differential fin deflection
US2393604A (en) Bomb stabilizer
Silton et al. Effect of Canard Deflection on Fin Performance of a Fin-Stabilized Projectile
US4289287A (en) Fixed skewed wing airborne vehicle
RU2272984C1 (ru) Ракета
Sethunathan et al. Aerodynamic Configuration design of a missile
RU2537357C1 (ru) Управляемый снаряд
RU2539709C1 (ru) Управляемая ракета
Hargrove Supercavitation and aerospace technology in the development of high-speed underwater vehicles
RU185698U1 (ru) Ракета
Shinar Optimal'no-escape'firing envelopes of guided missiles
RU2683402C1 (ru) Крыло для авиационного средства поражения
RU2288435C1 (ru) Летательный аппарат
HOWARD et al. Effect of canard deflection on enhanced lift for a close-coupled-canard configuration
Tan et al. Analysis of aerodynamic characteristics for a flying-wing UAV with asymmetric wing damage
Bolonkin Optimal trajectories of air and space vehicles
VT et al. The problem of guidance of a gliding unmanned aerial vehicle onto a moving target
Arrow Status and concerns for preferred orientation control of high performance antiair tactical missiles
RU2546740C1 (ru) Управляемая ракета
Yan et al. An evaluation model for control effector superiority based on performance requirements
Khanolkar et al. Analysis of aerodynamic characteristics of a missile configuration
Bushgens et al. Concept of a modern fighter
Stone Maneuver performance of interceptor missiles