RU2250926C1 - Способ переработки титанкремнийсодержащих концентратов - Google Patents

Способ переработки титанкремнийсодержащих концентратов Download PDF

Info

Publication number
RU2250926C1
RU2250926C1 RU2003124473/02A RU2003124473A RU2250926C1 RU 2250926 C1 RU2250926 C1 RU 2250926C1 RU 2003124473/02 A RU2003124473/02 A RU 2003124473/02A RU 2003124473 A RU2003124473 A RU 2003124473A RU 2250926 C1 RU2250926 C1 RU 2250926C1
Authority
RU
Russia
Prior art keywords
titanium
flotation
product
concentrate
subjected
Prior art date
Application number
RU2003124473/02A
Other languages
English (en)
Other versions
RU2003124473A (ru
Inventor
М.П. Федун (RU)
М.П. Федун
В.К. Баканов (RU)
В.К. Баканов
В.Е. Охрименко (RU)
В.Е. Охрименко
Е.К. Георгиади (RU)
Е.К. Георгиади
Л.Б. Чистов (RU)
Л.Б. Чистов
В.В. Пастихин (RU)
В.В. Пастихин
Original Assignee
Федун Марина Петровна
Баканов Виталий Константинович
Охрименко Владимир Емельянович
Георгиади Елизавета Кузьминична
Чистов Леонид Борисович
Пастихин Валерий Васильевич
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федун Марина Петровна, Баканов Виталий Константинович, Охрименко Владимир Емельянович, Георгиади Елизавета Кузьминична, Чистов Леонид Борисович, Пастихин Валерий Васильевич filed Critical Федун Марина Петровна
Priority to RU2003124473/02A priority Critical patent/RU2250926C1/ru
Publication of RU2003124473A publication Critical patent/RU2003124473A/ru
Application granted granted Critical
Publication of RU2250926C1 publication Critical patent/RU2250926C1/ru

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

Изобретение относится к металлургии редких металлов, а именно к способам переработки трудновскрываемых лейкоксеновых концентратов Ярегского месторождения. В предложенном способе, включающем измельчение чернового концентрата и разделение титан- и кремнийсодержащих фракций с получением богатого титансодержащего концентрата, согласно изобретению измельченный исходный концентрат классифицируют по классу 0,2 мм, продукт крупностью +0,2 мм доизмельчают с дополнительным выделением фракции -0,2 мм, объединяют фракции -0,2 мм и подвергают мокрой магнитной сепарации в поле с магнитной индукцией до 0,1 Т для отделения железосодержащей фракции, полученную немагнитную фракцию обезвоживают и осуществляют разделение титан- и кремнийсодержащих фракций основной флотацией с получением пенного продукта, обогащенного лейкоксеном, и камерного продукта, обогащенного кварцем, камерный продукт обезвоживают, измельчают и подвергают контрольной флотации с получением пенного продукта, обогащенного лейкоксеном, пенный продукт контрольной флотации объединяют с пенным продуктом основной флотации и подвергают перечистным флотациям с получением в пенном продукте богатого титансодержащего концентрата, а камерные продукты перечистных флотаций подвергают контрольной перечистной флотации с получением в пенном продукте дополнительного титансодержащего промпродукта, при этом флотацию на всех стадиях проводят в кислой среде смесью первичных и вторичных аминов. Обеспечивается повышение эффективности разделения титан-кремнийсодержащих черновых лейкоксеновых концентратов, снижение энергозатрат, повышение извлечения титансодержащих фракций. 3 з.п. ф-лы.

