RU2250262C1 - РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК pET23-a(+)PrxVIhumΔ178, КОДИРУЮЩАЯ N-КОНЦЕВОЙ ФРАГМЕНТ ПЕРОКСИРЕДОКСИНА VI ЧЕЛОВЕКА, И ШТАММ E.coli BL21/DE3/pET23-a(+)/PrxVIhumΔ178 - ПРОДУЦЕНТ N-КОНЦЕВОГО ФРАГМЕНТА ПЕРОКСИРЕДОКСИНА VI ЧЕЛОВЕКА - Google Patents

РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК pET23-a(+)PrxVIhumΔ178, КОДИРУЮЩАЯ N-КОНЦЕВОЙ ФРАГМЕНТ ПЕРОКСИРЕДОКСИНА VI ЧЕЛОВЕКА, И ШТАММ E.coli BL21/DE3/pET23-a(+)/PrxVIhumΔ178 - ПРОДУЦЕНТ N-КОНЦЕВОГО ФРАГМЕНТА ПЕРОКСИРЕДОКСИНА VI ЧЕЛОВЕКА Download PDF

Info

Publication number
RU2250262C1
RU2250262C1 RU2003123534/13A RU2003123534A RU2250262C1 RU 2250262 C1 RU2250262 C1 RU 2250262C1 RU 2003123534/13 A RU2003123534/13 A RU 2003123534/13A RU 2003123534 A RU2003123534 A RU 2003123534A RU 2250262 C1 RU2250262 C1 RU 2250262C1
Authority
RU
Russia
Prior art keywords
pet23
human
peroxiredoxine
fragment
terminal fragment
Prior art date
Application number
RU2003123534/13A
Other languages
English (en)
Other versions
RU2003123534A (ru
Inventor
В.М. Липкин (RU)
В.М. Липкин
Т.М. Шуваева (RU)
Т.М. Шуваева
В.В. Радченко (RU)
В.В. Радченко
М.И. Меркулова (RU)
М.И. Меркулова
В.И. Новоселов (RU)
В.И. Новоселов
Е.Е. Фесенко (RU)
Е.Е. Фесенко
Original Assignee
Институт биоорганической химии им. академиков М.М.Шемякина и Ю.А.Овчинникова РАН
Институт биофизики клетки РАН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт биоорганической химии им. академиков М.М.Шемякина и Ю.А.Овчинникова РАН, Институт биофизики клетки РАН filed Critical Институт биоорганической химии им. академиков М.М.Шемякина и Ю.А.Овчинникова РАН
Priority to RU2003123534/13A priority Critical patent/RU2250262C1/ru
Priority to EP03774414A priority patent/EP1566182A4/en
Priority to CA002505478A priority patent/CA2505478A1/en
Priority to US10/534,238 priority patent/US8003345B2/en
Priority to JP2005506685A priority patent/JP2006505290A/ja
Priority to PCT/RU2003/000473 priority patent/WO2004043485A1/ru
Publication of RU2003123534A publication Critical patent/RU2003123534A/ru
Application granted granted Critical
Publication of RU2250262C1 publication Critical patent/RU2250262C1/ru

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

Изобретение относится к области биотехнологии и генной инженерии и может быть использовано в фармацевтической промышленности. Сконструирована плазмидная ДНК pET23-a(+)/PrxVIhumΔ178 с молекулярной массой 19691, 61 Da, которая содержит промотор РНК-полимеразы Т7, участок инициации репликации, генетический маркер, детерминирующий устойчивость трансформированных данной плазмидой клеток и ампициллину, и последовательность нуклеотидов, кодирующих N-концевой фрагмент пероксиредоксина VI человека размером 177 аминокислотных остатков. Путем трансформации клеток E.coli плазмидной ДНК pET23-a(+)/PrxVIhumΔ178 получен штамм E.coli BL21/DE3/PeT23-a (+)/PrxVIhumΔ178 - продуцент N-концевого фрагмента пероксиредоксина VI человека. Использование предложенного изобретения позволяет получить фрагмент пероксиредоксина VI человека, обладающий антиоксидантной активностью полноразмерного пероксиредоксина при пониженной молекулярной массе, что обеспечивает лучшую проницаемость в ткани. 2 н.п. ф-лы, 3 ил.

