RU2275274C1 - Способ прессования порошковых материалов и устройство для его осуществления (варианты) - Google Patents

Способ прессования порошковых материалов и устройство для его осуществления (варианты) Download PDF

Info

Publication number
RU2275274C1
RU2275274C1 RU2004133614/02A RU2004133614A RU2275274C1 RU 2275274 C1 RU2275274 C1 RU 2275274C1 RU 2004133614/02 A RU2004133614/02 A RU 2004133614/02A RU 2004133614 A RU2004133614 A RU 2004133614A RU 2275274 C1 RU2275274 C1 RU 2275274C1
Authority
RU
Russia
Prior art keywords
pressing
liquid
powder
matrix
punch
Prior art date
Application number
RU2004133614/02A
Other languages
English (en)
Other versions
RU2004133614A (ru
Inventor
Владимир Иванович Звонецкий (RU)
Владимир Иванович Звонецкий
Владимир Юрьевич Лопатин (RU)
Владимир Юрьевич Лопатин
Валерий Иванович Мороков (RU)
Валерий Иванович Мороков
Владимир Владимирович Шуменко (RU)
Владимир Владимирович Шуменко
Владимир Николаевич Шуменко (RU)
Владимир Николаевич Шуменко
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Московский государственный институт стали и сплавов" (технологический университет)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Московский государственный институт стали и сплавов" (технологический университет) filed Critical Государственное образовательное учреждение высшего профессионального образования "Московский государственный институт стали и сплавов" (технологический университет)
Priority to RU2004133614/02A priority Critical patent/RU2275274C1/ru
Publication of RU2004133614A publication Critical patent/RU2004133614A/ru
Application granted granted Critical
Publication of RU2275274C1 publication Critical patent/RU2275274C1/ru

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Drying Of Solid Materials (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

Изобретение относится к порошковой металлургии, в частности к способам прессования порошковых материалов в присутствии жидкости. Способ прессования порошковых материалов включает введение в порошок летучей жидкости и прессование. Жидкость подают со стороны прессующего пуансона в количестве 0,2-3 объема пор прессовки. Возможно прессование с одновременной подачей жидкости до окончания процесса. Данным способом можно осуществлять прессование непластичных порошков без пластификатора, частичное удаление пластификатора и пропитку. Пресс-форма содержит матрицу, верхняя часть которой содержит внутреннюю полость, полость для жидкости и внешнюю часть. Устройство для подачи жидкости представляет собой цилиндр с симметричными сквозными отверстиями в стенках и содержит поршень для подачи жидкости во внутреннюю полость матрицы. Техническим результатом является повышение качества изделий. 5 н. и 2 з.п. ф-лы, 11 ил., 1 табл.