Description

Изобретение относится к металлургии редких металлов, а именно к способам переработки трудновскрываемых лейкоксеновых концентратов Ярегского месторождения.
Лейкоксеновые концентраты Ярегского месторождения представляют собой полиминеральные титан-кремниевые агрегаты, состоящие из сростков минералов титана (рутила, анатаза) с кварцем. Содержание двуокиси титана в них ~45-50%.
Для производства пигментов на основе двуокиси титана с высокими экономическими показателями содержание его в исходных концентратах должно быть не менее 65%.
Технической задачей заявляемого изобретения является переработка черновых лейкоксеновых концентратов с получением обогащенных титaнcодержащих материалов, с содержанием двуокиси титана 68-70% и извлечением 90-95%.
Известен способ получения двуокиси титана из лейкоксенового концентрата с содержанием в нем ~45% TiО2, включающий его размол, смешение с концентрированной серной кислотой в присутствии железной стружки в массовом соотношении Т:Ж=1,2:1,0; нагрев смеси до температуры 250-300°С, выдержку в течение двух часов при 280°С, охлаждение до 80°С продувкой воздухом и выщелaчивание подкисленной водой и осаждение из растворов (Авт. св. СССР №235883, МПК С 22 В 34/12, опубл. 1969 г.).
Способ предусматривает большой расход электроэнергии на операции разложения концентрата из-за низкой реакционной способности рутила и анатаза.
Известен способ переработки лейкоксенового концентрата с содержанием ТiO2, ~46%, включающий восстановительный обжиг при температуре 1200-1350°С в течение 20-150 мин, измельчение обожженного концентрата до крупности 75 мкм, смешение с концентрированной серной кислотой, нагревание до 200°С и выдержку при этой температуре в течение 1,5 часов, охлаждение и выщелачивание водой (см. патент РФ №2001138, С 22 В 34/12, опубл 15.10.93).
Недостатком способа является высокая энергоемкость и экологическая агрессивность, использование сложного технологического оборудования.
Известен способ переработки низкотитановых лейкоксеновых концентратов с содержанием TiO2 ~50,1%, включающий дробление - дезинтеграцию агрегатов в воде ультразвуком и последующее разделение титановой и кремниевой фаз в тяжелых жидкостях на центрифугах (см. патент РФ №1766087, МПК С 22 В 34/12, опубл. 1982 г.).
Недостатком способа является малая производительность процесса (в лабораторных условиях 1-5 кг/ч), сравнительно длительное время ультразвукового дробления (40-60 мин) и использование тяжелых жидкостей (на 1 т концентрата требуется 3-4 т тяжелой жидкости). Способ непригоден для промышленной реализации из-за отсутствия необходимого оборудования (ультазвуковых генераторов большой мощности), большого расхода высокотоксичных и дорогостоящих тяжелых жидкостей для разделения титан-кремниевых фаз.
Известен способ переработки лейкоксеновых концентратов с содержанием TiO2 ~51,2%, включающий дезинтеграцию микроагрегатов лейкоксена путем измельчения его в ударных дезинтеграторах роторного типа с последующей сепарацией разделенных фаз TiQ2 и SiО2 в водном потоке на винтовых шлюзах, разделение осуществляют за счет различной плотности этих фаз (патент РФ №2032756, МПК С 22 В 34/12, опубл. 10.04.95). Способ принят за прототип.
Недостатком способа является чрезвычайно низкая эффективность разделения из-за небольших различий в плотностях разделяемых минералов (разность составляет 0,5-0,7 г/см3), в связи с чем способ также непригоден для промышленной реализации.
Техническим результатом заявленного изобретения является повышение эффективности разделения титан-кремнийсодержащих фракций черновых лейкоксеновых концентратов с использованием стандартного оборудования, снижение энергозатрат, повышение извлечения титансодержащих фракций.