Description

Изобретение относится к области биотехнологии, генной инженерии и может быть использовано для получения антиоксидантного препарата пероксиредоксина, предназначенного для лечения заболеваний, связанных с окислительным стрессом.
Известно, что при неполном восстановлении молекулярного кислорода в процессе клеточного дыхания образуются активные формы кислорода - супероксидный анион радикал (
Figure 00000002
), перекись водорода (H2O2), гидроксильный радикал (НО·), которые являются крайне токсичными для клеток. Аэробные организмы выработали защитные механизмы для обезвреживания этих веществ. Одним из таких защитных механизмов является восстановление активных форм кислорода в результате реакций, катализируемых ферментами - антиоксидантами. Эти белки играют важную роль в поддержании окислительно-восстановительного потенциала клетки. К ним относятся хорошо изученные антиоксиданты, такие как супероксиддисмутаза, каталаза, глутатионпероксидаза, а, кроме того, открытые в последнее десятилетие пероксиредоксины [Chae H.Z., Robison К., Poole L.B., Church G., Storz G., and Rhee S.G. (1994) Proc. Natl. Acad. Sci. USA, 91, 7017-7021].
Пероксиредоксины - новое семейство белков, которое в настоящее время насчитывает более 100 представителей, обнаруженных во всех живых организмах от архебактерий до человека и являющихся тиоловыми пероксидазами [Lee S.P., Hwang Y.S., Kim Y.J., Kwon K.S., Kim H.J., Kim K., Chae H.Z. (2001) J. Biol. Chem., 276, 29826-29832].
У млекопитающих выявлено 6 типов пероксиредоксинов, различающихся по аминокислотной последовательности, механизму действия и локализации в организме и в клетке. Все пероксиредоксины в своей последовательности содержат высоко консервативный участок, являющийся активным центром ферментов, в состав которого входят один или два остатка Cys. В тестах in vitro было показано, что пероксиредоксины предотвращают инактивацию глутаминсинтетазы в присутствии Fe3+, О2 и дитиотреитол (ДТТ) - модельной окислительной системе, генерирующей свободные радикалы [Kim К, Kim I.H., Lee K.Y., Rhee S.G., Stadtman E.R. (1988) J. Biol. Chem., 263, 4704-4711].
К настоящему времени 1-Cys пероксиредоксин (пероксиредоксин VI, PrxVI) идентифицирован во многих органах и тканях млекопитающих. Первые природные индивидуальные белковые препараты PrxVI млекопитающих были выделены из обонятельного эпителия [Peshenko I.V., Novoselov V.I., Evdokimov V.A., Nikolaev Yu.V.. Shuvaeva T.M., Lipkin V.M., Fesenko E.E. (1996) FEBS Letters, 381, 12-14] и легких крысы [Kim T.S., Sundaresh C.G., Feinstein S.I., Dodia C., Skach W.R., Jain M.R., Nagase Т., Seki N.. Isherawa K., Nomura N., Fisher A.B. (1997) J. Biol. Chem., 272, 2542-2550]. Эти способы включают в себя накопление и гомогенизацию ткани, экстракцию целевого белка, а также тонкое фракционирование препарата с помощью трех последовательных хроматографических стадий. И хотя ткани, непосредственно контактирующие с кислородом воздуха, наиболее обогащены PrxVI [Novoselov S.V., Peshenko I.V., Popov V.I., Novoselov V.I., Bystrova M.F., Evdokimov V.J., Kamzalov S.S., Merkulova M.I., Shuvaeva T.M., Lipkin V.M., Fesenko E.E. (1999) Cell Tissue Res., 298, 471-480], эти трудоемкие и промышленно невоспроизводимые способы имеют лишь теоретическое значение. Основными недостатками получения PrxVI из природных источников являются: необходимость накопления животных тканей, малый конечный выход чистого препарата (0,01 мг на одно животное) и возможность возникновения аллергических реакций при использовании чужеродного белка для лечения человека.
В настоящее время препаративные количества PrxVI млекопитающих получают более предпочтительными генноинженерными методами, позволяющими нарабатывать нужные количества однородного генетического материала (выбранного вектора, соединенного со структурным геном полипептида) и, как следствие, конечного продукта - белка.
Так, в клетках штамма Е. coli BL21 (DE3) был осуществлен биосинтез полноразмерного рекомбинантного PrxVI человека (PrxVIhum) [Chen L.-W., Dodia С., Feinstein S.I., Jain M.K., Fisher A.B. (2000) J. Biol. Chem., 275, 28421-28427]. Для этого был взят фрагмент кДНК PrxVIhum (PrxVIhum) HA0683 (GenBank™ D14662) длиной 1653 п.о., содержащий открытую рамку считывания для PrxVIhum (224 а.о.) размером 672 п.о. Большая часть исходного фрагмента (длиной 1044 п.