RU2239247C2 - Способ осуществления ядерного топливного цикла канального реактора с графитовым замедлителем - Google Patents
Способ осуществления ядерного топливного цикла канального реактора с графитовым замедлителем Download PDFInfo
- Publication number
- RU2239247C2 RU2239247C2 RU2002132815/06A RU2002132815A RU2239247C2 RU 2239247 C2 RU2239247 C2 RU 2239247C2 RU 2002132815/06 A RU2002132815/06 A RU 2002132815/06A RU 2002132815 A RU2002132815 A RU 2002132815A RU 2239247 C2 RU2239247 C2 RU 2239247C2
- Authority
- RU
- Russia
- Prior art keywords
- fuel
- fuel assemblies
- reactor
- uranium
- assemblies
- Prior art date
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Monitoring And Testing Of Nuclear Reactors (AREA)
Abstract
Изобретение относится к ядерной энергетике, в частности к способам повышения глубины выгорания топлива тепловыделяющих сборок (ТВС), и может быть использовано для увеличения энерговыработки ТВС в канальном ядерном реакторе, работающем в энергетическом режиме. В способе осуществления ядерного топливного цикла канального реактора с графитовым замедлителем путем формирования активной зоны в процессе загрузки тепловыделяющих сборок с распределенным поглотителем нейтронов, программных перемещений тепловыделяющих сборок и программных изменений положений стержней-поглотителей (СУЗ), при достижении средней энерговыработки тепловыделяющих сборок в реакторе величин 1500-1600 МВт·сут/ТВС в ячейку периодичности со спектром нейтронов, ужесточенным до величин энергий резонансного поглощения нейтронов плутонием, вместо “выгоревшей” тепловыделяющей сборки устанавливают тепловыделяющую сборку с остаточным содержанием урана-235 в пределах 0,5-0,6 кг. Ужесточение спектра нейтронов осуществляют загрузкой уран-эрбиевого топлива с начальным обогащением 2,8-3,6% по урану-235, в процессе программных перемещений ТВС в активной зоне осуществляют снижение зонального расхода теплоносителя в технологических каналах с тепловыделяющими сборками, которые имеют величину энерговыработки в пределах 2300-3500 МВт·сут/ТВС. Регулирование температуры замедлителя осуществляют продувкой реакторного пространства азотно-гелиевой смесью с содержанием азота 10-40% в базовом режиме работы реактора, а на пониженных уровнях мощности – 10-100%. 3 з.п. ф-лы, 1 ил.
Description
Изобретение относится к ядерной энергетике, в частности к способам повышения глубины выгорания топлива тепловыделяющих сборок (ТВС), и может быть использовано для увеличения энерговыработки ТВС в канальном ядерном реакторе, работающем в энергетическом режиме.
Одной из важнейших характеристик, определяющих эффективность использования ядерного топлива в канальных реакторах атомных электростанций (АЭС), является глубина выгорания ядерного топлива. Определяется она двумя основными факторами: обеспечением надежной работы ТВС в реакторе и достижением максимальной величины энерговыработки. Известно, что в процессе эксплуатации ТВС в реакторе изменяется изотопный состав делящихся элементов, входящих в топливную композицию тепловыделяющих элементов. В “свежем” ядерном топливе (ЯТ) в зависимости от величины начального обогащения содержится определенное исходное количество изотопов урана-235 и урана-238. Уран-235 делится в реакторе под воздействием тепловых нейтронов, его доля снижается в процессе эксплуатации ТВС. Из ядер урана-238 образуются делящиеся изотопы плутония-239, 241, которые накапливаются в процессе эксплуатации ТВС и вносят свой вклад в величину суммарного энерговыделения ТВС за счет деления на нейтронах резонансных энергий. На реакторе, работающем на мощности в режиме непрерывных перегрузок ТВС с урановым ядерным топливом, для компенсации выгорания ядерного топлива выполняют перегрузки “выгоревших” ТВС, содержащих часть исходного уранового ядерного топлива (U235) и часть образовавшегося плутониевого ядерного топлива (Рu239, Рu241), на “свежие” или “частично выгоревшие” ТВС. Перевод загрузки активной зоны канальных реакторов на уран-эрбиевое топливо, выгрузка дополнительных поглотителей из реактора, формирование загрузки активной зоны путем перестановок ТВС, с целью увеличения глубины выгорания топлива, позволили создать такие нейтронно-физические свойства канального реактора, при которых появилась возможность повышения эффективности использования образовавшегося плутония для увеличения энерговыработки ТВС.