Технический результат достигается тем, что в способе переработки титан-кремнийсодержащих концентратов, преимущественно лейкоксеновых, включающем измельчение исходного чернового концентрата и разделение титан- и кремнийсодержащих фракций с получением богатого титансодержащего продукта, согласно изобретению измельченный исходный концентрат классифицируют по классу 0,2 мм, продукт крупностью +0,2 мм доизмельчают с дополнительным выделением фракции -0,2 мм, объединяют фракции -0,2 мм и подвергают мокрой магнитной сепарации в поле с магнитной индукцией до 0,1 Т для отделения железосодержащей фракции, полученную немагнитную фракцию обезвоживают и осуществляют разделение титан- и кремнийсодержащих фракций основной флотацией с получением пенного продукта, обогащенного лейкоксеном, и камерного продукта, обогащенного кварцем, камерный продукт обезвоживают, измельчают и подвергают контрольной флотации с получением пенного продукта, обогащенного лейкоксеном, пенный продукт контрольной флотации объединяют с пенным продуктом основной флотации и подвергают перечистным флотациям с получением в пенном продукте богатого титансодержащего концентрата, а камерный продукт перечистных флотации подвергают контрольной перечистной флотации с получением в пенном продукте дополнительного титансодержащего концентрата, при этом флотацию на всех стадиях проводят в кислой среде смесью первичных и вторичных аминов; кислую среду создают щавелевой и/или серной кислотой до рН 4,5-5,0 с дополнительным введением кремнефторида натрия; флотацию проводят смесью первичных и вторичных аминов при их соотношении (2-1):(1-2) и камерный продукт основной флотации после обезвоживания измельчают до 0,07 мм, а дополнительный титановый промпродукт, содержащий 35% двуокиси титана, используют для получения цветных пигментов.
Сущность способа заключается в следующем.
Предложена флотационная схема доводки черновых лейкоксеновых концентратов, состоящих из трудновскрываемых фаз TiО2 и SiО2 (из-за чего химические способы экономически не эффективны), включающая совокупность флотационных переделов, а именно
- основную флотацию, в процессе которой из предварительно дезинтегрированного чернового концентрата извлекают лейкоксеновую фазу в богатый титансодержащий концентрат,
- перечистные флотации, в процессе которых идет дообогащение титансодержащего концентрата и
- контрольные флотации, в процессе которых доизвлекается лейкоксен из камерных продуктов.
В результате получают титановый продукт с содержанием двуокиси титана 68-70% и извлечением 93-95% и промпродукт, содержащий 35% TiQ2, который можно использовать в качестве сырья для цветных пигментов.
Высокие показатели по содержанию и извлечению достигнуты при малых энергозатратах на стандартном оборудовании классическим, хорошо освоенным горной промышленностью флотационным процессом, основанным на различиях физико-химических свойств разделяемых минеральных фаз с использованием неизвестных ранее для разделения титана и кремния флотационных реагентов.
Исходный лейкоксеновый концентрат, в котором содержание, мас.%:
TiO2 50,8; SiO2 41,9, измельчают до крупности 0,2 мм и разделяют на фракции +0,2 мм и -0,2 мм. Во фракцию -0,2 мм извлекается до ~65% двуокиси титана при среднем его содержании ~52%.
Двуокись титана неравномерно распределена по классам крупности, и в основном ею обогащены более тонкие классы -0,125 мм, в то время как кварцем обогащены в основном крупные фракции +0,25 мм.
Поэтому для повышения извлечения двуокиси титана, после классификации по классу 0,2 мм, фракцию +0,2 мм необходимо доизмельчать с дополнительным выделением фракции -0,2 мм.
Исходный материал содержит железо и, кроме того, в процессе измельчения он дополнительно загрязняется железом, поэтому измельченный концентрат необходимо очищать, для чего предложено использовать мокрую магнитную сепарацию в слабом магнитном поле. Полученную немагнитную фракцию подвергают основной флотации в кислой среде смесью первичных и вторичных (диаминов) аминов. Концентрат основной флотации (пенный продукт) подвергают двум флотационным перечисткам с получением богатого титанового концентрата, содержащего 68-70% двуокиси титана и с извлечением 93%. Камерный продукт основной флотации после обезвоживания и измельчения подвергают контрольной флотации, при этом полученный пенный продукт контрольной флотации заворачивают в процесс основной флотации для объединения пенных продуктов, а камерные продукты перечистных флотаций подвергают контрольной перечисной флотации с получением в пенном продукте дополнительного титанового промпродукта, содержащего 35% TiO2, который является исходным сырьем для цветных пигментов.
Таким образом, новым в заявленном способе является предложенная флотационная схема доводки чернового кварц-лейкоксенового концентрата.