о.) была встроена в экспрессирующий вектор рЕТ28с по сайту рестрикции HindIII. Полученная конструкция обеспечивала наработку рекомбинантного белка, который, наряду с аминокислотной последовательностью PrxVIhum, содержал 42 дополнительных аминокислотных остатка, включая шесть остатков His на N-конце полипептидной цепи белка. Взяв за основу тот же фрагмент-PrxVIhum и искусственно введя сайты для узнавания рестриктаз NdeI и XhoI, авторы амплифицировали кодирующую область. Полученный фрагмент был клонирован по этим сайтам в экспрессирующий вектор рЕТ21b. В результате рекомбинантный белок, биосинтез которого детерминировала эта плазмида, содержал только два дополнительных аминокислотных остатка, помимо шести остатков His на С-конце полипептидной цепи продукта. После трансформации Е. coli полученными рекомбинантными ДНК и индукции экспрессии генов изопропилтиогалактозидом (ИПТГ) клетки наращивали в течение 6 ч и разрушали; белковые препараты подвергали последовательной очистке хроматографическими методами. К недостаткам обоих полученных продуктов можно отнести то, что, хотя и введение в состав полипептидной цепи дополнительных остатков His значительно упрощает выделение рекомбинантных белков, такого рода модификации заметно смещают изоэлектрическую точку белковых продуктов по сравнению с природным и, как следствие, меняют их электростатическое микроокружение. Кроме того, введение дополнительных аминокислотных остатков (42-х в первой конструкции и 2-х - во второй) увеличивает молекулярную массу продукта и, как следствие, ухудшает его проникновение в клетку.
Экспрессия рекомбинантного PrxVI была осуществлена также в бакуловирусной системе [Fujii Т., Fujii J., Taniguchi N. (2001) Eur. J. Biochem., 268, 218-224]. Для этого из различных тканей крысы была выделена смесь мРНК, по которой обратной полимеразной реакцией синтезировали комплементарную цепь ДНК. Затем эту кДНК субклонировали в бакуловирусный челночный вектор pVL1392. Полученная конструкция обеспечивала наработку полноразмерного PrxVI крысы при инфекции эукариотических клеток Sf21. С помощью высаживания, фракционированием на ионообменной смоле с последующими стадиями гель-фильтрации функционально активный рекомбинантный белок был выделен из культуральной жидкости этих клеток. К недостаткам этого метода можно отнести длительность получения (5 дней) препарата, необходимость использования дорогостоящих питательных сред, невысокий по сравнению с бактериальными системами выход целевого продукта и возможность возникновения побочных аллергических реакций при использовании в лекарственных композициях крысиного PrxVI.
Наиболее близким по технической сущности к предлагаемому изобретению является полипептид массой 25034 Да, представляющий собой полноразмерный рекомбинантный PrxVIhum и кодирующая его рекомбинантная плазмидная ДНК pET23-a(+)/PrxVIhum [Меркулова М.И., Шуваева Т.М., Радченко В.В., Янин В.А., Бондарь А.А., Софин А.Д., Липкин В.М. (2002) Биохимия, 67, 1496-1501]. Получаемый пероксиредоксин обладает высокой антиоксидантной активностью. Однако высокая молекулярная масса, препятствующая проникновению молекулы антиоксиданта в клетки организма человека, ограничивает его применение.
Задачей предлагаемого изобретения является конструирование плазмиды, детерминирующей синтез укороченного полипептида PrxVIhum, сохраняющего антиоксидантную активность полноразмерного PrxVIhum, a также создание высокопродуктивного штамма-продуцента для получения полипептида пероксиредоксина человека VI, являющегося N-концевым фрагментом PrxVIhum.
Поставленная задача решается за счет конструирования рекомбинантной плазмидной ДНК pET23-a(+)/PrxVIhumΔ178, кодирующей N-концевой фрагмент пероксиредоксина VI человека с молекулярной массой 19691,61 Да, содержащей ЕсоRI-NdeI-фрагмент плазмиды рЕТ23-а(+), включающий промотор РНК-полимеразы фага Т7, участок инициации репликации (ori) и терминатор транскрипции рибосомального оперона E.coli, Ndel-EcoRl - фрагмент гена PrxVIhum длиной 552 п.о., кодирующий PrxVIhumΔ178, генетический маркер - Ар, детерминирующий устойчивость трансформированных плазмидой рЕТ23-a(+)/PrxVIhumΔ178 клеток E.coli к ампициллину, уникальные сайты узнавания рестрикционными эндонуклеазами со следующими координатами: NdeI-790, EcoRI-192, PvulI-1531, а также за счет штамма Е. coli BL21/DE3/pET23-a(+)/PrxVIhumΔ178- продуцента N-концевого фрагмента пероксиредоксина VI человека, обеспечивающего синтез N-концевого фрагмента PrxVIhum размером 177 аминокислотных остатков (PrxVIhumΔ178) с уровнем экспрессии в 30% от суммарного клеточного белка (30 мг/л культуральной жидкости).
Преимуществом заявленного технического решения является возможность получения антиоксиданта - пероксиредоксина VI человека с сохранением антиоксидантной активности полноразмерного пероксиредоксина при пониженной молекулярной массе, что обеспечивает проникновение препарата в клетки организма человека.
Исходной плазмидой для конструирования новой последовательности ДНК, кодирующей полипептид PrxVIhumΔ178, служит плазмида рЕТ23-а(+)/PrxVIhum, детерминирующая экспрессию полноразмерного рекомбинантного PrxVIhum. Эту плазмиду конструируют на основе векторной плазмиды рЕТ23-а(+)[Studier F.W., Moffatt, B.A. (1986) J. Mol. Biol., 189, 113-130]. Фрагмент PrxVIhum, предназначенный для клонирования с сохранением рамки считывания в экспрессирующем векторе, получают методом полимеразной цепной реакции (ПЦР) [Taylor G. In: Polymerase Chain Reaction. A Practical Approach, v.1, McPherson M.J., Quirke P., Taylor G. R. eds. Oxford Univ. Press. Oxford. 1994] с использованием в качестве праймеров олигонуклеотидов, в последовательности которых введены точечные замены для создания соответствующих участков рестрикции. В качестве прямого праймера используют