Наиболее близким аналогом является способ [1], предусматривающий выполнение операций на реакторе с графитовым замедлителем, по перегрузке, программным перемещениям ТВС, программным изменениям положений стержней-поглотителей системы управления и защиты (СУЗ) в процессе замены ТВС с урановым топливом на ТВС с топливом, содержащим распределенный выгорающий поглотитель, например, эрбий. При этом производится выгрузка из реактора дополнительных поглотителей (ДП) и загрузка вместо них “частично выгоревших” ТВС. За счет использования средств, предлагаемых в способе, достигается высокая степень выгорания в основном уранового топлива (U325). Целенаправленных действий, обеспечивающих максимально возможное использование изотопов плутония-239, 241 в топливном цикле реактора, до настоящего времени не предпринималось.
Недостатком способа является недостаточное вовлечение в процесс энерговыделения плутониевого ядерного топлива, накопившегося при эксплуатации ТВС в реакторе.
Задача, решаемая данным изобретением, заключается в достижении максимально возможной величины энерговыработки ТВС в реакторе, сокращении удельного расхода ТВС, и как следствие, повышении экономической эффективности топливного цикла АЭС.
Сущность изобретения состоит в том, что в способе осуществления ядерного топливного цикла канального реактора с графитовым замедлителем путем формирования активной зоны в процессе загрузки тепловыделяющих сборок с распределенным поглотителем нейтронов, программных перемещений тепловыделяющих сборок и программных изменений положений стержней-поглотителей (СУЗ) предложено при достижении средней энерговыработки тепловыделяющих сборок в реакторе величин 1500-1600 МВт·сут/ТВС в ячейку периодичности со спектром нейтронов, ужесточенным до величин энергий резонансного поглощения нейтронов плутонием, вместо “выгоревшей” тепловыделяющей сборки устанавливать тепловыделяющую сборку с остаточным содержанием урана-235 в пределах 0,5-0,6 кг. Кроме того, предложено ужесточение спектра нейтронов осуществлять загрузкой уран-эрбиевого топлива с начальным обогащением 2,8-3,6% по урану-235, в процессе программных перемещений ТВС в активной зоне осуществлять снижение зонального расхода теплоносителя в технологических каналах с тепловыделяющими сборками, которые имеют величину энерговыработки в пределах 2300-3500 МВт·сут/ТВС, регулирование температуры замедлителя осуществлять продувкой реакторного пространства азотно-гелиевой смесью с содержанием азота 10-40% в базовом режиме работы реактора, а на пониженных уровнях мощности - 10-100%.
Данное изобретение может использоваться на реакторах с топливом, содержащим распределенный поглотитель, при достижении величины средней энерговыработки ТВС в реакторе ~1500 МВт·сут/ТВС и более при условии сохранения парового коэффициента реактивности в пределах (0,3-0,8)βэфф. Путем программных перемещений ТВС достигается значение средней энерговыработки ТВС в реакторе до 1500-1600 МВт·сут/ТВС. Для поддержания по ячейке периодичности запланированной средней энерговыработки ТВС загружают “свежие” и “частично выгоревшие” ТВС с различной долей накопленного плутония. Снижают зональный расход теплоносителя в каналах с ТВС, достигших энерговыработок 2300-3500 МВт·сут/ТВС, сохраняя величину запаса до кризиса теплообмена в ТК в требуемых пределах. В ТК с меньшим расходом воды (повышенным паросодержанием) смещается спектр распределения нейтронов по энергиям в сторону больших энергий, что необходимо для реакции деления ядер Рu-239, Рu-241 нейтронами резонансных энергий. В базовом режиме и в режимах работы на пониженных уровнях мощности реактора, с целью ужесточения спектра, для повышения температуры замедлителя, увеличивают содержание азота в азотно-гелиевой смеси реакторного пространства (РП). При увеличении концентрации азота в РП за счет снижения теплопередающих свойств газовой смеси уменьшается теплопередача от графита к теплоносителю ТК, что приводит к росту температуры графитового замедлителя реактора.