Description

Предлагаемое изобретение относится к порошковой металлургии, в частности к способам прессования порошковых материалов в присутствии жидкости.
Известен способ прессования керамических масс, содержащих жидкость (воду), включающий приготовление смеси, увлажнение и прессование [Р.Я.Попильский, Ф.В.Кондрашов / Прессование керамических порошков. М.: Металлургия, 1968, 272 с./].
Известно устройство для мокрого прессования, содержащее матрицу, верхний и нижний пуансоны с приводами, напорное устройство для заполнения матрицы массой, вакуумную систему для отсоса отжатой при прессовании жидкости и узел для съема отпрессованных изделий. Для повышения производительности и качества изделий узел для съема отпрессованных изделий выполнен в виде размещенной между матрицей и верхним пуансоном приводного шибера с отверстием, превышающим по диаметру отверстие в матрице, на позиции выталкивания изделия, а на позиции прессования - с сеткой и с камерой, соединенной с вакуумной системой. В процессе прессования осуществляют отсос жидкости через сетку отверстий камеры и вакуумную систему [Авторское свидетельство СССР №1519841 МКИ В 22 F 3/00. Опубл. 30.10.89. БИ №41].
Наиболее близким техническим решением является способ агломерации металлических частиц, включающий введение в порошок летучей или испаряющейся жидкости, уплотнение влажных частиц и сушку [Патент РФ №2226139 кл. МПИ В 22 F 1/00. Опубл. 27.03.2004, БИ №9].
Недостатком наиболее близкого технического решения является малая производительность способа, т.к. требуется поэтапно добавлять жидкость и при этом осуществлять выдержку в течение 5-16 часов, вибрационное уплотнение от 4 до 20 минут и отстаивание контейнера по меньшей мере 1 час. Формование осуществляют сушкой при нагреве в течение 10-14 часов и более.
Целью предлагаемого изобретения является разработка способа и устройства для повышения производительности процесса уплотнения порошка с добавлением летучей или легко испаряющейся жидкости, качества изделий после прессования и последующего спекания.
Техническим результатом является повышение качества изделий.
Для достижения поставленной цели в способе мокрого прессования, включающем введение в порошок летучей или испаряющейся жидкости, уплотнение влажных частиц и сушку, согласно предлагаемому изобретению, увлажнение смеси производят в пресс-форме со стороны прессующего пуансона, количество жидкости равно 0,2-3 объемам пор в прессовке с одновременным уплотнением порошка пуансоном.
Конструкция пресс-формы выполнена таким образом, что поршень конструктивно связан с пуансоном и подает дозируемое количество жидкости в зону уплотнения порошка через внутренний цилиндр, имеющий систему отверстий (варианты). Поршень, который подает дозируемое количество жидкости, может быть не связан с пуансоном, а иметь дополнительный источник давления (вариант).
Предлагаемое изобретение стало возможным после того, как авторами было установлено, что при прессовании жидкость образует пограничный слой на частицах смеси и поверхности матрицы [Физический энциклопедический словарь. М.: Советская энциклопедия, 1985, с. 555-556].
На стадии структурной деформации жидкость, перемещаясь вместе с частицами порошка, уменьшает межчастичное (внутреннее) трение, уменьшает трение порошка о стенки матрицы (внешнее трение), уменьшает неравно плотность после прессования.
На заключительной стадии структурной деформации жидкость продвигается по поверхности частиц и в пограничном слое уменьшает концентрацию пластифицирующей добавки.
Нижний предел расхода жидкости равен - 0,2 объему пор после прессования. Введенная жидкость удерживается в межчастичном пространстве капиллярными силами, не герметизирует воздух в межчастичном пространстве. Устраняет недостаток, который присущ прессованию предварительно увлажненных порошковых масс.
Верхний предел расхода жидкости равен - 3 объемам пор после прессования. Введенная жидкость, перемещаясь вместе с частицами, позволяет погрузить каждую частицу в раствор. Это позволяет частично удалить пластифицирующую добавку, уменьшить остаточную зольность после термического разложения в процессе спекания.
Увеличение количества жидкости более 3-х объемов пор после прессования не дает существенного отличия ни в увеличении плотности прессованного образца, ни в уменьшении остаточного количества пластификатора.
Пример 1. Навеску 10 г гранулированной смеси промышленного твердого сплава ВК6, замешанного с каучуком, засыпали в матрицу диаметром 16 мм и прессовали при давлении 500 кг/см2. После прессования измеряли относительную плотность и вычисляли объем пор в образце. Этот объем пор необходим для расчета количества жидкости. В качестве жидкости использовали этанол.
Мокрое прессование проводили следующим образом. Гранулированную смесь засыпали в пресс-форму, сверху заливали 0,1 мл спирта, что соответствовало 20% объема пор при прессовании обычным (сухим) способом, вводили пуансон в полость матрицы и осуществляли прессование. Глубина погружения пуансона составила 8,18 мм по сравнению с 7,49 мм при обычном (сухом) способе прессования.
Увеличение количества спирта от 0,2 мл (40% объема пор) до 0,4 мл (80% объема пор) практически не влияло на изменения глубины погружения пуансона по сравнению с сухим способом и глубина составляла 7,44-7,62 мм.
Увеличение количества спирта до 0,5 мл (100% объема пор) привело к уменьшению глубины погружения пуансона - 5,67 мм.
Полученные результаты подтверждают, что для уменьшения внешнего трения достаточно небольшого (20%) количества спирта от объема пор.
Количество спирта от 40 до 80% от объема пор не успевает однородно пропитать слой засыпанного порошка и распределиться между перемещающимися частицами. Образуются чередующиеся полости, заполненные воздухом и жидкостью. «Закупорка» происходит еще и потому, что каучук, находящийся на поверхности частиц WC и Со «герметизирует» воздух между частицами в пространстве прессуемого образца.
Спекание образцов в водороде при температуре 1340-1450°С и продолжительности 0,5 часа позволило получить плотность 8,50 г/см2 для «сухого» и 9,08 г/см2 - для образца прессованного с 20% спирта от объема пор.
Пример 2. Навеску 10 г гранулированной промышленной смеси твердого сплава ВК15 прессовали аналогично Примеру 1.
Перед уплотнением в полость пресс-формы на поверхность засыпанного порошка наливали: 0,1; 0,2; 0,3; 0,4 и 0,5 мл спирта. При этом глубина погружения пуансона составляла: 7,07 мм, 8,0 мм, 7,82 мм, 6,48 мм и 5,87 мм - соответственно.
Глубина погружения пуансона при обычном (сухом) методе прессования - 6,39 мм.
Из приведенных результатов видно, что количество спирта от 0,1 до 0,3 мл (от 20% до 60% объема пор) позволяет лучше уплотнить смесь ВК15. Максимальное уплотнение достигнуто при 40% спирта от объема пор.
Пример 3. Навеску 10 г гранулированной промышленной смеси твердого сплава ВК20 прессовали аналогично Примеру 1.
Перед уплотнением в полость пресс-формы на поверхность засыпанного порошка наливали: 0,1; 0,2; 0,3; 0,4 и 0,5 мл спирта. При этом глубина погружения пуансона составляла: 7,54 мм; 8,0 мм; 7,78 мм; 6,43 мм; и 6,93 мм - соответственно.
Глубина погружения пуансона при обычном (сухом) методе прессования - 5,81 мм.
Из приведенных значений видно, что при всех количествах спирта, от 0,1 до 0,5 мл (от 20% до 100% от объема пор), введенного на поверхность засыпанной смеси ВК20, удается получить лучшее уплотнение, а максимальное значение достигается при 40% от объема пор.
Пример 4. Прессование длинномерных образцов. Штырь для бурового инструмента.
Навеску 8 г гранулированной смеси промышленного твердого сплава ВК6, замешанного с каучуком, засыпали в матрицу диаметром 8 мм и прессовали при давлении 500 кг/см2. После прессования измеряли относительную плотность и вычисляли объем пор в образце. Этот объем пор необходим для расчета количества жидкости. В качестве жидкости использовали этанол.
Мокрое прессование проводили аналогично Примеру 1. Гранулированную смесь засыпали в пресс-форму, сверху заливали 0,08 мл спирта, что соответствовало 20% объема пор при прессовании обычным (сухим) способом, вводили пуансон в полость матрицы и осуществляли прессование.
Получали образцы, у которых высота в 2,4 раза больше диаметра. Высота «h» превосходит номинал формы Г54, указанный в таблице 209 [Твердые сплавы. Справочник. /М.Ю.Баженов, С.Г.Байчман, Д.Г.Карпачев, М.: Металлургия, 1978. с.184].
Спекание по режиму Примера 1 показало, что спеченные образцы сохраняют свою форму, имеют однородную усадку и плотность.
Пример 5. На фиг.1-3 изображена кинематическая схема устройства. Матрица состоит из 2-х частей: первая (верхняя) соответствует зоне структурной деформации порошка (1), вторая (нижняя) - окончанию последнего этапа уплотнения (2).
Верхняя часть состоит из внутреннего цилиндра (3), полости для жидкости (4) и внешней части матрицы (5), обеспечивающей герметизацию между двумя частями (1) и (2) (на фиг.1-3 не показано). Внутренний цилиндр (3) представляет собой полость матрицы, в которой происходит объемное перемещение порошка. Стенки цилиндра имеют симметричные сквозные отверстия, соединяющие внутреннюю полость матрицы с полостью для жидкости (4). Размер отверстий рассчитан таким образом, чтобы исключить быстрое, самопроизвольное истечение жидкости.
Количество и размер отверстий рассчитывают исходя из двух основных зависимостей:
- формулы потока,
Sk·Vk=ΣSo·Vo;
где Sk - площадь цилиндра полости, заполняемой жидкостью,
Vk - скорость перемещения поршня,
So - площадь одного отверстия,
Vo - скорость истечения жидкости в полость матрицы
(сжимаемостью жидкости под действием приложенного давления пренебрегаем).
Форму отверстий со стороны полости, заполненной жидкостью, рассчитывают с учетом коэффициента истечения [Справочник по физике. / X. Кухлинг, М.: "МИР", 1982. с.114, 122, 123];
- уравнения смачивания,
диаметра отверстий, природу жидкости, материал внутреннего цилиндра матрицы (3), размеры частиц прессуемого порошка и характера взаимодействия порошка с жидкостью.
Кольцевой поршень (6) имеет уплотнение, которое не позволяет жидкости вытекать из полости (4) вверх через зазор между полостью (4) и поршнем (6) (на фиг.1-3 не показано). Поршень (6) закреплен на верхнем пуансоне (7), причем прессующая поверхность пуансона и поршня находятся в одной плоскости.
Внутренний цилиндр (3) имеет штоки, которые проходят через отверстия в верхней, горизонтальной части поршня (6). Эти штоки позволяют опускать внутренний цилиндр (3) вместе с верхней, внешней частью матрицы (5) и удерживать его неподвижно относительно других частей матрицы во время прессования.
На фиг.4-5 показаны варианты расположения отверстий во внутреннем цилиндре (3). Как видно из чертежей, отверстия расположены «послойно», симметрично по окружности, друг под другом во всех «слоях» или с чередованием по «слоям».
На фиг.6-7 показаны варианты расположения отверстий, преимущественно расположенных в верхней или в нижней части внутреннего цилиндра.
На фиг.8 показан вариант расположения отверстий, совпадающий с глубиной погружения пуансона при «сухом» прессовании в зависимости от давления прессования (зависимость представлена на фигуре справа).
На фиг.9 показан вариант расположения отверстий в обратной зависимости от варианта изображенного на фиг.8.
На фиг.10 показаны варианты размеров и формы отверстий. Отверстия могут быть:
- одного диаметра,
- переменного диаметра по высоте внутреннего цилиндра (3),
- с увеличением диаметра, как показано на фиг.10 (правая часть),
- в любой комбинации (с чередованием, смещением и т.д.).
Для увеличения коэффициента истечения отверстия со стороны подачи жидкости имеют требующую форму (левая часть фиг.10). [Справочник по физике. / X.Кухлинг, М.: МИР, 1982. с.122].
Работа устройства. На фиг.1 изображена стадия засыпки порошка в рабочую полость матрицы. Верхняя часть матрицы (1) герметично соединена с нижней частью (2), исключающей самопроизвольное истечение жидкости из полости (4). После засыпки порошка в полость матрицы в полость (4) подают требуемое количество жидкости. Верхний пуансон (7) совместно с поршнем (6) опускают вниз. Скорость перемещения верхнего пуансона (7) и поршня (6) одинаковы. Это позволяет продавливать жидкость из полости (4) под давлением в матрицу, заполненную порошком.
На фиг.2 начало движения пуансона (слева) и окончание стадии прессования (справа). Жидкость под давлением проходит между стенками пресс-формы и порошком. Жидкость проходит между частицами порошка в матрице. Порошок и жидкость уплотняют верхний пуансон. Движение жидкости между стенками матрицы и частицами порошка подобно движению между поверхностями твердого тела.
Слой жидкости между стенками матрицы и порошком значительно уменьшает внешнее трение.
Слой жидкости между частицами порошка уменьшает межчастичное трение, частично растворяет пластификатор, смывает его с поверхности частиц и выводит из объема прессовки.
Жидкость, прошедшая через порошок и зазор между нижней частью матрицы (2) и нижним пуансоном (8), поступает в приемную чашу (9). Чаша (9) закреплена на нижнем пуансоне и снабжена устройством (на чертеже не показано) для удаления жидкости.
На фиг.3 представлен этап выпрессовывания образца. Верхнюю часть матрицы (1), вместе с поршнем (6) и верхним пуансоном (7) поднимают вверх. Нижний пуансон (8) выталкивает изделие из полости матрицы (2).
Возможны следующие варианты конструкции.
Кольцевой поршень (6) имеет возможность перемещения в вертикальном направлении (регулировки) относительно верхнего пуансона (7). Это позволяет регулировать момент подачи жидкости в полость матрицы при прессовании: одновременно, до уплотнения, после уплотнения верхнего слоя, засыпанного порошка.
Приемная чаша (9) имеет возможность перемещения в вертикальном направлении (регулировки) относительно нижнего пуансона (8).
Если необходимо вводить жидкость в количествах меньших, чем объем полости (4), тогда в конструкцию дополнительно вставляют регулировочные кольца, изменяющие объем полости (высоту полости 4), и поднимают поршень (6) на соответствующую высоту. В этом случае на штоки (на чертежах оси) поршня надевают пружины (на чертежах не показаны), которые позволяют ему при упоре в регулировочное кольцо, смещаться вдоль оси верхнего пуансона (7) до тех пор, пока пуансон не опустится до нижней точки прессования.
Если необходимо увеличить давление подаваемой жидкости, то в этом случае (варианте) поршень (6) не закрепляют на верхнем, прессующем пуансоне (7), а через штоки поршня подают дополнительную нагрузку, необходимую для достижения требуемого давления жидкости. В этом случае для контроля и измерения давления жидкости в боковой поверхности верхней, внешней части матрицы (5) устанавливают датчик давления (на чертежах не показан).
Пример 6. Получение пористого спеченного вольфрамового каркаса для последующей пропитки.
Матрица заполнена порошком вольфрама неполностью. В этом случае совпадение торцевых поверхностей верхнего пуансона и поршня приведут к тому, что до начала уплотнения порошка на его поверхность будет подаваться жидкость. На фиг.11 жидкость из отверстий верхних 4-х «слоев» подается на поверхность до уплотнения.
Порошок вольфрама замешивали с различными пластификаторами, гранулировали, засыпали в пресс-форму и прессовали при давлении 1,0 т/см2 в стальной пресс-форме.
По предлагаемому способу наносили на поверхность этанол, а затем прессовали при давлении 1,0 т/см2. Прессовку извлекали, сушили и спекали.
Для прессования предпочтительно использовать порошок вольфрама без пластификатора.
Под действием сил гравитации и прессующего пуансона проходило «продавливание» жидкости через прессуемый слой порошка.
Спекание порошковых образцов проводили на печи СШВ-1.2.5/25 в вакууме 6,65·10-3 Па при температуре 1400°С в течение 4,0 часов. Полученные результаты приведены в таблице 1.
Таблица. 1
Пористость и предел прочности на сжатие после спекания прессованного вольфрамового порошка.
Пластификатор Пористость после спекания, % Средняя пористость и доверительный интервал Предел прочности на сжатие, МПа Средняя прочность и доверительный интервал
1. ПВС 44; 44; 44; 43; 43; 42; 42 43,14±0,82 30,6; 25,1; 18,5; 26,2; 30,6; 31,7; 35,0 28,24±4,94
2. ПЭГ 41; 43; 41; 43; 43; 40; 43; 42 42±1,01 29,5; 33,2; 34,5; 29,5; 31,0; 52,5; 27,3; 35,8 34,16±6,73
3. Глицерин 41; 41; 41; 41; 42; 40; 39 40,86±0,62 37,1; 50,3; 50,3; 47,0; 30,6; 59,0; 66,7 48,71±8,86
4. Каучук 40; 41; 39; 39; 41; 39; 39 39,71±0,86 79,1; 86,8; 134,1; 180,3; 83,5; 138,5; 127.5 118,54±33,79
5. «Мокрое прессование» (этанол) 42; 43; 45; 45; 43 43,6±1,68 22,9; 20,7; 20,1; 22,3; 21,8 21,56±1,44
Отсутствие пластификатора не загрязняет спеченный вольфрамовый каркас. Известно, что пластификаторы после своего разложения оставляют нелетучие примеси, которые находятся на поверхности металлических частиц и оказывают существенное влияние на процесс спекания [Физико-металлургические основы спекания порошков / Скороход В.В., Солонин С.М. - М.: Металлургия, 1984. - 159 с.].
Прессование вольфрамового порошка без пластификатора позволяет упростить технологию прессования непластичных материалов, снизить себестоимость производства.
Пример 7. Варианты конструкции внутреннего цилиндра матрицы (3).
Материал, из которого изготавливают внутренний цилиндр матрицы (3):
- тот же, из которого изготовлены все элементы матрицы;
- антифрикционный материал;
- керамика;
- из спеченного материала, который подвергают мокрому прессованию.
Пример 8. В качестве жидкости используют:
1) - жидкость для пропитки прессовки раствором соли. Прессование порошка вольфрама по Примеру №6 без пластификатора. В качестве жидкости использовали 25% водный раствор сульфата иттрия. Водный раствор соли пропитывает прессуемый вольфрамовый порошок, а после сушки, между частицами вольфрама остается твердый сульфат иттрия.
2) - жидкость, содержащую взвесь твердых частиц. Прессование порошка вольфрама по Примеру №6 без пластификатора. В качестве жидкости использовали водную суспензию алюмината бария (3ВаО·Al2О3). Свободно засыпанный в матрицу порошок вольфрама омывает водный раствор мелкодисперсной соли, которая оседает на поверхности вольфрамовых. Жидкость и часть суспензии алюмината бария отжимается и вытекает через пространство между нижним пуансоном и матрицей.

Claims (7)

1. Способ прессования порошковых материалов, включающий введение в порошок жидкости и прессование, отличающийся тем, что в порошок вводят летучую жидкость, которую подают со стороны прессующего пуансона в количестве 0,2-3 объема пор прессовки.
2. Способ прессования порошковых материалов, включающий введение в порошок жидкости и прессование, отличающийся тем, что осуществляют прессование непластичных порошков без пластификатора, при этом в порошок вводят летучую жидкость в количестве 0,2-3 объема пор прессовки, причем жидкость вводят перед прессованием на верхнюю поверхность порошка и одновременно с прессованием до окончания процесса.
3. Способ прессования порошковых материалов, включающий введение в порошок жидкости и прессование, отличающийся тем, что в порошок вводят летучую жидкость в количестве 0,2-3 объема пор прессовки и пластификатор, причем жидкость вводят перед прессованием на верхнюю поверхность порошка и одновременно с прессованием до окончания процесса, при этом при прессовании осуществляют частичное удаление пластификатора.
4. Способ прессования порошковых материалов, включающий введение в порошок жидкости и прессование, отличающийся тем, что в порошок вводят летучую жидкость, представляющую собой раствор соли, в количестве 0,2-3 объема пор прессовки, причем жидкость вводят перед прессованием на верхнюю поверхность порошка и одновременно с прессованием до окончания процесса, при этом при прессовании осуществляют пропитку прессовки.
5. Пресс-форма для прессования порошковых материалов, содержащая матрицу, верхний и нижний пуансоны и устройство для подачи жидкости, отличающаяся тем, что матрица состоит из верхней и нижней частей, верхняя часть матрицы содержит внутреннюю полость, полость для жидкости и внешнюю часть, обеспечивающую герметизацию между верхней и нижней частями матрицы, а устройство для подачи жидкости представляет собой цилиндр, стенки которого имеют симметричные сквозные отверстия, соединяющие внутреннюю полость матрицы с полостью для жидкости, и содержит поршень для подачи жидкости во внутреннюю полость матрицы.
6. Пресс-форма по п.5, отличающаяся тем, что поршень для подачи жидкости конструктивно связан с верхним пуансоном.
7. Пресс-форма по п.5, отличающаяся тем, что для увеличения давления жидкости поршень для подачи жидкости не связан с верхним пуансоном и имеет дополнительный источник давления.
RU2004133614/02A 2004-11-18 2004-11-18 Способ прессования порошковых материалов и устройство для его осуществления (варианты) RU2275274C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2004133614/02A RU2275274C1 (ru) 2004-11-18 2004-11-18 Способ прессования порошковых материалов и устройство для его осуществления (варианты)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2004133614/02A RU2275274C1 (ru) 2004-11-18 2004-11-18 Способ прессования порошковых материалов и устройство для его осуществления (варианты)

Publications (2)

Publication Number Publication Date
RU2004133614A RU2004133614A (ru) 2006-04-20
RU2275274C1 true RU2275274C1 (ru) 2006-04-27

Family

ID=36607956

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2004133614/02A RU2275274C1 (ru) 2004-11-18 2004-11-18 Способ прессования порошковых материалов и устройство для его осуществления (варианты)

Country Status (1)

Country Link
RU (1) RU2275274C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2476293C2 (ru) * 2011-04-21 2013-02-27 Федеральное государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Способ прессования порошковых материалов с лиофобной жидкостью и устройство для его осуществления
RU2569288C1 (ru) * 2014-05-27 2015-11-20 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Способ изготовления наноразмерного твердого сплава

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2476293C2 (ru) * 2011-04-21 2013-02-27 Федеральное государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Способ прессования порошковых материалов с лиофобной жидкостью и устройство для его осуществления
RU2569288C1 (ru) * 2014-05-27 2015-11-20 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Способ изготовления наноразмерного твердого сплава

Also Published As

Publication number Publication date
RU2004133614A (ru) 2006-04-20

Similar Documents

Publication Publication Date Title
US4473526A (en) Method of manufacturing dry-pressed molded articles
US6502623B1 (en) Process of making a metal matrix composite (MMC) component
KR101366721B1 (ko) 개선된 금속 기지 복합 재료의 제조 방법 및 이러한 방법을실시하기 위한 장치
US2964822A (en) Process for the manufacture of ceramic objects
Bauer et al. Micropatterning of ceramics by slip pressing
DE68927185T2 (de) Formgebungsverfahren und Formvorrichtung zum Herstellen von keramischen Gegenständen
RU2275274C1 (ru) Способ прессования порошковых материалов и устройство для его осуществления (варианты)
Kim et al. Pore structure evolution during solvent extraction and wicking
RU2321474C1 (ru) Способ мокрого прессования и устройство для его осуществления (варианты)
KR101410420B1 (ko) 가압-진공 혼합식 세라믹 주입 성형장치
RU2442674C1 (ru) Способ мокрого прессования и устройство для его осуществления (варианты)
JP2004509784A (ja) 冷間等圧プレス成形方法
Yu et al. Compact formation during colloidal isopressing
CN109551612B (zh) 一种耐火匣钵的等静压成形方法及模具
RU2482938C1 (ru) Способ прессования с использованием подъемной силы жидкости и устройство для его осуществления
RU2323803C1 (ru) Способ мокрого прессования (варианты) и устройство для его осуществления
JP3912914B2 (ja) 多孔質成形体の成形方法およびその成形装置
JPH01145104A (ja) 高密度燒結体の製造法
RU2399458C2 (ru) Способ прессования высокоплотных заготовок и деталей из металлического порошка в присутствии жидкой фазы
US7169336B2 (en) Preparation of powder granules by liquid condensation process and manufacture of powder compacts thereof
RU2419515C1 (ru) Способ получения изделий из порошка бериллия
JPS633906A (ja) 泥しよう粉末材料の脱水成形方法
TW201702038A (zh) 澆鑄成形體及其製造方法
JPH03162503A (ja) 泥しょう鋳込成形装置
JPS6070101A (ja) 粉末成形体の射出成形方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20071119