Figure 00000003
(подчеркнут сайт узнавания рестриктазы NdeI), в качестве обратного -5'-CCA
Figure 00000004
TTAAGGCTGGGGTGTG-3' (подчеркнут участок узнавания рестриктазы EcoRI). В качестве матрицы для проведения ПЦР используют плазмиду, содержащую последовательность PrxVIhum HA0683 (GenBank™ D 14662). Реакционная смесь для проведения ПЦР содержит (в объеме 50 мкл): 1 нг плазмидной ДНК, 20 пмоль каждого праймера, 5 мкл буфера для ПЦР фирмы “Promega”, 200 мкМ каждого dNTP, 5 единиц Taq-полимеразы. Реакцию начинают со стадии предварительной денатурации ДНК - 94°С, 5 мин, затем проводят 30 циклов ПЦР при следующих параметрах температурного цикла: денатурация - 30 с при 94°С, отжиг с праймерами - 30 с при 60°С, элонгация - 45 с при 72°С с последующей инкубацией при 72°С в течение 5 мин. После обработки продукта реакции соответствующими рестриктазами PrxVIhum клонируют в плазмиду рЕТ23-а(+) по сайтам NdeI-EcoRI.
Рекомбинантная плазмидная ДНК рЕТ23-а(+)/PrxVIhumΔ178 характеризуется следующими признаками:
имеет размер 4210 п.о.
кодирует N-концевой фрагмент PrxVIhum длиной 177 а.о.
состоит из EcoRI-NdeI-фрагмента плазмиды рЕТ23-а(+), включающего промотор РНК-полимеразы фага Т7, участок инициации репликации (ori) и терминатор транскрипции рибосомального оперона E.coli, Ndel-EcoRI-фрагмента длиной 552 п.о. с последовательностью, кодирующей PrxVIhumΔ178.
содержит генетический маркер - Ар, детерминирующий устойчивость трансформированных плазмидой pET23-a(+)/PrxVIhumΔ178 клеток E.coli к ампициллину, а также уникальные сайты узнавания рестрикционными эндонуклеазами со следующими координатами: NdeI-790, EcoRI-192, PvuII-1531.
Преимущества предложенной конструкции достигаются за счет того, что входящий в ее состав фрагмент PrxVIhumΔ178 кодирует укороченный по сравнению с PrxVIhum полипептид, сохраняющий антиоксидантную активность природного белка. Это, во-первых, упрощает хроматографическую очистку PrxVIhumΔ178; во-вторых, делает более технологичным его использование в составе лечебных композиций за счет лучшей проницаемости в ткани и увеличения времени циркуляции с биологическими жидкостями по сравнению с полноразмерным белком; в-третьих, увеличивает долю целевого продукта в общей биомассе штамма-продуцента, что в свою очередь ведет к снижению себестоимости конечного продукта.
Для получения штамма-продуцента полипептида PrxVIhumΔ178 компетентные клетки Е. coli BL21/DE3 трансформируют рекомбинантной плазмидной ДНК pET23-a(+)/PrxVIhumΔ178.
Полученный штамм Е. coli BL2\/DE3/pET23-a(+)/PrxVIhumΔ178 характеризуется следующими признаками.
Морфологические признаки: клетки мелкие палочковидной формы, грамотрицательные, неспороносные, 1×3,5 мкм, подвижные.
Культуральные признаки: при росте на агаризованной среде LB колонии круглые, гладкие, полупрозрачные, блестящие, серые. Край ровный, диаметр колоний 1-3 мм, консистенция пастообразная. Рост в жидких средах (LB, минимальная среда с глюкозой) характеризуется ровным помутнением, осадок легко седиментирует.
Физико-биохимические признаки: клетки растут при 4-42°С, оптимум рН 6,8-7,6. В качестве источника азота используют как минеральные соли азота, так и органические соединения: аминокислоты, пептон, триптон, дрожжевой экстракт. В качестве источника углерода при росте на минимальной среде используют глицерин, углеводы, аминокислоты.
Устойчивость к антибиотикам: клетки штамма-продуцента проявляют устойчивость к ампициллину (до 300 мг/мл), обусловленную наличием в плазмиде гена β-лактамазы (bla).
На фиг.1 представлена нуклеотидная последовательность NdeI-ЕсоRI-фрагмента плазмиды pET23-a(+)/PrxVIhumΔ178 и кодируемая им аминокислотная последовательность полипептида PrxVIhumΔ178; на фиг.2 - физическая карта полученной плазмиды; на фиг.3 - результаты сравнительного исследования протекторных свойств рекомбинантного полноразмерного PrxVI человека и его N-концевого фрагмента (PrxVIhumΔ178) по защите глутаминсинтетазы E.coli от инактивации в модельной окислительной системе in vitro.
Изобретение иллюстрируется следующими примерами.
Пример 1. Конструирование рекомбинантной плазмидной ДНК рЕТ23-a(+)/PrxVIhumΔ178, кодирующей N-концевой фрагмент Рrх VI человека. Используют фрагмент кДНК Рrх VI человека, который ранее был клонирован с сохранением рамки считывания в экспрессирующем векторе [Меркулова М.И., Шуваева Т.М., Радченко В.В., Янин В.А., Бондарь А.А., Софин А.Д., Липкин В.М.(2002) Биохимия, 67, 1496-1501]. Этот вектор, pET23-a(+)/PrxVJhum, используют в качестве матрицы для ПЦР. Полученный таким образом фрагмент ДНК кодирует N-концевой фрагмент Ргх VI длиной 177 аминокислотных остатков. В качестве прямого праймера на этой стадии используют 5'-GCG ААА ТТА АТА CGA CTC ACT ATA GGG -3' (комплементарный промоторной области вектора pET23-a(+)/PrxVIhum). В качестве обратного для PrxVIΔ178 - 5'-ССА ТСС ТТС
Figure 00000005