Способ иллюстрируется примером его осуществления. В соответствии с указанной в формуле последовательностью осуществляют формирование загрузки активной зоны реактора посредством перегрузок ТВС в ячейках периодичности активной зоны реактора (локальная область групп технологических каналов с ТВС, расположенных вокруг каналов со стержнями-поглотителями СУЗ). Для этого ТВС с распределенным поглотителем перегружают по специальной программе, предусматривающей выбор ячейки периодичности, содержащей ТВС с энерговыработкой в пределах 3100-3500 МВт·сут/ТВС и выгружают выбранную ТВС. На ее место загружают ТВС с энерговыработкой в пределах 0-2500 МВт·сут/ТВС. В процессе перегрузки ТВС в технологическом канале для поддержания необходимой мощности в ТК осуществляют перемещение стержней СУЗ. До использования настоящего изобретения из реактора выгружались ТВС с энерговыработкой не более 2800 МВт·сут/ТВС при достижении величины средней энерговыработки ТВС в реакторе 1200-1300 МВт·сут/ТВС. При этом не представлялось возможности более полного использования уранового и образовавшегося плутониевого топлива в реакторе. Для обеспечения условий более эффективного использования топлива повышают среднюю величину энерговыработки ТВС в реакторе до 1500-1600 МВт·сут/ТВС. При этом условии за счет дожигания ТВС в реакторе доводят энерговыработку ТВС, выгружаемых из реактора, до ~3500 МВт·сут/ТВС. Это достигается использованием ТВС с остаточным содержанием урана-235 в пределах 0,5-0,6 кг, находящихся в выбранной области ячейки периодичности реактора или перемещаемых из других ячеек периодичности в выбранную область, для которой спектр нейтронов ужесточен до резонансных энергий поглощения нейтронов плутонием, что является существенным отличительным признаком заявленного способа. Ужесточение спектра нейтронов до резонансных энергий поглощения нейтронов плутонием достигается способом, предложенным в формуле изобретения, когда в выбранной области ячейки периодичности взамен ТВС, достигшей максимальной энерговыработки, загружают ТВС с уран-эрбиевым топливом повышенного начального обогащения, имеющим более жесткий спектр нейтронов, чем для уранового топлива [2]. В процессе программного перемещения в активной зоне тепловыделяющих сборок осуществляют снижение зонального расхода теплоносителя в технологических каналах с тепловыделяющими сборками, имеющими величину энерговыработки в пределах 2300-3500 МВт·сут/ТВС. Кроме этого, для повышения глубины выгорания плутония в базовых режимах работы реактора и на пониженных уровнях мощности в РП подают азотно-гелиевую смесь с повышенным содержанием азота. При базовых режимах работы реактора содержание азота в смеси составляет 10-40%, на пониженных уровнях мощности - 10-100%. Для иллюстрации влияния резонансных энергий на вероятность деления Pu239 на чертеже изображена зависимость полного нейтронного сечения от энергии нейтронов для ядер Pu239 [3]. На оси абсцисс отложена величина энергии нейтрона в логарифмическом масштабе, в электрон-вольтах (Е эВ.), на оси ординат - сечение взаимодействия нейтронов с ядрами Рu239, в барнах (σ, барн). Представленная зависимость показывает, что наибольшая вероятность деления Рu239 происходит под действием нейтронов, имеющих энергию резонансов в диапазоне 3-54 эВ. Поэтому предлагаемые в заявке средства, которые обеспечивают смещение энергии взаимодействия части замедляющихся нейтронов в область резонансных энергий (3-54 эВ), увеличивают долю энерговыделения в ТВС за счет реакции деления изотопов плутония-239, 241 и, кроме того, позволяют обеспечивать более глубокое выгорание урана-235.
Литература
1. Патент РФ на изобретение №2117341, приоритет от 29.05.1997 г. (ближайший аналог).
2. И.И.Аборина. Физические исследования реакторов ВВЭР. Атомиздат, 1978 г., с.66-73.
3. Таблицы физических величин. Справочник под редакцией академика Кикоина И.К., Атомиздат, 1976 г.
Claims (4)
1. Способ осуществления ядерного топливного цикла канального реактора с графитовым замедлителем путем формирования активной зоны в процессе загрузки тепловыделяющих сборок с распределенным поглотителем нейтронов, программных перемещений тепловыделяющих сборок в ячейках периодичности и изменений положений стержней-поглотителей системы управления и защиты, отличающийся тем, что при достижении средней энерговыработки тепловыделяющих сборок величины 1500÷1600 МВт·сут./ТВС в ячейку периодичности со спектром нейтронов, ужесточенным до величины энергии резонансного поглощения нейтронов плутонием, вместо выгоревшей тепловыделяющей сборки устанавливают тепловыделяющую сборку с остаточным содержанием урана 235 в пределах 0,5÷0,6 кг.
