RU2258329C1 - Электродный узел - Google Patents

Электродный узел Download PDF

Info

Publication number
RU2258329C1
RU2258329C1 RU2004113983/28A RU2004113983A RU2258329C1 RU 2258329 C1 RU2258329 C1 RU 2258329C1 RU 2004113983/28 A RU2004113983/28 A RU 2004113983/28A RU 2004113983 A RU2004113983 A RU 2004113983A RU 2258329 C1 RU2258329 C1 RU 2258329C1
Authority
RU
Russia
Prior art keywords
electrolyte
electrode assembly
current
electrolytic bath
tub
Prior art date
Application number
RU2004113983/28A
Other languages
English (en)
Inventor
Х.К. Тазмеев (RU)
Х.К. Тазмеев
Р.Н. Тазмеева (RU)
Р.Н. Тазмеева
Original Assignee
Камский государственный политехнический институт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Камский государственный политехнический институт filed Critical Камский государственный политехнический институт
Priority to RU2004113983/28A priority Critical patent/RU2258329C1/ru
Application granted granted Critical
Publication of RU2258329C1 publication Critical patent/RU2258329C1/ru

Links

Abstract

Изобретение относится к плазменной технике, а именно к газоразрядным устройствам с жидкими неметаллическими электродами, и может быть использовано в качестве анода или катода. Электродный узел содержит проточную электролитическую ванну и токопроводящую пластину. Внутри электролитической ванны монтируется вертикальная перегородка, которая состыкуется с токопроводящей пластиной так, что объем электролитической ванны делится на две изолированные проточные области, с общим входом и раздельными выходами, снабженными вентилями, при этом электролитическая ванна заполняется электролитом так, что толщина слоя электролита в проточной области над токопроводящей пластиной составляет от 10 до 15 мм. Разделение потока электролита на две части позволяет уменьшить тепловые потери в электродном узле. 1 ил.