ААС ТТА GGT GGC-3' (подчеркнут сайт рестриктазы EcoRI, выделен стоп-кодон). Реакционная смесь содержит (в объеме 50 мкл): ~1 нг плазмидной ДНК, 20 пмоль каждого праймера, 5 мкл буфера для ПЦР (“Promega”, США), 200 мкМ каждого dNTP, 5 единиц Taq-полимеразы. Реакцию начинают с предварительной денатурации ДНК при 94°С в течение 3 мин, затем проводят 10 циклов ПЦР при следующих параметрах температурного цикла: денатурация - 30 с при 94°С, отжиг с праймерами - 30 с при 55°С, элонгация - 45 с при 72°С, затем еще 10 циклов реакции: денатурация - 30 с при 94°С, отжиг с праймерами - 30 с при 62°С, элонгация - 45 с при 72°С с последующей инкубацией при 72°С в течение 5 мин. После обработки соответствующими рестриктазами фрагмент PrxVIhumΔ178 лигируют с NdeI-EcoRI-фрагментом плазмиды рЕТ23-а(+) с использованием ДНК-лигазы фага Т4. Точность сборки конструкции проверяют рестрикционным анализом и секвенированием полученой вставки по модифицированному методу Сенгера [Чемерис А.В., Ахунов Э.Д., Вахитов В.А. Секвенирование ДНК, М., “Наука”, 1999]. На фиг.2 представлена физическая карта рекомбинантной плазмиды pET23-a(+)/PrxVIhumΔ178.
Пример 2. Экспрессия PrxVIhumΔ178-фрагмента кДНК РгхVI человека. Для экспрессии фрагмента PrxVIhum в качестве штамма-хозяина выбирают штамм E.coli BL-21(DE-3), несущий в хромосоме ген РНК-полимеразы фага Т7 под контролем индуцибельного lac-промотора [Studier F.W., Moffatt B.A. (1986) J. Mol. Biol., 189, 113-130]. Трансформацию компетентных клеток E.coli BL-21(DE-3) осуществляют химическим методом с использованием хлорида кальция [Sambrook J., Fritsch E., Maniatis T. (1989) Molecular Cloning, Cold Spring Harbor Laboratory Press, N.-Y.]. Для наработки рекомбинантного белка клетки выращивают при 37°С до достижения в жидкой культуре значения поглощения А6000,6. Затем для индукции экспрессии белков добавляют индуктор lac-промотора ИПТГ до конечной концентрации 0,4 мМ и продолжают инкубацию еще 5 ч. После этого суспензию клеток подвергают центрифугированию. Осадок, содержащий клетки штамма-продуцента, разрушают ультразвуком и повторно центрифугируют. Белковую фракцию, содержащую в своем составе целевой продукт, высаживают насыщенным раствором (NH4)2SO4 и диализуют против 12 мМ Трис-НСl буфера (рН 7,8), в состав которого входят 1 мМ MgCl2 и 1 мМ ДДТ. Белковую смесь хроматографируют на ДЭАЭ-сефарозе в градиенте хлорида натрия. Фракции, содержащие целевой полипептид, подвергают дальнейшей очистке с помощью гель-фильтрации на сефакриле S-200 и анализируют с помощью полиакриламидного гель-электрофореза в присутствии додецилсульфата натрия.
Пример 3. Сравнение протекторных свойств рекомбинантного полноразмерного PrxVIhum и его N-концевого фрагмента PrxVIhumΔ178 по защите глутаминсинтетазы Е. coli от инактивации в модельной окислительной системе in vitro.
Глутаминсинтетазу выделяют из клеток E.coli штамма DH5α [Streicher S.L., Tyier В. (1980) J. Bacteriol., 142, 69-78] и инактивируют в присутствии Fe3+, О2 и ДТТ - в модельной окислительной системе, генерирующей свободные радикалы [Kim К., Kim I.H., Lee K.Y., Rhee S.G., Stadtman E.R. (1988) J. Biol. Chem., 263, 4704-4711]. Реакцию инактивации глутаминсинтетазы проводят в объеме 60 мкл реакционной смеси, содержащей 5 мкг фермента, 50 мМ Hepes (рН 7,4), 3 мМ ДТТ и 3 мкМ FеСl3, в присутствии разных концентраций пероксиредоксина в течение 10 мин при 37°С. Затем определяют оставшуюся активность глутаминсинтетазы E.coli. Протекторные свойства пероксиредоксина по защите глутаминсинтетазы E.coli от инактивации определяют как отношение оставшейся активности фермента после инактивации в присутствии разных концентраций пероксиредоксина к активности неинактивированной глутаминсинтетазы. Результаты теста представлены на фиг.3.
Пример 4. Определение продуктивности штамма-продуцента PrxVIhumΔ178.
С целью улучшения аэрации в 5 мл жидкой среды LB, содержащей 100 мкг/мл ампициллина, вносят индивидуальную колонию клеток E.coli BL21/DE3, содержащую сконструированную плазмиду pET23-a(+)/PrxVIhumΔ178.
Выращивают при 37°С на качалке при 180 об/мин в течение 2,5 ч до достижения в жидкой культуре значения поглощения A600 0,6. Затем добавляют ИПТГ до концентрации 0,4 мМ и продолжают инкубацию в тех же условиях в течение 6 ч. Отбирают пробу 1 мл и центрифугируют 5 мин при 6000 об/мин, после чего клетки суспендируют в 100 мкл буфера, содержащего 125 мМ Трис-НСl (рН 6,8), 20% глицерина, 3% додецилсульфата натрия и 0,01% бромфенолового синего. Клеточную суспензию прогревают 10 мин на кипящей водяной бане. Отбирают образцы 2,5 мкл, 5 мкл, 7,5 мкл, 10 мкл и 15 мкл и анализируют электрофорезом в 15%-ном полиакриламидном геле, содержащем 0,1% додецилсульфата натрия [Laemmli U.K. (1970) Nature, 227, 680-687]. Гель окрашивают Кумасси R-250 и сканируют на лазерном денситометре Ultrascan XL. По данным сканирования полипептид PrxVIhumΔ178 составлял 30% суммарного клеточного белка, что соответствует выходу конечного чистого белкового продукта 30 мг/л культуры клеток.