2. Способ по п.1, отличающийся тем, что ужесточение спектра нейтронов осуществляют загрузкой уран-эрбиевого топлива с начальным обогащением 2,8-3,6% по урану 235.
3. Способ по п.1, отличающийся тем, что в процессе программного перемещения в активной зоне тепловыделяющих сборок осуществляют снижение расхода теплоносителя в технологических каналах с частично выгоревшими тепловыделяющими сборками ячейки периодичности.
4. Способ по п.1, отличающийся тем, что ужесточение спектра нейтронов достигают повышением температуры замедлителя посредством увеличения содержания азота в азотно-гелиевой смеси реакторного пространства: в базовом режиме работы реактора содержание азота 10-40%, а на пониженном уровне мощности 10-100%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2002132815/06A RU2239247C2 (ru) | 2002-12-06 | 2002-12-06 | Способ осуществления ядерного топливного цикла канального реактора с графитовым замедлителем |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2002132815/06A RU2239247C2 (ru) | 2002-12-06 | 2002-12-06 | Способ осуществления ядерного топливного цикла канального реактора с графитовым замедлителем |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2002132815A RU2002132815A (ru) | 2004-06-20 |
RU2239247C2 true RU2239247C2 (ru) | 2004-10-27 |
Family
ID=33537333
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2002132815/06A RU2239247C2 (ru) | 2002-12-06 | 2002-12-06 | Способ осуществления ядерного топливного цикла канального реактора с графитовым замедлителем |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2239247C2 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2545029C2 (ru) * | 2013-06-17 | 2015-03-27 | Открытое акционерное общество "Российский концерн по производству электрической и тепловой энергии на атомных станциях" (ОАО "Концерн Росэнергоатом") | Способ осуществления топливного цикла ядерного канального реактора |
-
2002
- 2002-12-06 RU RU2002132815/06A patent/RU2239247C2/ru not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2545029C2 (ru) * | 2013-06-17 | 2015-03-27 | Открытое акционерное общество "Российский концерн по производству электрической и тепловой энергии на атомных станциях" (ОАО "Концерн Росэнергоатом") | Способ осуществления топливного цикла ядерного канального реактора |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3081246A (en) | Nuclear reactor and method of operating same | |
US4663110A (en) | Fusion blanket and method for producing directly fabricable fissile fuel | |
US20060251206A1 (en) | Use of isotopically enriched actinide fuel in nuclear reactors | |
KR20070100818A (ko) | 가압수형 원자로의 연료 집합체 및 연료 집합체의 설계방법 | |
US20100166133A1 (en) | Use of isotopically enriched nitrogen in actinide fuel in nuclear reactors | |
RU2239247C2 (ru) | Способ осуществления ядерного топливного цикла канального реактора с графитовым замедлителем | |
EP1280164B1 (en) | A MOX nuclear fuel assembly for a thermal neutron nuclear reactor | |
JP3895607B2 (ja) | 熱中性子原子炉用mox燃料集合体 | |
US3142624A (en) | Nuclear reactor and method of operating same | |
McMahon | Modeling and design of reload LWR cores for an ultra-long operating cycle | |
RU2214633C2 (ru) | Тепловыделяющая сборка, активная зона и способ эксплуатации водо-водяного энергетического реактора | |
JP3318193B2 (ja) | 燃料装荷方法 | |
RU2690840C1 (ru) | Способ эксплуатации ядерного реактора в замкнутом ториевом топливном цикле | |
Ashraf et al. | Neutronic evaluation of VVER fuel assembly with chemical spectral shift regulation | |
JP2966877B2 (ja) | 燃料集合体 | |
EP0329985B1 (en) | Nuclear reactor operating method with extended life cycle | |
JPS59147295A (ja) | 燃料集合体 | |
Koonen et al. | Fuel characteristics needed for optimal operation of the BR2 reactor | |
JP2988731B2 (ja) | 原子炉燃料集合体 | |
Nishimura | 3.2 Advances of reactor core and fuel assembly 3.2. 1 High burnup fuel design | |
JPH1194972A (ja) | 沸騰水型原子炉 | |
RU2176827C2 (ru) | Активная зона и тепловыделяющая сборка канального ядерного реактора (варианты) | |
JP3596831B2 (ja) | 沸騰水型原子炉の炉心 | |
CN113257441A (zh) | 可燃毒物和小型板状压水堆 | |
CN113270209A (zh) | 一种高燃耗的快中子堆金属燃料 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PD4A | Correction of name of patent owner | ||
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20161207 |