Description

Изобретение относится к плазменной технике, а именно к газоразрядным устройствам с жидкими неметаллическими электродами, и может быть использовано в качестве катода или анода.
Известен электродный узел, который представляет собой емкость, наполненную электролитом и снабженную металлическим токоподводом [1]. Недостатком этого электродного узла является то, что он за время продолжительной работы нагревается до высоких температур, при которых электролит начинает кипеть.
Известен другой электродный узел, у которого токоподвод охвачен пористым стаканом, изготовленным из огнеупорного диэлектрического материала [2]. Электролит протекает в зазоре между токоподводом и пористым стаканом и частично просачивается на рабочую поверхность пористого стакана. Этот электродный узел имеет тот недостаток, что он может работать только при сравнительно небольшой плотности тока ввиду ограниченности поступления электролита в разрядную зону через пористую стенку стакана.
Известен электродный узел, представляющий собой керамический лоток, на донышке которого в отверстие вмонтирован металлический токоподвод [3]. В рабочем состоянии лоток отклонен от вертикали на небольшой угол и по нему стекает электролит. Недостаток в том, что скорость течения электролита практически не регулируется и поэтому невозможно организовать оптимальные условия тепломассообмена между электролитом и газовым разрядом.
Прототипом выбран электродный узел, который представляет собой проточную электролитическую ванну с токоподводом в виде металлической пластины [4]. Его недостаток заключается в следующем. Этот электродный узел охлаждается протекающим через него электролитом, т.е. электролит одновременно является и жидким электродом, и охлаждающей жидкостью. Чем меньше скорость течения электролита, тем больше он прогревается в зоне действия разряда. При этом уменьшается омическое сопротивление электролита, соответственно снижается джоулево тепловыделение. Чтобы отводить тепло от катода, в том числе и джоулево тепло, скорость течения электролита должна быть не меньше некоторой минимальной (критической) скорости. Такое ограничение на скорость течения электролита не позволяет уменьшить джоулево тепловыделение, следовательно и тепловые потери на жидком электроде ниже определенного предела, т.к. электролит не успевает прогреться и его омическое сопротивление остается сравнительно большим.
Изобретение направлено на снижение тепловых потерь на жидком электроде. Это достигается тем, что в электродном узле, содержащем проточную электролитическую ванну и токоподводящую пластину, внутри электролитической ванны монтируется вертикальная перегородка, которая состыкуется с токоподводящей пластиной так, что объем электролитической ванны делится на две изолированные проточные области, с общим входом и раздельными выходами, снабженными вентилями; при этом электролитическая ванна заполняется электролитом так, что толщина слоя электролита в проточной области над токоподводящей пластиной составляет от 10 до 15 мм.
На чертеже приведена схема электродного узла.
Электродный узел содержит электролитическую ванну 1, внутри которой смонтированы токоподводящая пластина 2 и вертикальная перегородка 3 так, что ее объем разделен на две проточные области: верхнюю 4 и нижнюю 5. Электролитическая ванна 1 снабжена патрубком 6 для подвода и двумя патрубками 7 и 8 для отвода электролита. Вертикальная перегородка 3 вмонтирована между патрубками 7 и 8. К этим патрубкам 7 и 8 установлены вентили 9 и 10 для регулирования расхода электролита через проточные области 4 и 5 по отдельности. Направления течения электролита указаны стрелками.
Работает электродный узел следующим образом.
Электролит, подводимый через патрубок 6, внутри электролитической ванны 1 делится на две части. Одна часть протекает по области 4 выше токоподвода 2. Толщина h слоя электролита в области 4 составляет от 10 до 15 мм. Чем тоньше слой электролита, тем меньше его омическое сопротивление, следовательно, и меньше тепловые потери. Однако с уменьшением h растет вероятность электрического пробоя слоя электролита. Поэтому h должна быть не менее чем от 10 до 15 мм. Через слой электролита ток замыкается от токоподвода на газовый разряд и внутри этого слоя выделяется джоулево тепло. Эта теплота уносится электролитом и передается через теплообменник в систему охлаждения. Так формируются тепловые потери. Сверху на электролит оказывает воздействие газовый разряд. Теплота, поступающая от газового разряда, идет на испарения электролита (из паров электролита образуется плазма) и частично отводится внутрь электролита. Таким образом, электролит, текущий по области 4, отводит в систему охлаждения джоулево тепло и теплоту, идущую от газового разряда.
Другая часть электролита протекает по области 5 ниже токоподводящей пластины 2. Она снимает теплоту, поступающую в эту область через токоподводящую пластину 2 и перегородку 3 за счет теплопроводности. Здесь электролит играет роль только охлаждающей жидкости.
Вентилями 9 и 10 регулируются расходы электролита через проточные области 4 и 5 и, тем самым, устанавливаются тепловые режимы в этих областях.
Положительный эффект предлагаемого изобретения в том, что существенно снижаются тепловые потери на электродном узле. Достигается это следующим образом. С помощью вентиля 9 устанавливается такой минимальный расход электролита через проточную область 4, при котором электролит в этой области под тепловым воздействием разряда, а также за счет джоулевого тепла нагревается до температуры, близкой к температуре кипения, т.е. до максимально возможной температуры. При этом омическое сопротивление электролита по сравнению с его значением при комнатной температуре, уменьшается в несколько раз. Во столько же раз меньше выделяется джоулево тепло и, тем самым, снижаются тепловые потери. Чтобы электролит в проточной области 4 не вскипел, должен быть нагретым до максимальной температуры, равной температуре кипения, лишь тонкий поверхностный слой электролита, т.е. внутри электролита должен быть градиент температуры, направленный от токоповода к верхним слоям. Такой градиент температуры создается охлаждением токоподводящей пластины. Для этой цели служит электролит, протекающей ниже токоподводящей пластины 2 через область 5. В этой области 5 электролит снимает теплоту с нижней поверхности токоподводящей пластины 2, поступающую туда за счет теплопроводности, и отводит в систему охлаждения через теплообменник. Расход электролита регулируется вентилем 10 и, тем самым, устанавливается режим теплообмена между электролитом и токоподводящей пластиной. Таким образом, именно разделение потока электролита на две части позволяет уменьшить тепловые потери в электродном узле ниже уровня тепловых потерь в прототипе и снизить их до минимума.
Предлагаемый электродный узел был испытан в качестве катода генератора плазмы в диапазоне токов (от 4 до 11 А) и мощности (от 5 до 15 кВт). Электролитом служил раствор поваренной соли в дистиллированной воде. Его электропроводность при комнатной температуре составляла (0,8-2,7)×10-3 (Ом×см)-1. Толщина h слоя электролита, невозмущенного действием газового разряда, была равна 14 мм. Путем регулирования расходов электролита через проточные области, расположенные выше токоподводящей пластины и под ней, тепловые потери были снижены до такого минимума, что они составляли лишь небольшую часть подводимой к генератору плазмы мощности. Их доля в общем энергетическом балансе генератора плазмы не превышала приблизительно 5%.
Источники информации
1. Гайсин Ф.М., Сон Э.Е., Шакиров Ю.И. Объемный разряд в парогазовой среде между твердым и жидким электродами. М.: Изд-во ВЗПИ, 1990. См. стр.55.
2. Тазмеев Х.К., Тазмеев Б.Х. Электродный узел. Патент РФ на изобретение №2149523. 2000. Бюл. №14.
3. Баринов Ю.А., Школьник С.М. Зондовые измерения в разряде с жидкими неметаллическими электродами в воздухе при атмосферном давлении // ЖТФ, 2002. Т.72. Вып.3. С.31-37.
4. Гайсин Ф.М., Гизатуллина Ф.А., Камалов P.P. Энергетические характеристики разрядов в атмосфере между электролитом и медным анодом // ФизХОМ, 1985. №4. С.58-64.

Claims (1)

  1. Электродный узел газоразрядного устройства с жидким неметаллическим электродом, содержащий проточную электролитическую ванну и токопроводящую пластину, отличающийся тем, что внутри электролитической ванны смонтирована вертикальная перегородка, верхний край которой состыкован с токопроводящей пластиной так, что объем электролитической ванны разделен на две изолированные проточные области с общим входом и раздельными выходами, снабженными вентилями, при этом электролитическая ванна заполнена электролитом так, что толщина слоя электролита в проточной области над токопроводящей пластиной составляет от 10 до 15 мм.
RU2004113983/28A 2004-05-06 2004-05-06 Электродный узел RU2258329C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2004113983/28A RU2258329C1 (ru) 2004-05-06 2004-05-06 Электродный узел

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2004113983/28A RU2258329C1 (ru) 2004-05-06 2004-05-06 Электродный узел

Publications (1)

Publication Number Publication Date
RU2258329C1 true RU2258329C1 (ru) 2005-08-10

Family

ID=35845172

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2004113983/28A RU2258329C1 (ru) 2004-05-06 2004-05-06 Электродный узел

Country Status (1)

Country Link
RU (1) RU2258329C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2792296C1 (ru) * 2022-04-19 2023-03-21 федеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет" (ФГАОУ ВО КФУ) Электродный узел

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2792296C1 (ru) * 2022-04-19 2023-03-21 федеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет" (ФГАОУ ВО КФУ) Электродный узел

Similar Documents

Publication Publication Date Title
US8409422B2 (en) Method and apparatus for producing hydrogen and oxygen gas
KR100479472B1 (ko) 브라운 가스 발생장치
US20130279532A1 (en) Energy efficient high-temperature refining
JPH02112798A (ja) 廃棄物処理用溶融炉及びその加熱方法
JP2008517156A (ja) 電解製錬槽の内部冷却
RU2324008C2 (ru) Способ и система охлаждения электролизной ванны для производства алюминия
JP2023505325A (ja) プラズマ発生器
Tazmeeva et al. Development features of the plasma flow in the gas discharge with the liquid electrolyte cathode
CN101842522A (zh) 电解装置
CN101610046A (zh) 铝电解槽废热利用方法
Tazmeev et al. The influence of the mass flow rate of the electrolyte through the following cathode on the energy characteristics of the gas discharge
RU2258329C1 (ru) Электродный узел
US20140102887A1 (en) Plasma electrolytic cell
US5895559A (en) Cathodic arc cathode
RU2287026C1 (ru) Многоячеистый электролизер с биполярными электродами для получения алюминия (электролизер кирко - полякова)
KR100619729B1 (ko) 연료전지의 스택 방열 장치
US4119876A (en) Electrode structure for an electric discharge device
KR20190141851A (ko) 전극보일러의 전극봉 및 이를 이용한 발열전류제어방법
RU2286033C1 (ru) Плазмотрон с жидким электролитным катодом
RU2340978C1 (ru) Электродный узел
Tazmeev et al. Some specific features of heat and mass transfer of gas-discharge plasma with a liquid electrolytic cathode
RU2371652C1 (ru) Электрическая печь для приготовления сплавов цветных металлов
RU2241320C1 (ru) Способ получения высоковольтного разряда между жидким электролитным катодом и твердотельным анодом, частично погруженным в электролит
US2755244A (en) Temperature control of electrolytic cells
RU2255436C1 (ru) Генератор плазмы тлеющего разряда с жидким электролитным катодом

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20070507