Claims (2)

1. Рекомбинантная плазмидная ДНК pET23-a(+)/PrxVIhumΔ178, кодирующая N-концевой фрагмент пероксиредоксина VI человека, с молекулярной массой 19691,61 Да, содержащая EcoRI - NdeI-фрагмент плазмиды рЕТ23-а(+), включающий промотор РНК-полимеразы фага Т7, участок инициации репликации (ori), генетический маркер (Ар), детерминирующий устойчивость трансформированных плазмидой рЕТ23-a(+)/PrxVIhumΔ178 клеток E.coli к ампициллину, уникальные сайты узнавания рестрикционными эндонуклеазами со следующими координатами: NdeI-790, EcoRI-192, PvuII-1531, и NdeI - EcoRI-фрагмент гена PrxVIhum длиной 552 п.о., кодирующий PrxVIhumΔ178.
2. Штамм E.coli BL21/DE3/pET23-a(+)/PrxVIhumΔ178 - продуцент N-концевого фрагмента пероксиредоксина VI человека.
RU2003123534/13A 2002-11-10 2003-07-29 РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК pET23-a(+)PrxVIhumΔ178, КОДИРУЮЩАЯ N-КОНЦЕВОЙ ФРАГМЕНТ ПЕРОКСИРЕДОКСИНА VI ЧЕЛОВЕКА, И ШТАММ E.coli BL21/DE3/pET23-a(+)/PrxVIhumΔ178 - ПРОДУЦЕНТ N-КОНЦЕВОГО ФРАГМЕНТА ПЕРОКСИРЕДОКСИНА VI ЧЕЛОВЕКА RU2250262C1 (ru)