Предложенная совокупность флотационных операций, состав и использование неизвестных для титановых минералов флотореагентов - смесь аминов и диаминов - и режимов флотации позволяют получать при низких эксплуатационных затратах два вида продуктов - богатый титановый концентрат с содержанием двуокиси титана 68,8% и извлечением 93% и дополнительный титановый промпродукт с содержанием двуокиси титана 35%, который может быть использован в технологии получения цветных пигментов.
Обоснование параметров.
Проведение мокрой магнитной сепарации в поле до 0,1 Т обеспечивает достаточную очистку от железосодержащих фракций в виде оксидов, образующих тонкие пленки, налеты, корочки на поверхности зерен кварца и лейкоксена, и частиц аппаратурного железа.
Увеличение напряженности поля приводит к потерям лейкоксена с магнитной фракцией.
Проведение флотации с использованием в качестве флотореагентов - собирателей смеси первичных и вторичных аминов (аминов и диаминов) - позволяет разделить лейкоксен и кварц. Эффект разделения достигается благодаря селективной химической и физической адсорбции реагентов собирателей на поверхности титановых минералов в кислой среде и депрессии кварца фторосодержащим модификатором - кремнефторидом натрия. Кроме того, кремнефторид натрия выполняет дополнительную функцию активатора флотации минералов титана.
Заявленное соотношение амина и диамина (1-2):(2-1) обеспечивает наибольшее извлечение лейкоксена в пенный продукт.
Сочетание установленной крупности флотируемого материала (-0,2 мм) и соотношений флотореагентов между собой позволяют наиболее полно и с наибольшим выходом разделить лейкоксен и кварц и извлечь лейкоксен в пенный продукт, избежав при этом потерь титана с тонкими частицами, которые переходят в шламы.
Уменьшение и увеличение заявленного соотношения снижает показатели флотации лейкоксена.
Доизмельчение камерного продукта основной флотации до 0,07 мм связано с дополнительным освобождением фаз лейкоксена и кварца и соответственно с дополнительным извлечением лейкоксена в товарный концентрат. А возможность использования промпродуктов флотации для получения цветных пигментов делает технологию комплексной и снижает количество отходов.
Пример осуществления способа.
Лейкоксеновый концентрат, содержащий, мас.%: 50,8 двуокиси титана и 41,9 двуокиси кремния, оксиды алюминия, железа, магния, кальция, калия, натрия и др., подвергали измельчению в мельницах и классификации по крупности 0,2 мм. Фракцию +0,2 мм доизмельчали, объединяли с фракцией -0,2 мм и подвергали магнитной сепарации в магнитном поле напряженностью 0,9 Т с получением магнитного и немагнитного продукта. Магнитную фракцию направляли в хвосты, а немагнитный продукт направляли на основную флотацию лейкоксена. Основную, контрольную и перечистные операции флотации проводили в кислой среде с использованием серной или щавелевой кислоты при рН 4,5-5,0.
В качестве флотореагентов использовали ацетат амина с радикалом С1214 и диацетаталкилпропилендиамин с радикалом С1618 соответственно в соотношении 1:1 и расходе 250,0 г/т каждого, при введении кремнефторида натрия в количестве 5 кг/т с получением пенного продукта, обогащенного титаном, и камерного продукта.
Камерный продукт основной флотации обезвоживали, измельчали до 0,07 мм и подвергали первой контрольной флотации при рН 4,5-5,0 смесью ацетат амина с радикалом С1214 и диацетаталкилпропилендиамина с радикалом C16-C18 при соотношении 1:1 в присутствии кремнефторида натрия. Пенный продукт первой контрольной флотации объединяли с пенным продуктом основной флотации и после обезвоживания подвергали двум перечистным флотациям с получением основного титанового концентрата, содержащего 68-70% и извлечением 93% двуокиси титана.
Камерные продукты перечистных флотации обезвоживали и подвергали контрольной перечистной флотации с получением пенного продукта, который является дополнительным титановым продуктом, содержащим 35% двуокиси титана, пригодным для получения цветных пигментов.
Таким образом заявленный способ позволяет получить богатый титановый концентрат, пригодный для производства белых пигментов, и дополнительный титановый продукт для использования в технологии цветных пигментов с высокими показателями по извлечению (до 95%).

