RU2277147C1 - Способ сооружения обделки тоннеля - Google Patents

Способ сооружения обделки тоннеля Download PDF

Info

Publication number
RU2277147C1
RU2277147C1 RU2004136336/03A RU2004136336A RU2277147C1 RU 2277147 C1 RU2277147 C1 RU 2277147C1 RU 2004136336/03 A RU2004136336/03 A RU 2004136336/03A RU 2004136336 A RU2004136336 A RU 2004136336A RU 2277147 C1 RU2277147 C1 RU 2277147C1
Authority
RU
Russia
Prior art keywords
lining
tunnel
concrete
rock
concrete lining
Prior art date
Application number
RU2004136336/03A
Other languages
English (en)
Inventor
Андрей Александрович Шилин (RU)
Андрей Александрович Шилин
Михаил Васильевич Зайцев (RU)
Михаил Васильевич Зайцев
Игорь Александрович Золотарев (RU)
Игорь Александрович Золотарев
Original Assignee
Закрытое акционерное общество "Триада-Холдинг"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое акционерное общество "Триада-Холдинг" filed Critical Закрытое акционерное общество "Триада-Холдинг"
Priority to RU2004136336/03A priority Critical patent/RU2277147C1/ru
Application granted granted Critical
Publication of RU2277147C1 publication Critical patent/RU2277147C1/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Lining And Supports For Tunnels (AREA)

Abstract

Изобретение относится к строительству и ремонту гидротехнических сооружений, а именно к строительству и ремонту напорных тоннелей ГЭС. Способ сооружения обделки напорного тоннеля в горных породах включает формование бетонной обделки тоннеля, закрепление породы вокруг бетонной обделки путем нагнетания в породу тампонажного раствора и образование демпфирующего слоя между бетонной обделкой и затампонированной породой. Образование демпфирующего слоя между бетонной обделкой и затампонированной породой производят после заполнения тоннеля водой под рабочим давлением и последующей выдержки бетонной обделки под давлением воды в течение 1,5-2 лет. После этого производят сброс воды и выявляют зазоры между бетонной обделкой тоннеля и затампонированной породой. Образование демпфирующего слоя осуществляют посредством проведения демпфирующего тампонажа заобделочного пространства нагнетанием в местах выявленных зазоров между внешней поверхностью обделки и породным массивом упругого тампонажного материала с модулем упругости, величина которого имеет промежуточное значение между значениями величин модуля упругости материала бетонной обделки
Figure 00000001
и модуля упругости породного массива