Priority Applications (6)

Application Number Priority Date Filing Date Title
RU2003123534/13A RU2250262C1 (ru) 2003-07-29 2003-07-29 РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК pET23-a(+)PrxVIhumΔ178, КОДИРУЮЩАЯ N-КОНЦЕВОЙ ФРАГМЕНТ ПЕРОКСИРЕДОКСИНА VI ЧЕЛОВЕКА, И ШТАММ E.coli BL21/DE3/pET23-a(+)/PrxVIhumΔ178 - ПРОДУЦЕНТ N-КОНЦЕВОГО ФРАГМЕНТА ПЕРОКСИРЕДОКСИНА VI ЧЕЛОВЕКА
EP03774414A EP1566182A4 (en) 2002-11-10 2003-11-05 ANTIOXIDATIVE PHARMACEUTICAL COMPOUND, METHOD OF PREPARING POLYPEPTIDE AND HEALING PROCESSES
CA002505478A CA2505478A1 (en) 2002-11-10 2003-11-05 Antioxidant pharmaceutical compound, method for producing polypeptide and method of cure
US10/534,238 US8003345B2 (en) 2002-11-10 2003-11-05 Antioxidant pharmaceutical compound, method for producing polypeptide and method of cure
JP2005506685A JP2006505290A (ja) 2002-11-10 2003-11-05 抗酸化医薬化合物、ポリペプチドの産生方法、治療方法
PCT/RU2003/000473 WO2004043485A1 (fr) 2002-11-10 2003-11-05 Composition presentant des proprietes antioxydantes, procede de production d'un polypeptide et methode de traitement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2003123534/13A RU2250262C1 (ru) 2003-07-29 2003-07-29 РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК pET23-a(+)PrxVIhumΔ178, КОДИРУЮЩАЯ N-КОНЦЕВОЙ ФРАГМЕНТ ПЕРОКСИРЕДОКСИНА VI ЧЕЛОВЕКА, И ШТАММ E.coli BL21/DE3/pET23-a(+)/PrxVIhumΔ178 - ПРОДУЦЕНТ N-КОНЦЕВОГО ФРАГМЕНТА ПЕРОКСИРЕДОКСИНА VI ЧЕЛОВЕКА

Publications (2)

Publication Number Publication Date
RU2003123534A RU2003123534A (ru) 2005-02-27
RU2250262C1 true RU2250262C1 (ru) 2005-04-20

Family

ID=35285859

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2003123534/13A RU2250262C1 (ru) 2002-11-10 2003-07-29 РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК pET23-a(+)PrxVIhumΔ178, КОДИРУЮЩАЯ N-КОНЦЕВОЙ ФРАГМЕНТ ПЕРОКСИРЕДОКСИНА VI ЧЕЛОВЕКА, И ШТАММ E.coli BL21/DE3/pET23-a(+)/PrxVIhumΔ178 - ПРОДУЦЕНТ N-КОНЦЕВОГО ФРАГМЕНТА ПЕРОКСИРЕДОКСИНА VI ЧЕЛОВЕКА

Country Status (1)

Country Link
RU (1) RU2250262C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8003345B2 (en) 2002-11-10 2011-08-23 Institute Of Cell Biophysics Russian Academy Of Sciences Antioxidant pharmaceutical compound, method for producing polypeptide and method of cure
RU2534348C2 (ru) * 2012-08-14 2014-11-27 Федеральное государственное бюджетное учреждение науки Институт биофизики клетки Российской академии наук (ИБК РАН) Рекомбинантный бифункциональный белок psh, обладающий антиоксидантной активностью супероксиддисмутазы и пероксидазы, кодирующая его химерная нуклеиновая кислота, рекомбинантный плазмидный вектор ее содержащий и применение белка psh при реперфузии сердца

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
БИОХИМИЯ, 2002, 67 (11). *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8003345B2 (en) 2002-11-10 2011-08-23 Institute Of Cell Biophysics Russian Academy Of Sciences Antioxidant pharmaceutical compound, method for producing polypeptide and method of cure
RU2534348C2 (ru) * 2012-08-14 2014-11-27 Федеральное государственное бюджетное учреждение науки Институт биофизики клетки Российской академии наук (ИБК РАН) Рекомбинантный бифункциональный белок psh, обладающий антиоксидантной активностью супероксиддисмутазы и пероксидазы, кодирующая его химерная нуклеиновая кислота, рекомбинантный плазмидный вектор ее содержащий и применение белка psh при реперфузии сердца

Also Published As

Publication number Publication date
RU2003123534A (ru) 2005-02-27

Similar Documents

Publication Publication Date Title
Inoue et al. Isolation and in vitro phosphorylation of sensory transduction components controlling anaerobic induction of light harvesting and reaction center gene expression in Rhodobacter capsulatus
Nelson et al. The progenitor of ATP synthases was closely related to the current vacuolar H+-ATPase
Miki et al. The γ-subunit of ATP synthase from spinach chloroplasts Primary structure deduced from the cloned cDNA sequence
Gladyshev et al. Selenocysteine-containing thioredoxin reductase in C. elegans
Minakuchi et al. Cloning and sequence analysis of a cDNA encoding rice glutaredoxin
Yoo et al. Overexpression and simple purification of human superoxide dismutase (SOD1) in yeast and its resistance to oxidative stress
Perrino et al. Two functional domains of the ε subunit of DNA polymerase III
WO2014166137A1 (zh) 一种南极冰藻cpd光修复酶、其编码基因和表达载体以及该酶的应用
Samuelsson A Mycoplasma protein homologous to mammalian SRP54 recognizes a highly conserved domain of SRP RNA
FI90353C (fi) Plasmidi humaani mangaanisuperoksididismutaasin ilmentämiseksi bakteereissa sekä menetelmä entsymaattisesti aktiivisen humaani mangaanisuperoksididismutaasin tuottamiseksi ja talteenottamiseksi
JP3462313B2 (ja) 変異型ウリカーゼ、変異型ウリカーゼ遺伝子、新規な組み換え体dna及び変異型ウリカーゼの製造法
Xia et al. Peroxiredoxin system of Aspergillus nidulans resists inactivation by high concentration of hydrogen peroxide-mediated oxidative stress
JP5013375B2 (ja) メッセンジャーrna干渉酵素が促進する生細胞における単一タンパク質産生
US8835153B2 (en) Process and genes for expression and overexpression of active [FeFe] hydrogenases
RU2250262C1 (ru) РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК pET23-a(+)PrxVIhumΔ178, КОДИРУЮЩАЯ N-КОНЦЕВОЙ ФРАГМЕНТ ПЕРОКСИРЕДОКСИНА VI ЧЕЛОВЕКА, И ШТАММ E.coli BL21/DE3/pET23-a(+)/PrxVIhumΔ178 - ПРОДУЦЕНТ N-КОНЦЕВОГО ФРАГМЕНТА ПЕРОКСИРЕДОКСИНА VI ЧЕЛОВЕКА
Chaddock et al. Pokeweed antiviral protein (PAP) mutations which permit E. coli growth do not eliminate catalytic activity towards prokaryotic ribosomes
CN109536469B (zh) 突变改造Prx6蛋白及其表达基因、制备方法和应用
Raju et al. Overexpression of HumanN-Myristoyltransferase Utilizing a T7 Polymerase Gene Expression System
Polack et al. ThePseudomonas aeruginosa fumcandsodaGenes Belong to an Iron-Responsive Operon
Cheng et al. Functional identification of AtFao3, a membrane bound long chain alcohol oxidase in Arabidopsis thaliana
Kalinina et al. Preparative production and purification of recombinant human Cyclophilin A
US5248604A (en) Enzymatically active recombinant human acetylcholinesterase and hosts and vectors for expression thereof
Jeong et al. The adherence-associated Fdp fasciclin I domain protein of the biohydrogen producer Rhodobacter sphaeroides is regulated by the global Prr pathway
Whitley et al. The DsbA-DsbB system affects the formation of disulfide bonds in periplasmic but not in intramembraneous protein domains
RU2651757C2 (ru) Линейка биологически активных генно-терапевтических субстанций на основе гена sod2 для коррекции патологических состояний клеток органов и тканей и органов и тканей человека, связанных с оксидативным стрессом, способ получения и использования

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200730