Claims (4)

1. Способ переработки лейкоксенового концентрата, включающий измельчение исходного чернового лейкоксенового концентрата и разделение титан- и кремнийсодержащих фракций с получением богатого титансодержащего концентрата, отличающийся тем, что измельченный исходный концентрат классифицируют по классу 0,2 мм, продукт крупностью +0,2 мм доизмельчают с дополнительным выделением фракции -0,2 мм, объединяют фракции -0,2 мм и подвергают мокрой магнитной сепарации в поле с магнитной индукцией до 0,1 Т для отделения железосодержащей фракции, полученную немагнитную фракцию обезвоживают и осуществляют разделение титан- и кремнийсодержащих фракций основной флотацией с получением пенного продукта, обогащенного лейкоксеном, и камерного продукта, обогащенного кварцем, камерный продукт обезвоживают, измельчают и подвергают контрольной флотации с получением пенного продукта, обогащенного лейкоксеном, пенный продукт контрольной флотации объединяют с пенным продуктом основной флотации и подвергают перечистным флотациям с получением в пенном продукте богатого титансодержащего концентрата, а камерные продукты перечистных флотаций подвергают контрольной перечистной флотации с получением в пенном продукте дополнительного титансодержащего промпродукта, при этом флотацию на всех стадиях проводят в кислой среде смесью первичных и вторичных аминов.
2. Способ по п.1, отличающийся тем, что кислую среду создают щавелевой и/или серной кислотой до рН 4,5-5,0 с дополнительным введением кремнефторида натрия.
3. Способ по п.1 или 2, отличающийся тем, что флотацию смесью первичных и вторичных аминов проводят при их соотношении (2÷1):(1÷2).
4. Способ по любому из пп.1-3, отличающийся тем, что обезвоженный камерный продукт основной флотации измельчают до 0,07 мм, а титансодержащий промпродукт, в котором содержится 35% двуокиси титана, используют в качестве сырья для получения цветных пигментов.
RU2003124473/02A 2003-08-08 2003-08-08 Способ переработки титанкремнийсодержащих концентратов RU2250926C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2003124473/02A RU2250926C1 (ru) 2003-08-08 2003-08-08 Способ переработки титанкремнийсодержащих концентратов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2003124473/02A RU2250926C1 (ru) 2003-08-08 2003-08-08 Способ переработки титанкремнийсодержащих концентратов

Publications (2)

Publication Number Publication Date
RU2003124473A RU2003124473A (ru) 2005-02-10
RU2250926C1 true RU2250926C1 (ru) 2005-04-27

Family

ID=35208460

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2003124473/02A RU2250926C1 (ru) 2003-08-08 2003-08-08 Способ переработки титанкремнийсодержащих концентратов

Country Status (1)

Country Link
RU (1) RU2250926C1 (ru)

Also Published As

Publication number Publication date
RU2003124473A (ru) 2005-02-10

Similar Documents

Publication Publication Date Title
CN100435967C (zh) 石英砾石分选及矿物解离提纯工艺
AU2022402780B2 (en) Method for comprehensively recovering lithium, tantalum-niobium, silicon-aluminum micro-powder, iron ore concentrate and gypsum from lithium slag
CN102276262A (zh) 利用花岗岩废料提取钾钠铝陶瓷原料的生产方法
CN108636591A (zh) 一种从铁尾矿中回收石英的方法
CN105921258A (zh) 一种钾长石除杂增白的方法
CN111285405A (zh) 一种从钢渣磁选尾矿中分离铁酸钙和铁酸镁的方法
CN116940540A (zh) 铝土矿静电分离的干法选矿工艺
CN114700180B (zh) 一种回收废弃抛光粉中稀土组分的方法
KR101078000B1 (ko) 메카노케미칼 반응에 의한 페로니켈슬래그로부터 황산마그네슘 및 이산화규소 제조방법
CN104190533B (zh) 回收铁尾矿中石英的方法及由该方法制备得到的石英矿
CN108580022B (zh) 一种产出化工级铬铁矿精矿的选矿工艺
CN106348320A (zh) 一种高效率氢氧化镁阻燃剂湿法制备方法
CN109354482A (zh) 一种大理岩型中低品位硅灰石矿的综合利用工艺
CN113083496A (zh) 一种石棉尾矿中含镁矿物的富集方法
JP5711189B2 (ja) 湿式粉砕及び分級による層状粘土鉱物の高品位選別方法
CN115055277B (zh) 一种从硫铁矿尾矿中回收高岭土、硫精矿和钛精矿的工艺
CN109847923B (zh) 一种极贫风化原生钛铁矿的回收工艺
RU2250926C1 (ru) Способ переработки титанкремнийсодержащих концентратов
RU2182521C1 (ru) Способ обогащения редкометалльных руд
CN108940576A (zh) 一种低成本的钾钠长石生产方法
RU2370326C2 (ru) Способ получения кпшс различного сортового состава с помощью сухого метода обогащения
JPS63205164A (ja) 高純度石英精鉱の製造方法
CN106349764B (zh) 一种低品位水镁石高效率制备改性氢氧化镁阻燃剂方法
CN109179433A (zh) 一种钾长石的提纯增白方法
CN114849903A (zh) 一种石英尾矿粉高效提取硅微粉选矿工艺

Legal Events

Date Code Title Description
RH4A Copy of patent granted that was duplicated for the russian federation

Effective date: 20070716

PC4A Invention patent assignment

Effective date: 20070814

PC4A Invention patent assignment

Effective date: 20090216