Description

Изобретение относится к строительству и ремонту гидротехнических сооружений, а именно к строительству и ремонту напорных тоннелей ГЭС.
Известен способ выполнения обделки напорных и безнапорных тоннелей, сооружаемых в анизотропных породах (см., например, а.с. СССР №1413188, кл. Е 02 В 9/06, 1988).
Этот способ предусматривает решение задачи, заключающейся в повышении эффективности работы обделки за счет увеличения предварительного напряжения породы вокруг тоннеля в направлении максимального модуля деформации породы.
Недостатком этого способа является то обстоятельство, что при его осуществлении учитывается только степень анизотропности пород, окружающих тоннель, и не учитывается поведение затампонированной породы во время эксплуатации тоннеля.
В то же время влияние затампонированной породы на работу и состояние тоннеля было подтверждено при проведении комплекса исследований по состоянию обделки и заобделочного пространства деривационного тоннеля Ирганайской ГЭС.
Так, при проведении исследований конкретного тоннеля, проведенных после трехлетнего срока его эксплуатации, было установлено, что в пределах верхнего полупериметра тоннеля за бетонной обделкой образовались полости небольшой глубины, но значительной протяженности. Максимальная глубина полостей достигала 37 см, а средняя глубина полостей по всей трассе тоннеля составила 7 см. Также были обнаружены значительные по площади полости с раскрытием от 1 см.
Анализ проектных документов, а также известные положения расчета подобных сооружений показали, что для исключения возникновения подобных полостей необходимо проведение целого ряда мероприятий, которые в свою очередь не гарантируют получения желаемого результата, поскольку данный вопрос является недостаточно изученным и требует большого количества опытных проверок (см. Г.Г.Зурабов и О.Е.Бугаева "Гидротехнические туннели гидроэлектрических станций", М.-Л.: Государственное энергетическое издательство, 1962, с.366-375) [1].
Неглубокие пустоты до 1-2 см и менее возникли в силу того, что во время строительства тоннеля и его эксплуатации в течение первых трех лет, пока наблюдается явление ползучести бетона, под воздействием напора воды наружные стенки бетонной обделки тоннеля перемещаются в сторону горной породы, а после снятия давления внутри тоннеля его стенки возвращаются в исходное состояние, т.е. обделка работает под воздействием знакопеременного поля напряжений. В том случае, если модуль упругости материала обделки меньше, чем аналогичный показатель породного массива, зазор между ними также постепенно будет возникать за счет деформации кольца обделки. Учитывая, что тампонаж пород за обделкой проводят в большинстве случаев тампонажным раствором на основе цементов, модуль упругости которого ниже соответствующего модуля упругости обделки, за ней будут возникать пустоты, образование которых вызвано различной величиной упругой деформации материала обделки и горной породы. Причем глубина пустот будет тем больше, чем больше разница между модулями упругости и обусловленные этим деформации материала обделки и горной породы.
Наиболее близким к настоящему изобретению по своей технической сущности и достигаемому результату является способ сооружения обделки напорного тоннеля, при котором осуществляют формование бетонной обделки тоннеля, закрепление породы вокруг бетонной обделки путем нагнетания в породу тампонажного раствора и образование демпфирующего слоя между бетонной обделкой и затампонированной породой (см. а.с. СССР №1161640, кл. Е 02 В 9/08, опублик. 1985).
Недостатком обделки напорного тоннеля, сооруженной этим способом, является ее невысокая стойкость из-за постоянного воздействия воды под давлением на бетонную обделку тоннеля как с внутренней, так и с наружной ее стороны. Под воздействием этой воды происходит постепенное разрушение бетона за счет вымывания из него окиси кальция.
В основу изобретения положено решение задачи по созданию способа сооружения обделки напорного тоннеля, позволяющего повысить срок службы тоннеля, снизить затраты на ремонтные работы, связанные с поддержанием в рабочем состоянии бетонной обделки тоннеля.
Известно, что наличие за обделкой в своде и по стенам тоннеля полостей даже малого раскрытия ведет к изменению расчетной схемы и условий работы обделки. Когда горное давление действует с трех сторон (лоток и бока тоннеля), происходит выгиб обделки в сторону сводовой поверхности с разрушением не только бетона, но и металлических арок. Этому процессу способствует и наличие гидростатического давления воды.
Для исключения развития дальнейших деформаций свода обделки и его возможного обрушения необходимо выполнять демпфирующий тампонаж заобделочного пространства во всех местах, где наблюдаются пустоты и даже зазоры между внешней поверхностью обделки и породным массивом.
Технический результат, который может быть получен при реализации изобретения, заключается в повышении надежности эксплуатации тоннеля за счет снижения действующих нагрузок на обделку тоннеля.
Поставленная задача решена за счет того, что в способе сооружения обделки напорного тоннеля в горных породах, включающем формование бетонной обделки тоннеля, закрепление породы вокруг бетонной обделки путем нагнетания в породу тампонажного раствора и образование демпфирующего слоя между бетонной обделкой и затампонированной породой, образование демпфирующего слоя между бетонной обделкой и затампонированной породой производят после заполнения тоннеля водой под рабочим давлением, выдержки бетонной обделки под давлением воды в течение 1,5-2 лет, сброса воды и выявления зазоров между бетонной обделкой тоннеля и затампонированной породой, при этом образование демпфирующего слоя осуществляют посредством проведения демпфирующего тампонажа заобделочного пространства нагнетанием в местах выявленных зазоров между внешней поверхностью обделки и породным массивом упругого тампонажного материала с модулем упругости, величина которого имеет промежуточное значение между значениями величин модуля упругости бетонной обделки
Figure 00000003
и модуля упругости породного массива
Figure 00000004
Такое промежуточное значение модуля упругости тампонажного материала позволяет перераспределять возникающие в процессе эксплуатации тоннеля нагрузки на бетонную обделку тоннеля, снижая их при возникновении деформации окружающих пород с высоким модулем упругости или повышая сопротивление смещению бетонной обделки в сторону окружающих более слабых пород.
Способ сооружения обделки напорного тоннеля осуществляется следующим образом.
После проходки тоннеля и бетонирования его обделки производят закрепление породы вокруг бетонной обделки путем нагнетания в породу тампонажного раствора. Нагнетание тампонажного раствора производится через шпуры, пробуриваемые в обделке после ее затвердения. Тампонаж может быть осуществлен любым известным способом, приемлемым в конкретных условиях.
После схватывания цемента и проведения всех предварительных работ и испытаний производится заполнение тоннеля водой под рабочим давлением. Образование демпфирующего слоя между бетонной обделкой и затампонированной породой производят после заполнения тоннеля водой под рабочим давлением, выдержки бетонной обделки под давлением воды в течение 1,5-2 лет, сброса воды и выявления зазоров между бетонной обделкой тоннеля и затампонированной породой. Образование демпфирующего слоя осуществляют посредством проведения демпфирующего тампонажа заобделочного пространства нагнетанием демпфирующего тампонажного раствора в местах выявленных зазоров.
Такой порядок проведения работ обусловлен следующими причинами.
При эксплуатации тоннеля бетонная обделка подвергается переменным нагрузкам от изменяющегося давления воды, пропускаемой по тоннелю. В значительной степени эти изменения будут зависеть от внешних условий сезонного характера. Кроме того, как показывают различные исследования (см. А.А.Шилин и др. "Гидроизоляция подземных и заглубленных сооружений при строительстве и ремонте", Тверь, 2003, с.298) [2], величина предельной относительной усадки бетона достигает величины порядка 80% к 1,5 годам эксплуатации и асимптотически приближается к своему максимуму к началу третьего года эксплуатации. Иными словами, в период первых двух лет эксплуатации тоннеля бетон обделки стенок дает значительную усадку, что в свою очередь вызывает образование полостей между бетонной облицовкой тоннеля и окружающими породами за счет разности в величине их необратимых пластических деформаций.
Если после этого первоначального периода в местах выявленных пустот и зазоров производить демпфирующий тампонаж заобделочного пространства путем нагнетания в эти места упругого тампонажного материала с модулем упругости, величина которого имеет промежуточное значение между значениями величин модуля упругости материала бетонной обделки
Figure 00000005
и модуля упругости породного массива
Figure 00000006
при дальнейшей эксплуатации тоннеля будет исключено взаимное влияние бетона обделки и окружающих пород. При этом в случае применения демпфирующего материала с гидроизоляционными свойствами исключается постепенное разрушение бетона за счет вымывания из него окиси кальция.
Как следует из [2], процесс усадки бетона во времени может происходить различно как по величине, так и по направлению, кроме того, как следует из [1], даже одна и та же порода в зависимости от трещиноватости, направления напластования и других условий ее залегания может иметь различную величину модуля упругости. Поэтому конкретную величину модуля упругости тампонажного материала подбирают экспериментальным путем.
Конечно выполнение демпфирующего тампонажа после значительного времени эксплуатации тоннеля удорожает строительство. Однако, если производить демпфирующий тампонаж непосредственно во время проведения тоннеля и возведения обделки, можно снизить количество возникающих пустот в заобделочном пространстве, но не удается полностью исключить их появление при совместном воздействии усилий, возникающих со стороны окружающих пород и бетонной обделки при усадке бетона. По прошествии 1,5-2 лет между породой и наружной стороной бетонной обделки в некоторых местах возникают локальные отслоения и пустоты. Это приводит к тем же нарушениям, что и без тампонажа, но в меньшей степени. Проводить демпфирующий тампонаж по всей площади обделки тоннеля очень дорого и нерационально. Кроме того, при возникновении пустот между демпферным слоем и бетонной обделкой проведение повторного тампонажа не дает желаемого результата, поскольку, как показали натурные эксперименты, адгезионное сцепление между вновь нанесенным тампонажным материалом и ранее нанесенным слоем меньше адгезионного сцепления молекул внутри слоя.
Очевидно, что особое внимание должно уделяться выбору материала для производства демпфирующего тампонажа. Тампонажные материалы после отвердения должны обладать определенными свойствами, а главное быть упругими и при знакопеременных напряжениях в обделке тоннеля не должны способствовать формированию полостей между горной породой и обделкой. Таким образом, в деривационных тоннелях, после определенного времени эксплуатации необходимо выполнять демпфирующий тампонаж закрепного пространства, который обеспечит проектные условия работы обделки.
В качестве такого материала может быть применен однокомпонентный гидрофобный гидроактивный жесткий полиуретановый инъекционный состав с низкой вязкостью "НА CUT" или однокомпонентный гидрофобный гидроактивный эластичный полиуретановый инъекционный состав с низкой вязкостью "НА FLEX".
Оба состава производятся бельгийской фирмой "DE Neef Construction NV/SA" и в настоящее время поставляется в Россию в необходимых количествах. При использовании указанных составов имеется возможность регулировать степень расширения состава и прочность его на сжатие. Поскольку указанные свойства составов должны быть согласованы с физико-механическими характеристиками как бетона обделки, так и окружающих пород, которые в свою очередь определяются только опытным путем (см. [2], с.163-168), конкретные составы могут быть подобраны только экспериментально.
По существу сооружение напорного тоннеля может считаться полностью законченным только после проведения операции демпфирующего тампонажа.

Claims (1)

  1. Способ сооружения обделки напорного тоннеля в горных породах, включающий формование бетонной обделки тоннеля, закрепление породы вокруг бетонной обделки путем нагнетания в породу тампонажного раствора и образование демпфирующего слоя между бетонной обделкой и затампонированной породой, отличающийся тем, что образование демпфирующего слоя между бетонной обделкой и затампонированной породой производят после заполнения тоннеля водой под рабочим давлением, выдержки бетонной обделки под давлением воды в течение 1,5-2 лет, сброса воды и выявления зазоров между бетонной обделкой тоннеля и затампонированной породой, при этом образование демпфирующего слоя осуществляют посредством проведения демпфирующего тампонажа заобделочного пространства нагнетанием в местах выявленных зазоров между внешней поверхностью обделки и породным массивом упругого тампонажного материала с модулем упругости, величина которого имеет промежуточное значение между значениями величин модуля упругости материала бетонной обделки (Ео) и модуля упругости породного массива (Еп).
RU2004136336/03A 2004-12-15 2004-12-15 Способ сооружения обделки тоннеля RU2277147C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2004136336/03A RU2277147C1 (ru) 2004-12-15 2004-12-15 Способ сооружения обделки тоннеля

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2004136336/03A RU2277147C1 (ru) 2004-12-15 2004-12-15 Способ сооружения обделки тоннеля

Publications (1)

Publication Number Publication Date
RU2277147C1 true RU2277147C1 (ru) 2006-05-27

Family

ID=36711367

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2004136336/03A RU2277147C1 (ru) 2004-12-15 2004-12-15 Способ сооружения обделки тоннеля

Country Status (1)

Country Link
RU (1) RU2277147C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104032713A (zh) * 2014-05-23 2014-09-10 北京中水科海利工程技术有限公司 一种压力引水隧洞复合衬砌混凝土防渗结构及其施工工艺
RU2559274C1 (ru) * 2014-02-10 2015-08-10 Общество С Ограниченной Ответственностью "Горгеострой" Способ устранения протечек воды в подземных сооружениях
RU2602537C1 (ru) * 2015-10-22 2016-11-20 Общество с ограниченной ответственностью "НефтеГазИнвест-Интари" Способ устранения протечек воды в подземных инженерных сооружениях
RU2689964C2 (ru) * 2014-05-21 2019-05-29 Констрюксьон Меканик Консюльтан Строительный элемент для создания туннеля, туннель, содержащий такой элемент, и способы конструирования такого элемента и такого туннеля

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2559274C1 (ru) * 2014-02-10 2015-08-10 Общество С Ограниченной Ответственностью "Горгеострой" Способ устранения протечек воды в подземных сооружениях
RU2689964C2 (ru) * 2014-05-21 2019-05-29 Констрюксьон Меканик Консюльтан Строительный элемент для создания туннеля, туннель, содержащий такой элемент, и способы конструирования такого элемента и такого туннеля
US10774640B2 (en) 2014-05-21 2020-09-15 Agence Nationale Pour La Gestion Des Dechets Radioactifs Construction element for creating a tunnel, tunnel comprising such an element and methods for constructing such an element and such a tunnel
CN104032713A (zh) * 2014-05-23 2014-09-10 北京中水科海利工程技术有限公司 一种压力引水隧洞复合衬砌混凝土防渗结构及其施工工艺
RU2602537C1 (ru) * 2015-10-22 2016-11-20 Общество с ограниченной ответственностью "НефтеГазИнвест-Интари" Способ устранения протечек воды в подземных инженерных сооружениях

Similar Documents

Publication Publication Date Title
Zhang et al. Influence of grouting on rehabilitation of an over-deformed operating shield tunnel lining in soft clay
Möller Tunnel induced settlements and structural forces in linings
Bruce et al. Soil nailing: application and practice-part 1
Xanthakos Ground anchors and anchored structures
Liu et al. Numerical analysis on the mechanical performance of supporting structures and ground settlement characteristics in construction process of subway station built by Pile-Beam-Arch method
Jamsawang et al. Field and three-dimensional finite element investigations of the failure cause and rehabilitation of a composite soil-cement retaining wall
Ergun Deep excavations
RU2277147C1 (ru) Способ сооружения обделки тоннеля
Mullins et al. Pressure-grouting drilled shaft tips in sand
Pelizza et al. Back-fill grout with two component mix in EPB tunneling to minimize surface settlements: Rome Metro—Line C case history
JP2001342685A (ja) 拘束性離散体アーチ(又はドーム)構造による循環型環境保全工法
RU2328577C2 (ru) Способ защиты существующих зданий и сооружений
RU48546U1 (ru) Деривационный тоннель
Johnson Recommendations on piling (EA Pfähle)
KR100565866B1 (ko) 폐구조물 내부공동 충전시스템 및 이를 이용한 충전공법
Littlechild et al. Shaft grouting of deep foundations in Hong Kong
Lim et al. An introduction on the increasing usage of precast concrete arch tunnel in Korea
Koutsoftas High capacity piles in very dense sands
Neaupane et al. Evaluation of Jet Grouting Design Parameters for TBM Launching and Arrival in Bangkok Soils
Peila et al. Construction methods
KR200332284Y1 (ko) 폐구조물 내부공동 충전구조
Pound et al. Prediction of ground movements due to NATM tunneling
Sousa et al. Effect of the construction of a Lisbon Metro Tunnel in an old railway tunnel
Dev et al. Rock Supports and geological appraisal for head race tunnel of Tala Hydroelectric Project, Bhutan
Zakhem EFFECT OF NEWLY CONSTRUCTED STRUCTURES SUPPORTED ON RAFT FOUNDATIONS ON EXISTING CONCRETE TUNNEL LININGS

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner