RU2237365C2 - Устройство и способ управления обратной передачей в системе мобильной связи - Google Patents

Устройство и способ управления обратной передачей в системе мобильной связи Download PDF

Info

Publication number
RU2237365C2
RU2237365C2 RU2002131154A RU2002131154A RU2237365C2 RU 2237365 C2 RU2237365 C2 RU 2237365C2 RU 2002131154 A RU2002131154 A RU 2002131154A RU 2002131154 A RU2002131154 A RU 2002131154A RU 2237365 C2 RU2237365 C2 RU 2237365C2
Authority
RU
Russia
Prior art keywords
data rate
boa
reverse
extended
base station
Prior art date
Application number
RU2002131154A
Other languages
English (en)
Other versions
RU2002131154A (ru
Inventor
Беом-Сик БАЕ (KR)
Беом-Сик БАЕ
Донг-Сеек ПАРК (KR)
Донг-Сеек ПАРК
Чанг-Хой КОО (KR)
Чанг-Хой КОО
Дае-Гиун КИМ (KR)
Дае-Гиун КИМ
Original Assignee
Самсунг Электроникс Ко., Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Самсунг Электроникс Ко., Лтд. filed Critical Самсунг Электроникс Ко., Лтд.
Publication of RU2002131154A publication Critical patent/RU2002131154A/ru
Application granted granted Critical
Publication of RU2237365C2 publication Critical patent/RU2237365C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0033Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0876Network utilisation, e.g. volume of load or congestion level
    • H04L43/0894Packet rate

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Предложен способ управления обратной передачей в мобильной системе связи. После приема прямой информации, содержащей команду на изменение обратной скорости передачи данных по прямому каналу из базовой станции, мобильная станция увеличивает свою обратную скорость передачи данных до скорости передачи данных, которая равна или меньше максимальной скорости передачи данных, если прямая информация содержит команду на увеличение обратной скорости передачи данных, определяет, можно ли дополнительно увеличить увеличенную скорость передачи данных для следующего фрейма, и передает результат определения с помощью информации, представляющей собой увеличенную скорость передачи данных, в базовую станцию. Техническим результатом является создание способа быстрого достижения состояния полного использования обратной линии связи и предотвращения возникновения перегрузки на обратной линии связи. 7 н. и 14 з.п. ф-лы, 5 ил., 6 табл.

Description

Настоящее изобретение относится, в общем, к способу управления передачей в системе мобильной связи и, в частности, к способу управления обратной передачей.
В связи со стремительным ростом технологии мобильной связи было предложено много различных систем мобильной связи, которые в настоящее время проходят полевые испытания. Работа этих систем обычно основана на методе множественного доступа с кодовым разделением каналов (МДРК) и системе “1 × только эволюция данных” (1×ТЭД), которая называется системой с высокой скоростью передачи данных (ВСПД), разработанной для выполнения передачи данных с высокой скоростью по выделенной линии связи.
Подобно другим системам, системы 1×ТЭД также требуют соответствующего планирования для эффективной передачи пакетных данных по прямой и обратной линиям связи. “Прямая линия связи” - это линия связи, направленная из базовой станции в терминал доступа (ТД), а “обратная линия связи” - это линия связи, имеющая противоположное направление. Для прямой передачи данных базовая станция передает данные в конкретную ТД при лучшем условии канала с учетом статусов беспроводной линии связи между базовой станцией и ТД 1×ТЭД и другими средами, что приводит в результате к максимальной производительности передачи данных для ТД. Что касается обратной передачи данных, то множество ТД одновременно осуществляют доступ к базовой станции. В этой ситуации, базовая станция управляет перегрузкой в пределах пропускной способности обратной линии связи посредством соответствующего управления перегрузкой и потоками данных из ТД.
Помимо систем 1×ТЭД, другие системы мобильной связи, разработанные для поддержания мультимедийных услуг, должны также обеспечивать эффективное управление обратной передачей данных. Для этого необходимо обеспечить высокое быстродействие и пропускную способность системы.
В существующих системах 1×ТЭД ТД выполняет обратную передачу данных на основании бита обратной активности (БОА) и сообщения “ПределОбратнойСкорости” (ПОС), полученного из базовой станции, и сообщает базовой станции свою переменную скорость передачи данных через индикатор обратной скорости (ИОС). ИОС показывает базовой станции скорость передачи данных, с которой посылаются обратные данные трафика. Базовая станция передает следующие мультиплексированные по времени каналы в ТД: прямой канал управления доступом к среде (УДС), пилот-канал, канал бита прямой активности (БПА) и канал БОА. БОА представляет собой степень перегрузки обратной линии связи, и скорость передачи данных, доступная ТД, изменяется в зависимости от БОА. Базовая станция управляет потоком данных из ТД путем подачи команд на увеличение/уменьшение обратной скорости передачи данных с использованием БОА для управления перегрузкой и пропускной способностью обратной линии связи. Так как БОА выполняет широковещательную передачу для множества ТД, принимающие БОА ТД увеличивают свои скорости передачи данных или уменьшают их равномерно согласно БОА. Время передачи (или период передачи) БОА определяется уравнением (1):
T mod длина БОА, (1)
где T - время системы, и длина БОА - длина БОА, измеряемая количеством слотов. В изображенной ниже таблице 1 перечислены двоичные значения, представляющие собой длины БОА. Базовая станция передает одно из двоичных значений в ТД, и затем ТД вычисляют время слота, когда они принимают БОА по прямому каналу УДС (канал П-УДС), используя полученную информацию о длине БОА и времени системы.
Figure 00000002
ТД принимает вектор неизменности, определенный в сообщении, из базовой станции при или во время соединения. Когда БОА=0, вектор неизменности устанавливается на увеличение обратной скорости передачи данных, и когда БОА=1, он устанавливается на уменьшение обратной скорости передачи данных. Используя вектор неизменности, ТД выполняет тест на неизменность. Если тест на неизменность прошел успешно, то ТД увеличивает обратную скорость передачи данных или уменьшает ее. Если тест на неизменность прошел неуспешно, то ТД поддерживает обратную скорость передачи данных.
При подробном описании, если БОА равен 0, и тест на неизменность прошел успешно, то обратная скорость передачи данных увеличивается. Напротив, если БОА равен 1 и тест на неизменность прошел успешно, то обратная скорость передачи данных уменьшается. Тест на неизменность будет успешным или неуспешным, зависит от того, удовлетворяет ли полученное случайное число необходимому условию. Так как изменение обратной скорости передачи данных зависит от неопределенности в терминах вероятности, базовая станция не знает, насколько ТД увеличивает/уменьшает свои скорости передачи данных. На обратной линии связи будет возникать задержка во времени до тех пор, пока состояние высокой пропускной способности не перейдет в состояние полного использования. В состоянии полного использования обратной линии связи перегрузка и недогрузка чередуются. Однако базовой станции неизвестно, сколь серьезным является условие перегрузки или недогрузки, так как базовая станция просто передает БОА, и ТД увеличивает/уменьшает свои скорости передачи данных в соответствии с результатами теста на неизменность.
Если условие перегрузки становится серьезным, то происходит увеличение потерь данных, передаваемых по обратному каналу. С другой стороны, если условие недогрузки становится серьезным, то эффективность использования обратных каналов падает. Поэтому существует потребность в исследовании способа быстрого достижения состояния полного использования обратной линии связи и способа увеличения эффективности использования обратных каналов, которые позволяют предотвратить возникновение перегрузки в базовой станции.
На фиг.1 изображен алгоритм, иллюстрирующий процедуру управления скоростью передачи данных по обратному каналу для ТД в существующей системе 1×ТЭД.
ТД устанавливает свою самую низкую доступную скорость передачи данных при начальной обратной передаче данных. Если текущая скорость передачи данных ниже скорости передачи данных, предусмотренной в сообщении ПОС, полученном из базовой станции, то ТД передает данные с предусмотренной скоростью передачи данных после 32 слотов (53,33 мс). С другой стороны, если текущая скорость передачи данных выше, чем предусмотренная скорость передачи данных, то ТД передает данные с предусмотренной скоростью передачи данных. Для последующей обратной передачи, ТД определяет свою скорость передачи данных в соответствии с процедурой, изображенной на фиг.1. Сообщение ПОС передается в ТД при определении начальной обратной скорости передачи данных и переустановки обратной скорости передачи данных.
После определения своей скорости передачи данных ТД передает сообщение о своей скорости передачи данных в базовую станцию с помощью символа ИОС, который показан в таблице 2. Обратную скорость передачи данных выбирают среди значений 4,8, 9,6, 19,2, 38,4, 76,8 и 153,6 кбит/с. Эту обратную скорость передачи данных повторно устанавливают в соответствии с сообщением, таким как сообщение ПОС или сообщение БОА, полученное из базовой станции. В представленной ниже таблице 2 перечислены преобразования ИОС в системе 1xТЭД.
Figure 00000003
Как показано в таблице 2, базовая станция определяет скорость передачи данных ТД из символов ИОС и управляет ТД для повторной установки своей скорости передачи данных. Чтобы помочь ТД при переустановке своей скорости передачи данных, базовая станция должна передать сообщение ПОС, показанное в таблице 3, в ТД.
Figure 00000004
Сообщение ПОС направляется непосредственно для управления обратной скоростью передачи данных. После приема сообщения ПОС ТД переустанавливает обратную скорость передачи данных путем сравнения текущей обратной скорости передачи данных со скоростью передачи данных, установленной в сообщении ПОС. В вышеупомянутое сообщение ПОС можно вставить 29 записей, и каждая запись показывает скорость передачи данных, назначенную соответствующему индексу УДС среди индексов УДС 3-31. В таблице 3 сообщение ИД показывает ИД сообщения ПОС. Поле “ВключенПределСкорости” представляет собой поле, показывающее: включен ли “ПределСкорости” в сообщение ПОС. Если “ПределСкорости” включен, “ВключенПределСкорости” устанавливается на 1, и в противном случае он устанавливается в 0. “ПределСкорости” показывает скорость передачи данных, назначенную соответствующему ТД. Базовая станция назначает скорости передачи данных, представленные в таблице 4, ТД с использованием четырех битов.
Figure 00000005
Во время обратной передачи данных ТД контролирует канал П-УДС из базовой станции, особенно БОА по каналу П-УДС, и регулирует свою текущую скорость передачи данных путем выполнения теста на неизменность.
Как показано на фиг.1, ТД контролирует БОА канала П-УДС из базовой станции, включенной в активный набор ТД на этапе 100, и на этапе 102 определяет, БОА равен 1 или нет. Если ТД имеет шесть секторов/базовых станций в своем активном наборе, то он определяет, равен 1 или нет по меньшей мере один из БОА каналов П-УДС, принятых из этих шести секторов/базовых станций. Если по меньшей мере один БОА равен 1, то ТД переходит на этап 112, и в противном случае он переходит на этап 104.
Сначала будет рассмотрен случай, где все БОА=0.
Если БОА равен 0, ТД выполняет тест на неизменность на этапе 104. Тест на неизменность доступен тогда, когда базовая станция выполняет широковещательную передачу БОА в множество ТД для управления количеством обратных данных из ТД. Тест на неизменность является успешным или неуспешным в зависимости от того, удовлетворяет ли полученное случайное число необходимому условию.
Если тест на неизменность является успешным на этапе 104, то ТД увеличивает свою скорость передачи данных (скорость ПРД) на этапе 106. Напротив, если тест на неизменность является неуспешным, то ТД переходит на этап 120. ТД увеличивает скорость ПРД на этапе 106 и сравнивает увеличенную скорость ПРД с максимально разрешенной скоростью передачи данных (максимальная скорость ПРД) на этапе 108. Если увеличенная скорость ПРД выше, чем максимальная скорость ПРД, ТД устанавливает скорость ПРД на максимальную скорость ПРД на этапе 110 и переходит на этап 120. Если на этапе 108 увеличенная скорость ПРД не выше, чем максимальная скорость ПРД, ТД переходит прямо на этап 120.
Теперь будет рассмотрен случай, где по меньшей мере один БОА=1.
Если БОА равен 1 на этапе 102, то ТД выполняет тест на неизменность на этапе 112. Если тест на неизменность является неуспешным, то ТД переходит на этап 120. Если тест на неизменность является успешным, то ТД уменьшает скорость ПРД на этапе 114 и сравнивает уменьшенную скорость ПРД с минимальной скоростью передачи данных (минимальная скорость ПРД) на этапе 116. Если уменьшенная скорость ПРД ниже, чем минимальная скорость ПРД, ТД переходит на этап 118 и в противном случае, он переходит на этап 120. ТД устанавливает скорость ПРД на минимальную скорость ПРД на этапе 118 и переходит на этап 120. Минимальная скорость ПРД может быть скоростью передачи данных, устанавливаемой по умолчанию и равной 9,6 кбит/с, или скоростью передачи данных, назначенной с помощью некоторого сообщения при соединении вызова.
На этапе 120 ТД вырабатывает символ ИОС, соответствующий установленной скорости ПРД. ТД передает символ ИОС наряду с данными трафика только в случае, если соединение трафика открыто между базовой станцией и ТД. Если соединение трафика не открыто, то передается только символ ИОС.
На фиг.2 изображена схема, показывающая передачу/прием данных между ТД и сектором ВСПД, включенным в активный набор ТД. Как изображено на фиг.2, каналы П- и О-трафика и каналы П- и О-УДС были установлены между ТД и сектором 1 с помощью соединения, открытого между ними. Каналы П-трафика не назначаются ТД из сектора 2 (вплоть до секторов 2 6) без соединения, открытого между ними. В системе ТД 1×ТЭД ТД может поддерживать вплоть до шести секторов/базовых станций в своем активном наборе. Поэтому, чтобы определить свою скорость ПРД, ТД контролирует каналы П-УДС из всех секторов активного набора, особенно БОА по каналам П-УДС.
После приема по меньшей мере одного БОА, установленного в 1, ТД выполняет тест на неизменность для того, чтобы уменьшить свою скорость ПРД. При тесте на неизменность ТД вырабатывает случайное число и сравнивает его с вектором неизменности, определенным с помощью базовой станции при или во время соединения. Если случайное число удовлетворяет необходимому условию, ТД определяет, что тест на неизменность является успешным. ТД затем уменьшает скорость ПРД. Напротив, если тест на неизменность является неуспешным, то ТД поддерживает скорость ПРД. Если скорость ПРД ниже, чем максимальная скорость ПРД, то ТД устанавливает скорость ПРД на минимальную скорость ПРД. Между тем, если все БОА установлены в 0 и тест на неизменность является успешным, то скорость ПРД увеличивается. Если тест на неизменность является неуспешным, то ТД поддерживает скорость ПРД. Если скорость ПРД становится выше, чем максимальная скорость ПРД, то ТД устанавливает скорость ПРД на максимальную скорость ПРД. Кроме того, в случае, где ТД ограничен по мощности передачи, поддерживается скорость ПРД. БОА, который выполняет функцию увеличения или уменьшения обратной скорости передачи данных, осуществляет широковещательную передачу в ТД в режиме мультиплексирования с разделением по времени (МРВ) с помощью БПА по прямому общему каналу, то есть по каналу П-УДС. ТД увеличивает/уменьшает равномерно свои скорости передачи данных в соответствии с БОА.
С точки зрения перспективы системы, описанный выше способ управления обратной передачей для настоящих систем 1xТЭД упрощает управление шириной полосы пропускания и управление служебной информацией. Однако равномерное управление без учета индивидуальных статусов ТД приводит к бесполезному расходованию полосы пропускания и снижению эффективности передачи данных ТД.
Кроме того, при достижении состояния полного использования на обратной линии связи происходит долговременная задержка, которая приводит в результате к снижению эффективности использования канала. Возникновение перегрузки может привести к потере данных, передаваемых по обратному каналу. В результате ухудшается качество связи.
Задача настоящего изобретения заключается в том, чтобы осуществить способ быстрого достижения состояния полного использования обратной линии связи.
Другая задача настоящего изобретения заключается в том, чтобы осуществить способ увеличения эффективности использования обратной линии связи.
Другая задача настоящего изобретения заключается в том, чтобы осуществить способ предотвращения возникновения перегрузки на обратной линии связи.
Вышеуказанные и другие задачи настоящего изобретения решаются с помощью способа управления обратной передачи в системе мобильной связи. После приема прямой информации, содержащей команду на изменение обратной скорости передачи данных по прямому каналу управления из базовой станции, мобильная станция увеличивает свою скорость передачи данных до значения, которое равно или меньше максимальной скорости передачи данных, если прямая информация содержит команду на увеличение скорости передачи данных, определяет, можно ли дополнительно увеличить скорость передачи данных у увеличенной скорости передачи данных для следующего фрейма, и передает результат определения с информацией, представляющей собой увеличенную скорость передачи данных в базовую станцию.
Если прямая информация несет в себе команду на увеличение обратной скорости передачи данных, мобильная станция увеличивает свою скорость передачи данных до значения, которое равно или меньше максимальной скорости передачи данных, на основании информации, показывающей, является ли увеличение скорости передачи данных доступным, что определяется при предыдущей передаче фрейма. Затем мобильная станция определяет, можно ли дополнительно увеличить увеличенную скорость передачи данных для следующего фрейма, и передает результат определения с информацией, представляющей собой увеличенную скорость передачи данных, в базовую станцию.
Если прямая информация несет в себе команду на уменьшение скорости передачи данных, мобильная станция уменьшает свою скорость передачи данных до значения, которое равно или больше минимальной скорости передачи данных, на основании информации, определенной при предыдущей передаче фрейма, показывающей, является ли увеличение скорости передачи данных доступным. Затем мобильная станция определяет, можно ли увеличить уменьшенную скорость передачи данных для следующего фрейма, и передает результат определения с информацией, представляющей собой увеличенную скорость передачи данных в базовую станцию.
Если прямая информация несет в себе команду на безусловное поддержание скорости передачи данных, мобильная станция поддерживает свою скорость передачи данных. Затем мобильная станция определяет, можно ли увеличить поддерживаемую обратную скорость передачи данных для следующего фрейма, и передает результат определения с информацией, представляющей собой увеличенную скорость передачи данных, в базовую станцию.
Прямая информация представляет собой расширенный БОА. Если прямая информация получена, по меньшей мере, из двух базовых станций, управляющий БОА вырабатывается из расширенного БОА, принятого из базовых станций. Изменение обратной скорости передачи данных определяют на основании управляющего БОА.
Если по меньшей мере один из расширенных БОА показывает условное уменьшение, управляющий БОА устанавливается так, чтобы показать условное уменьшение. Если ни один из расширенных БОА не показывает условное уменьшение и по меньшей мере один из расширенных БОА показывает безусловное поддержание скорости передачи данных, управляющий БОА устанавливается так, чтобы показать безусловное поддержание скорости передачи данных. Если ни один из расширенных БОА не показывает условное уменьшение или безусловное поддержание скорости передачи данных и по меньшей мере один из расширенных БОА показывает условное увеличение, управляющий БОА устанавливается так, чтобы показать условное увеличение. И, наконец, если все расширенные БОА показывают безусловное увеличение, управляющий БОА устанавливается так, чтобы показать безусловное увеличение.
После приема обратной информации, показывающей, является ли обратное увеличение скорости передачи данных доступным для следующего обратного фрейма, из мобильной станции, базовая станция определяет самую высокую скорость передачи данных, разрешенную мобильной станции благодаря вхождению в синхронизм мобильной станции и анализу характеристик, вырабатывает обратное значение скорости передачи данных, передает информацию, представляющую собой самую высокую скорость передачи данных и обратное значение скорости передачи данных, в мобильную станцию, определяет расширенный БОА на основании полученной обратной информации и текущей пропускной способности обратной линии связи и передает расширенный БОА в мобильную станцию.
Если обратная линия связи находится в состоянии перегрузки, расширенный БОА устанавливается так, чтобы показать условное уменьшение скорости передачи данных. Если увеличение значений скорости передачи данных всех мобильных станций, находящихся в пределах зоны действия базовой станции, не приводит к перегрузке на обратной линии связи, расширенный БОА устанавливается так, чтобы показать безусловное увеличение скорости передачи данных. Если обратная линия связи не находится в состоянии перегрузки и может обеспечить увеличение значений скорости передачи данных всех мобильных станций, расширенный БОА устанавливается так, чтобы показать условное увеличение скорости передачи данных. И, наконец, если обратная линия связи не находится в состоянии перегрузки и не может обеспечить увеличение значений скорости передачи данных у всех мобильных станций, расширенный БОА устанавливается так, чтобы показать безусловное поддержание скорости передачи данных.
Вышеупомянутые и другие задачи, особенности и преимущества настоящего изобретения будут ясны из следующего подробного описания со ссылкой на сопроводительные чертежи, на которых:
фиг.1 изображает алгоритм, иллюстрирующий способ управления обратной скоростью передачи данных для мобильной станции, находящейся в известной системе мобильной связи;
фиг.2 изображает схему, иллюстрирующую передачу/прием данных между мобильной станцией и сектором, который включает в себя активный набор мобильной станции;
фиг.3A-3F изображают алгоритмы, иллюстрирующие способ управления обратной скоростью передачи данных для мобильной станции в системе передачи данных, согласно варианту осуществления настоящего изобретения;
фиг.4 изображает алгоритм, иллюстрирующий способ управления обратной скоростью передачи данных для базовой станции в системе передачи данных, согласно варианту осуществления настоящего изобретения; и
фиг.5 изображает алгоритм, иллюстрирующий способ выработки расширенного БОА для управления обратными скоростями передачи данных в базовой станции, находящейся в системе передачи данных, согласно варианту осуществления настоящего изобретения.
Ниже приведено описание предпочтительного варианта осуществления настоящего изобретения со ссылкой на сопроводительные чертежи. В приведенном ниже описании хорошо известные функции или конструкции не описываются подробно, чтобы избежать излишнего усложнения предлагаемого изобретения ненужными подробностями.
Настоящее изобретение предусматривает способ управления обратной скоростью передачи данных для мобильной станции (МС) и новые БОА и ИОС структуры для поддержки способа в системе и новой системе передачи данных с высокой скоростью согласно настоящему изобретению. Предусмотрена также работа базовой станции для поддержки способа управления обратной скоростью передачи данных. Новый БОА и новый ИОС согласно настоящему изобретению в дальнейшем называются соответственно расширенным БОА и расширенным ИОС.
Расширенный БОА приведен в таблице 5.
Figure 00000006
1-битовый БОА просто представляет собой увеличение или уменьшение обратной скорости передачи данных в известной системе, тогда как расширенный БОА, показанный в таблице 5, представляет собой увеличение, поддержку и уменьшение обратной скорости передачи данных в настоящем изобретении.
(1) Расширенный БОА=00
Мобильная станция увеличивает свою скорость передачи данных только в случае, если она проходит свой предыдущий предварительный тест на неизменность увеличения для увеличения скорости передачи данных в предыдущем фрейме. В этом случае увеличение обратной скорости передачи данных является условным.
(2) Расширенный БОА=01
Мобильная станция уменьшает свою скорость передачи данных только в случае, если она проходит тест на неизменность уменьшения для уменьшения скорости передачи данных. В этом случае обратное уменьшение скорости передачи данных является условным.
(3) Расширенный БОА=10
Все мобильные станции увеличивают свои скорости передачи данных независимо от их предыдущих предварительных тестов на неизменность увеличения. То есть обратные скорости передачи данных безусловно увеличиваются.
(4) Расширенный БОА=11
Все мобильные станции сохраняют свои скорости передачи данных независимо от их предыдущих предварительных тестов на неизменность увеличения. То есть обратные скорости передачи данных безусловно поддерживаются.
На фиг.3A-3F изображены алгоритмы, иллюстрирующие способ управления обратной скоростью передачи данных для мобильной станции в системе передачи данных согласно варианту осуществления настоящего изобретения. Как показано на фиг.3A-3F, мобильная станция контролирует расширенные БОА, принятые по каналам П-УДС из всех базовых станций в своем активном наборе на этапе 300. Доступны только обратные скорости передачи данных, которые определяются с помощью символов ИОС. Мобильная станция может поддерживать вплоть до шести секторов/базовых станций в своем активном наборе. Активный набор представляет собой набор секторов/базовых станций, обслуживающих мобильную станцию. Если между мобильной станцией и базовой станцией в активном наборе начинается соединение, то каналы F- и R-трафика и обратные каналы управления мощностью назначаются мобильной станции. Если соединения не начинается, то мобильная станция контролирует только канал управления из базовой станции. Мобильная станция определяет “управляющий БОА” согласно принятому расширенному БОА следующим образом.
(Условия)
(1) Если по меньшей мере один из расширенных БОА, принятых из всех базовых станций в активном наборе, равен 01, управляющий БОА устанавливается в 01;
(2) Если ни один из расширенных БОА, принятых из всех базовых станций в активном наборе, не равен 01 и по меньшей мере один из них равен 11, то управляющий БОА устанавливается в 11;
(3) Если ни один из расширенных БОА, принятых из всех базовых станций в активном наборе, не равен 01 или 11 и по меньшей мере один из них равен 00, управляющий БОА устанавливается в 00;
(4) Если все расширенные БОА, принятые из всех базовых станций в активном наборе, равны 10, управляющий БОА устанавливается в 10.
Набор управляющих БОА при вышеупомянутых условиях имеет большое влияние на пропускную способность сектора в случае обратного увеличения скорости передачи данных.
Мобильная станция проверяет управляющий БОА на этапах 302-306. Если управляющий БОА равен 00, то мобильная станция определяет, прошел ли свой предыдущий предварительный тест на неизменность увеличения путем проверки переменной РезПредТеста, представляющей собой результат предварительного теста на неизменность увеличения, то есть РезПредТеста=0 на этапе 310 на фиг.3b. Если предыдущий предварительный тест на неизменность увеличения прошел, то мобильная станция переходит на этап 312, и в противном случае она переходит на этап 318. Мобильная станция увеличивает свою скорость ПРД на этапе 312 и сравнивает увеличенную скорость ПРД с максимальной скоростью ПРД на этапе 314. Если увеличенная скорость ПРД выше, чем максимальная скорость ПРД, мобильная станция продолжает свою работу на этапе 316, и в противном случае она переходит на этап 318. На этапе 316 мобильная станция устанавливает скорость ПРД на максимальную скорость ПРД и переходит на этап 318. Таким образом, полностью устанавливается скорость ПРД.
На этапе 318 мобильная станция выполняет предварительный тест на неизменность увеличения для того, чтобы управлять обратной скоростью ПРД для следующего фрейма. Если предварительный тест на неизменность увеличения является успешным, мобильная станция устанавливает переменную РезПредТеста на 0 на этапе 320 и выбирает и передает символ ИОС, представляющий собой установленную скорость ПРД на этапе 380 на фиг.3f. Напротив, если предварительный тест на неизменность увеличения является неуспешным, мобильная станция устанавливает переменную РезПредТеста на 1 на этапе 322 и выбирает и передает символ ИОС, представляющий собой установленную скорость ПРД на этапе 382 на фиг.3f.
Мобильная станция определяет, что предварительный тест на неизменность увеличения является неуспешным независимо от своей реальной реализации в случае, где скорость ПРД ограничена с помощью сообщения ПОС, которое обеспечивает максимальную разрешенную скорость передачи данных для каждой мобильной станции, когда мобильная станция имеет слишком ограниченную мощность передачи для увеличения скорости ПРД, или объем данных, запасенных в буфере, меньше или равен пороговому (то есть, сохраненные данные можно передавать без увеличения скорости ПРД).
В таблице 6 перечислены преобразования ИОС в обратные скорости передачи данных согласно настоящему изобретению.
Figure 00000007
Расширенный ИОС, представленный в таблице 6, представляет собой модификацию известного ИОС, который показывает базовой станции, на какой скорости нужно посылать обратные данные. Исходя из приобретенной обратной скорости передачи данных, базовая станция восстанавливает первоначальные обратные данные. Расширенный ИОС выполнен для представления обратных скоростей передачи данных, которые определяют системы 1×ТЭД с помощью набора РезПредТеста в первом поле.
Если на этапе 304 управляющий БОА равен 01, то на этапе 330 (фиг.3c) мобильная станция выполняет тест на неизменность уменьшения. Если тест на неизменность уменьшения является успешным, то мобильная станция переходит на этап 332, и в противном случае она переходит на этап 338. На этапе 332 мобильная станция уменьшает свою скорость ПРД и на этапе 334 сравнивает уменьшенную скорость ПРД с минимальной скоростью ПРД. Если уменьшенная скорость ПРД ниже, чем максимальная скорость ПРД, мобильная станция продолжает свою работу на этапе 336, и в противном случае она переходит на этап 338. На этапе 336 мобильная станция устанавливает скорость ПРД на минимальную скорость ПРД и переходит на этап 338.
На этапе 338 мобильная станция выполняет предварительный тест на неизменность увеличения для того, чтобы управлять обратной скоростью ПРД для следующего фрейма. Если предварительный тест на неизменность увеличения является успешным, то на этапе 340 мобильная станция устанавливает переменную РезПредТеста в 0 и выбирает символ ИОС, представляющий собой установленную скорость ПРД из таблицы, такой как таблица 6, и передает выбранный символ ИОС на этапе 380 (фиг.3f). В противном случае, если предварительный тест на неизменность увеличения является неуспешным, то на этапе 342 мобильная станция устанавливает переменную РезПредТеста на 1 и выбирает символ ИОС, представляющий собой установленную скорость ПРД из таблицы, такой как таблица 6, и передает выбранный символ ИОС на этапе 382 (фиг.3f).
Мобильная станция устанавливает переменную РезПредТеста на 1, определяя, что предварительный тест на неизменность увеличения является неуспешным независимо от своего реального выполнения в случае, где скорость ПРД ограничивают с помощью сообщения ПОС, когда мобильная станция имеет слишком ограниченную мощность передачи для увеличения скорости ПРД, или количество данных, сохраненных в буфере, меньше или равно пороговому значению.
Если на этапе 306 управляющий БОА не равен 10, то БОА должен быть равен 11. Это предполагает, что будет поддерживаться текущая скорость ПРД. Следовательно, на этапе 370 мобильная станция проверяет переменную РезПредТеста, представляющую собой результат предыдущего теста на неизменность увеличения, который был выполнен для передачи сообщения о состоянии обратной линии связи для предыдущего фрейма (фиг.3e). Если РезПредТеста равен 0, то есть доступно увеличение скорости ПРД, то мобильная станция выполняет предварительный тест на неизменность увеличения для того, чтобы на этапе 372 управлять обратной скоростью ПРД для следующего фрейма. Если предварительный тест на неизменность увеличения является успешным, то на этапе 374 мобильная станция устанавливает переменную РезПредТеста в 0 и выбирает символ ИОС, представляющий собой установленную скорость ПРД из таблицы, такой как таблица 6, и передает выбранный символ ИОС на этапе 380 (фиг.3f).
С другой стороны, если на этапе 370 РезПредТеста равен 1, или если на этапе 372 предварительный тест на неизменность увеличения является неуспешным, то на этапе 376 мобильная станция устанавливает переменную РезПредТеста на 1 и выбирает символ ИОС, представляющий собой установленную скорость ПРД из таблицы, такой как таблица 6, и передает выбранный символ ИОС на этапе 382 (фиг.3f). Причиной для выполнения предварительного теста на неизменность увеличения только в мобильной станции при РезПредТеста = 0, несмотря на команду подержания скорости ПРД с помощью расширенного БОА, является сохранение пропускной способности обратной линии связи.
На фиг.4 изображен алгоритм, иллюстрирующий способ управления обратной скоростью передачи данных для базовой станции в системе передачи данных с высокой скоростью, согласно варианту осуществления настоящего изобретения.
Как показано на фиг.4, после приема запросов на открытие соединения из мобильных станций базовая станция на этапе 400 осуществляет вхождение в синхронизм мобильной станции и на этапе 402 анализирует характеристики мобильных станций. На этапе 404 базовая станция анализирует характеристики обратного трафика, принятого из мобильных станций, то есть определяет качество обслуживания (КО) услуг передачи пакетных данных, запрашиваемых мобильными станциями. На этапах 406 базовая станция устанавливает поля “индексУДС”, с помощью которых идентифицируют мобильные станции. Базовая станция устанавливает поля “ПределСкорости”, которые ограничивают скорости передачи данных мобильных станций на основании характеристик мобильных станций и их прикладных услуг на этапе 408. Затем базовая станция компонует сообщение ПОС с помощью “ИД сообщения” и других соответствующих полей сообщения для передачи в эфир на этапе 412 и передает сообщение ПОС в мобильные станции на этапе 414.
На этапе 416 базовая станция принимает информацию РезПредТеста, показывающую, является ли увеличение обратной скорости передачи данных доступным для следующих фреймов из мобильных станций, и анализирует информацию РезПредТеста. Базовая станция проверяет текущие условия обратного канала и на этапе 418 вырабатывает БОА согласно условиям обратного канала и на этапе 420 выполняет широковещательную передачу БОА в мобильные станции. Если для каждой мобильной станции устанавливают один БОА, то БОА не может вести широковещательную передачу, но должен передаваться только в соответствующую мобильную станцию.
На фиг.5 изображен алгоритм, иллюстрирующий способ выработки расширенного БОА для управления обратных скоростей передачи данных в базовой станции, находящейся в системе передачи скорости передачи данных, согласно варианту осуществления настоящего изобретения.
Как показано на фиг.5, на этапе 500 базовая станция определяет, является ли обратная линия связи в текущий момент времени в состоянии перегрузки. В состоянии перегрузки базовая станция устанавливает расширенный БОА на 01 на этапе 512. Это предполагает, что соответствующая мобильная станция устанавливает управляющий БОА на 01 и уменьшает свою скорость ПРД в соответствии с тестом на неизменность уменьшения.
Если на этапе 500 текущая обратная линия связи не находится в состоянии перегрузки, то на этапе 502 базовая станция определяет, находится ли текущая обратная линия связи в состоянии малой нагрузки. В состоянии малой нагрузки базовая станция устанавливает расширенный БОА на 10.
Если на этапе 502 текущая обратная линия связи не находится в состоянии малой нагрузки, то на этапе 504 базовая станция проверяет информацию РезПредТеста, полученную из мобильных станций, для того, чтобы определить, произойдет ли перегрузка при следующей обратной передаче. Если ожидается перегрузка, то на этапе 508 базовая станция устанавливает расширенный БОА на 11. Если перегрузка не ожидается, на этапе 506 базовая станция устанавливает расширенный БОА на 00. Для установленного расширенного БОА выполняется широковещательная передача или только передача в соответствующую мобильную станцию.
Хотя вариант осуществления настоящего изобретения был описан в том контексте, что одна мобильная станция использует только один радиоканал трафика, в других вариантах осуществления можно дополнительно предусмотреть использование двух радиоканалов трафика одной мобильной станцией.
(1) Использование одного 2-х битового БОА и одного 7-ми битового символа ИОС.
Пользуясь представлением, что каждая из скоростей передачи данных двух обратных каналов трафика использует один бит БОА, скорости передачи данных увеличиваются/поддерживаются/уменьшаются одновременно. Результат предварительного теста на неизменность увеличения представлен одним битом символа ИОС (например, самым старшим битом (двоичным разрядом), ССБ). Три из оставшихся битов символа ИОС назначают скорости передачи данных первого обратного канала трафика, и другие три бита - скорости передачи данных второго обратного канала трафика. Обратные скорости передачи данных увеличивают/уменьшают в соответствии с результатом предварительного теста на неизменность увеличения на двух обратных каналах трафика и общим БОА.
(2) Использование одного 2-х битового БОА и одного 8-ми битового символа ИОС.
Хотя БОА применяют обычно для двух обратных каналов трафика, предварительный тест на неизменность увеличения выполняется независимо для каждого из обратных каналов трафика. Поэтому обратные скорости передачи данных изменяются индивидуально. Два бита символа ИОС назначают в соответствии с результатами предварительного теста на неизменность увеличения для обратных каналов трафика. Другие шесть битов символа ИОС разделяют поровну для дальнейшего назначения скоростям передачи данных обратных каналов трафика. Обратные скорости передачи данных увеличивают/уменьшают в соответствии с результатами предварительных тестов на неизменность увеличения и общего БОА.
(3) Использование двух 2-х битовых БОА и одного 7-ми битового символа ИОС.
Один БОА назначают для каждого обратного канала трафика. Таким образом, скорости передачи данных обратных каналов трафика изменяются индивидуально. Один предварительный тест на неизменность увеличения выполняют для двух обратных каналов трафика. В этом случае тест на неизменность уменьшения может быть выполнен, как правило, для обратных каналов трафика или независимо для каждого из обратных каналов трафика. Символ ИОС используется так же, как и в случае (1). Обратные скорости передачи данных увеличиваются/уменьшаются в соответствии с результатом общего предварительного теста на неизменность увеличения и БОА.
(4) Использование двух 2-х битовых БОА и одного 8-ми битового символа ИОС.
Один БОА назначают для каждого из обратных каналов трафика и также выполняют предварительный тест на неизменность увеличения независимо для каждого из обратных каналов трафика. Символ ИОС используется тем же самым способом, как и в случае (2). Управление двумя обратными каналами трафика выполняют по отдельности.
Результат предварительного теста (или результаты предварительных тестов) на неизменность увеличения можно передавать по каналу, который отличается от канала ИОС (например, канал RICH) или по новому определенному каналу. Хотя свой период передачи устанавливают предпочтительно на базе фрейма, его можно установить любым другим способом.
Согласно настоящему изобретению, как описано выше, мобильные станции определяют, является ли увеличение обратной скорости передачи данных доступным для следующей обратной передачи, и передают в базовую станцию сообщение о результатах определения. Затем базовая станция осуществляет запланированное управление обратной линии связи для следующей обратной передачи. Поэтому не допускается возникновение перегрузки, минимизируются потери обратных данных, и достигается максимальная эффективность передачи обратной линии связи.
Хотя изобретение было показано и описано со ссылкой на определенный предпочтительный вариант его осуществления, специалистам будет ясно, что различные изменения по форме и деталям могут быть выполнены в нем без отклонения от сущности и объема изобретения, которые определены с помощью прилагаемой формулы изобретения.

Claims (21)

1. Способ управления обратной скоростью передачи данных обратной линии от мобильной станции к базовой в мобильной станции после приема прямой информации, переданной от базовой станции к мобильной станции, содержащей команду на изменение обратной скорости передачи данных по прямому каналу из базовой станции, содержащий этапы, в соответствии с которыми увеличивают обратную скорость передачи данных до уровня, равного или меньшего максимальной скорости передачи данных, если прямая информация содержит в себе команды на увеличение обратной скорости передачи данных, определяют, является ли увеличенная скорость передачи данных для следующего фрейма возможной, и передают результат определения в базовую станцию.
2. Способ по п.1, по которому прямая информация, переданная от базовой станции к мобильной станции, представляет собой расширенный бит обратной активности (БОА).
3. Способ по п.2, по которому в случае если прямую информацию, переданную от базовой станции к мобильной станции, получают по меньшей мере из двух базовых станций, управляющий БОА вырабатывают из расширенных БОА, принятых из базовых станций, и изменение обратной скорости передачи данных определяют на основании управляющего БОА.
4. Способ по п.3, по которому если по меньшей мере один из расширенных БОА показывает условное уменьшение, то управляющий БОА устанавливают так, чтобы показать условное уменьшение; если ни один из расширенных БОА не показывает условное уменьшение и по меньшей мере один из расширенных БОА показывает безусловное поддержание скорости передачи данных, управляющий БОА устанавливают так, чтобы показать безусловное поддержание скорости передачи данных, если ни один из расширенных БОА не показывает условное уменьшение или безусловное поддержание скорости передачи данных и по меньшей мере один из расширенных БОА показывает условное увеличение, управляющий БОА устанавливают так, чтобы показать условное увеличение; и если все расширенные БОА показывают безусловное увеличение, управляющий БОА устанавливают так, чтобы показать безусловное увеличение.
5. Способ управления обратной скоростью передачи данных обратной линии от мобильной станции к базовой в мобильной станции после приема прямой информации, переданной от базовой станции к мобильной станции, содержащей команду на изменение обратной скорости передачи данных, по прямому каналу из базовой станции, содержащий этапы, в соответствии с которыми увеличивают обратную скорость передачи данных до уровня, равного или меньшего максимальной скорости передачи данных, на основании информации, показывающей, является ли увеличение скорости передачи данных доступным, что определяют при предыдущей передаче фрейма, если прямая информация содержит команды на условное увеличение обратной скорости передачи данных, определяют, является ли увеличенная скорость передачи данных для следующего фрейма возможной, и передают результат определения в базовую станцию.
6. Способ по п.5, по которому прямая информация, переданная от базовой станции к мобильной станции, представляет собой расширенный бит обратной активности (БОА).
7. Способ по п.6, по которому в случае если прямую информацию, переданную от базовой станции к мобильной станции, принимают по меньшей мере из двух базовых станций, управляющий БОА вырабатывают из расширенных БОА, принятых из базовых станций, и изменение обратной скорости передачи данных определяют на основании управляющего БОА.
8. Способ по п.7, по которому если по меньшей мере один из расширенных БОА показывает условное уменьшение, то управляющий БОА устанавливают так, чтобы показать условное уменьшение; если ни один из расширенных БОА не показывает условное уменьшение и по меньшей мере один из расширенных БОА показывает безусловное поддержание скорости передачи данных, то управляющий БОА устанавливают так, чтобы показать безусловное поддержание скорости передачи данных, если ни один из расширенных БОА не показывает условное уменьшение или безусловное поддержание скорости передачи данных и по меньшей мере один из расширенных БОА показывает условное увеличение, то управляющий БОА устанавливают так, чтобы показать условное увеличение; и если все расширенные БОА показывают безусловное увеличение, то управляющий БОА устанавливают так, чтобы показать безусловное увеличение.
9. Способ управления обратной скоростью передачи данных обратной линии от мобильной станции к базовой в мобильной станции после приема прямой информации, переданной от базовой станции к мобильной станции, содержащей команду на изменение обратной скорости передачи данных по прямому каналу из базовой станции, содержащий этапы, в соответствии с которыми уменьшают обратную скорость передачи данных до уровня, равного или большего минимальной скорости передачи данных, на основании информации, показывающей, является ли увеличение скорости передачи данных доступным, что определяют при предыдущей передаче фрейма, если прямая информация содержит команды на условное уменьшение скорости передачи данных, определяют, является ли уменьшенная скорость передачи данных для следующего фрейма возможной, и передают результат определения в базовую станцию.
10. Способ по п.9, по которому прямая информация, переданная от базовой станции к мобильной станции, представляет собой расширенный бит обратной активности (БОА).
11. Способ по п.10, по которому в случае если прямую информацию, переданную от базовой станции к мобильной станции, получают по меньшей мере из двух базовых станций, управляющий БОА вырабатывают из расширенных БОА, принятых из базовых станций, и изменение обратной скорости передачи данных определяют на основании управляющего БОА.
12. Способ по п.11, по которому если по меньшей мере один из расширенных БОА показывает условное уменьшение, то управляющий БОА устанавливают так, чтобы показать условное уменьшение; если ни один из расширенных БОА не показывает условное уменьшение и по меньшей мере один из расширенных БОА показывает безусловное поддержание скорости передачи данных, то управляющий БОА устанавливают так, чтобы показать безусловное поддержание скорости передачи данных; если ни один из расширенных БОА не показывает условное уменьшение или безусловное поддержание скорости передачи данных и по меньшей мере один из расширенных БОА показывает условное увеличение, то управляющий БОА устанавливают так, чтобы показать условное увеличение, и если все расширенные БОА показывают безусловное увеличение, то управляющий БОА устанавливают так, чтобы показать безусловное увеличение.
13. Способ управления обратной скоростью передачи данных обратной линии от мобильной станции к базовой в мобильной станции после приема прямой информации, переданной от базовой станции к мобильной станции, содержащей команду на изменение обратной скорости передачи данных по прямому каналу из базовой станции, содержащий этапы, в соответствии с которыми поддерживают обратную скорость передачи данных в случае, если прямая информация содержит команды на безусловное поддержание скорости передачи данных, определяют, является ли поддерживаемая обратная скорость передачи данных для следующего фрейма возможной, и передают результат определения в базовую станцию.
14. Способ по п.13, по которому прямая информация, переданная от базовой станции к мобильной станции, представляет собой расширенный бит обратной активности (БОА).
15. Способ по п.14, по которому в случае если прямую информацию, переданную от базовой станции к мобильной станции, получают по меньшей мере из двух базовых станций, управляющий БОА вырабатывают из расширенных БОА, принятых из базовых станций, и изменение обратной скорости передачи данных определяют на основании управляющего БОА.
16. Способ по п.15, по которому если по меньшей мере один из расширенных БОА показывает условное уменьшение, то управляющий БОА устанавливают так, чтобы показать условное уменьшение; если ни один из расширенных БОА не показывает условное уменьшение и по меньшей мере один из расширенных БОА показывает безусловное поддержание скорости передачи данных, то управляющий БОА устанавливают так, чтобы показать безусловное поддержание скорости передачи данных; если ни один из расширенных БОА не показывает условное уменьшение или безусловное поддержание скорости передачи данных и по меньшей мере один из расширенных БОА показывает условное увеличение, то управляющий БОА устанавливают так, чтобы показать условное увеличение; и если все расширенные БОА показывают безусловное увеличение, то управляющий БОА устанавливают так, чтобы показать безусловное увеличение.
17. Способ по п.13, по которому если при передаче фрейма перед получением прямой информации, переданной от базовой станции к мобильной станции, определяют, что увеличение обратной скорости передачи данных недоступно, то не производят определения относительно того, можно ли увеличить поддерживаемую обратную скорость передачи данных для следующего фрейма, и значение, при котором обратная скорость передачи данных не является доступной при предыдущей передаче фрейма, передают в базовую станцию.
18. Способ управления скоростью передачи данных мобильной станцией в базовую станцию после приема обратной информации, переданной от мобильной станции к базовой станции, показывающей, является ли увеличение обратной скорости передачи данных доступным для следующего обратного фрейма из мобильной станции, содержащий этапы, в соответствии с которыми определяют расширенный бит обратной активности (БОА) на основании принятой обратной информации и текущей пропускной способности обратной линии связи и передают расширенный БОА в мобильную станцию.
19. Способ по п.18, по которому если обратная линия связи находится в состоянии перегрузки, то расширенный БОА устанавливают так, чтобы показать условное уменьшение скорости передачи данных; если увеличение значений скорости передачи данных всех мобильных станций, находящихся в пределах зоны действия базовой станции, не вызывает перегрузки на обратной линии связи, то расширенный БОА устанавливают так, чтобы показать безусловное увеличение скорости передачи данных; если обратная линия связи не находится в состоянии перегрузки и может обеспечить увеличение значений скорости передачи данных всех мобильных станций, то расширенный БОА устанавливают так, чтобы показать условное увеличение скорости передачи данных; и если обратная линия связи не находится в состоянии перегрузки и нельзя обеспечить увеличение значений скорости передачи данных всех мобильных станций, то расширенный БОА устанавливают так, чтобы показать безусловное поддержание скорости передачи данных.
20. Устройство мобильной станции для управления обратной скоростью передачи данных обратной линии от мобильной станции к базовой после приема прямой информации, переданной от базовой станции к мобильной станции, содержащей команду на изменение обратной скорости передачи данных по прямому каналу из базовой станции, содержащее устройство для увеличения обратной скорости передачи данных до уровня, равного или меньшего максимальной скорости передачи данных, если прямая информация содержит команды на увеличение обратной скорости передачи данных, увеличения обратной скорости передачи данных до уровня, равного или меньшего максимальной скорости передачи данных, на основании информации, определенной при предыдущей передаче фрейма, показывающей, является ли увеличение скорости передачи данных доступным, если прямая информация содержит команды на условное увеличение обратной скорости передачи данных, уменьшения обратной скорости передачи данных до уровня, равного или меньшего минимальной скорости передачи данных, на основании информации, определенной в предыдущей передаче фрейма, показывающей, является ли увеличение скорости передачи данных доступным, если прямая информация содержит команды на условное обратное уменьшение скорости передачи данных, поддержания обратной скорости передачи данных, если прямая информация содержит команды на безусловное поддержание скорости передачи данных, и определения того, можно ли увеличить измененную или поддерживаемую обратную скорость передачи данных для следующего фрейма, и устройство для передачи результата определения в базовую станцию.
21. Устройство базовой станции для управления скоростью передачи данных мобильной станции после приема обратной информации, переданной от мобильной станции к базовой станции, показывающей, является ли увеличение обратной скорости передачи данных доступным для следующего обратного фрейма, из мобильной станции, содержащее устройство для определения расширенного бита обратной активности (БОА) на основании принятой обратной информации и текущей пропускной способности обратной линии связи и устройство для передачи расширенного БОА в мобильную станцию.
RU2002131154A 2001-03-29 2002-03-29 Устройство и способ управления обратной передачей в системе мобильной связи RU2237365C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR2001/16660 2001-03-29
KR20010016660A KR100800884B1 (ko) 2001-03-29 2001-03-29 이동통신 시스템에서 역방향 링크의 송신 제어 방법

Publications (2)

Publication Number Publication Date
RU2002131154A RU2002131154A (ru) 2004-03-20
RU2237365C2 true RU2237365C2 (ru) 2004-09-27

Family

ID=19707599

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2002131154A RU2237365C2 (ru) 2001-03-29 2002-03-29 Устройство и способ управления обратной передачей в системе мобильной связи

Country Status (10)

Country Link
US (3) US7609635B2 (ru)
EP (1) EP1248417B1 (ru)
JP (1) JP3943029B2 (ru)
KR (1) KR100800884B1 (ru)
CN (1) CN1214549C (ru)
AU (1) AU2002249632B2 (ru)
BR (1) BR0204497A (ru)
CA (1) CA2408161C (ru)
RU (1) RU2237365C2 (ru)
WO (1) WO2002080406A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7733832B2 (en) 2005-10-12 2010-06-08 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving control information of user equipment for uplink data transmission
US8254314B2 (en) 2005-04-28 2012-08-28 Samsung Electronics Co., Ltd Method of requesting allocation of uplink resources for extended real-time polling service in a wireless communication system

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2384466C (en) * 2000-06-28 2007-06-26 Samsung Electronics Co., Ltd. Reverse data transmission method and apparatus in mobile communication system
US7283482B2 (en) * 2001-08-14 2007-10-16 Samsung Electronics Co., Ltd. Reverse data transmission apparatus and method in a mobile communication system
KR100430277B1 (ko) * 2001-09-26 2004-05-04 엘지전자 주식회사 동기식 이동통신시스템에서의 역방향 전송율 한계값 설정장치및 방법
KR100547847B1 (ko) * 2001-10-26 2006-01-31 삼성전자주식회사 이동통신 시스템에서 역방향 링크의 제어 장치 및 방법
ATE523042T1 (de) 2002-09-23 2011-09-15 Lg Electronics Inc Bereitstellung von multimedia-rundsende- und multicast-diensten (mbms)
US7403800B2 (en) * 2002-12-11 2008-07-22 Kyoo Jin Han Reverse activity bit setting system and method
US7095725B2 (en) * 2002-12-19 2006-08-22 Qualcomm Incorporated Method and apparatus for data transmission on a reverse link in a communication system
US7660282B2 (en) * 2003-02-18 2010-02-09 Qualcomm Incorporated Congestion control in a wireless data network
US20040160922A1 (en) 2003-02-18 2004-08-19 Sanjiv Nanda Method and apparatus for controlling data rate of a reverse link in a communication system
US7155236B2 (en) 2003-02-18 2006-12-26 Qualcomm Incorporated Scheduled and autonomous transmission and acknowledgement
US20040174846A1 (en) 2003-03-05 2004-09-09 Samsung Electronics Co., Ltd. Method and apparatus for controlling a reverse traffic rate in a mobile communication system
US7551588B2 (en) * 2003-03-06 2009-06-23 Nortel Networks Limited Autonomous mode transmission from a mobile station
CA2541585C (en) * 2003-03-06 2013-02-19 Lg Electronics Inc. Apparatus and method for controlling reverse-link data transmission rate
US7327716B2 (en) * 2003-03-06 2008-02-05 Nortel Networks Limited Reverse link enhancement for CDMA 2000 Release D
US8254358B2 (en) * 2003-03-06 2012-08-28 Ericsson Ab Communicating a broadcast message to change data rates of mobile stations
US7215930B2 (en) 2003-03-06 2007-05-08 Qualcomm, Incorporated Method and apparatus for providing uplink signal-to-noise ratio (SNR) estimation in a wireless communication
US8705588B2 (en) 2003-03-06 2014-04-22 Qualcomm Incorporated Systems and methods for using code space in spread-spectrum communications
US6999759B2 (en) * 2003-03-14 2006-02-14 Motorola, Inc. Method and apparatus for providing deferrable data services in a cellular communication system
US7069037B2 (en) * 2003-04-11 2006-06-27 Qualcomm, Inc. System and method for fluid power control of a reverse link communication
US7369501B2 (en) 2003-04-29 2008-05-06 Lg Electronics Inc. Apparatus and method for controlling reverse-link data transmission rate during handoff
WO2004100404A1 (en) * 2003-05-10 2004-11-18 Samsung Electronics Co. Ltd. Apparatus and method for controlling a reverse traffic rate in a mobile communication system
US8477592B2 (en) 2003-05-14 2013-07-02 Qualcomm Incorporated Interference and noise estimation in an OFDM system
KR100547799B1 (ko) 2003-05-29 2006-01-31 삼성전자주식회사 광자결정 광섬유용 모재 및 이를 이용한 광자결정 광섬유
CN100459790C (zh) * 2003-06-17 2009-02-04 艾利森电话股份有限公司 移动通信网络中的反向链路速率控制方法和系统
JP4875980B2 (ja) * 2003-06-17 2012-02-15 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 移動通信ネットワークにおける逆方向リンク速度制御方法及びシステム
US7525909B2 (en) * 2003-06-19 2009-04-28 Qualcomm Incorporated Method and apparatus for dynamic adjustment of rise-over-thermal (ROT) threshold for reverse link rate allocation
US6970437B2 (en) * 2003-07-15 2005-11-29 Qualcomm Incorporated Reverse link differentiated services for a multiflow communications system using autonomous allocation
US7933235B2 (en) 2003-07-15 2011-04-26 Qualcomm Incorporated Multiflow reverse link MAC for a communications system
US8000284B2 (en) 2003-07-15 2011-08-16 Qualcomm Incorporated Cooperative autonomous and scheduled resource allocation for a distributed communication system
US7171165B2 (en) * 2003-07-24 2007-01-30 Lucent Technologies Inc. Method for determining a transmission rate on the reverse common signaling channel of a wireless system
US8489949B2 (en) 2003-08-05 2013-07-16 Qualcomm Incorporated Combining grant, acknowledgement, and rate control commands
KR101009861B1 (ko) * 2003-08-19 2011-01-19 삼성전자주식회사 이동통신 시스템에서의 데이터 전송 방법과 전송률 할당 방법 및 이를 위한 장치
KR100712323B1 (ko) * 2003-10-02 2007-05-02 삼성전자주식회사 패킷 통신 시스템에서 빠른 전송율 변화를 지원하는 역방향 전송율 스케쥴링 방법 및 장치
US8488457B2 (en) 2003-11-14 2013-07-16 Interdigital Technology Corporation Wireless communication method and apparatus for transferring buffered enhanced uplink data from a mobile station to a node-B
KR100976492B1 (ko) * 2003-12-05 2010-08-18 엘지전자 주식회사 이동 통신 시스템의 역방향 데이터 전송률 제어 방법
KR101009875B1 (ko) * 2003-12-26 2011-01-19 삼성전자주식회사 이동 통신 시스템에서 역방향 전송률 제어 방법 및 장치
US7668561B2 (en) * 2004-02-27 2010-02-23 Qualcomm Incorporated Apparatus and method for controlling reverse link interference among access terminals in wireless communications
JP4705909B2 (ja) * 2004-03-11 2011-06-22 パナソニック株式会社 制御局装置、基地局装置及びパケット通信方法
KR100744364B1 (ko) * 2004-03-18 2007-07-30 삼성전자주식회사 이동통신 시스템에서 역방향 데이터 전송 방법 및 시스템
US8040834B2 (en) * 2004-03-31 2011-10-18 Interdigital Technology Corporation Wireless communication method and apparatus for reporting traffic volume measurement information to support enhanced uplink data transmissions
US20060040674A1 (en) * 2004-07-29 2006-02-23 Telefonaktiebolaget L.M. Ericsson (Publ) User class provisioning for R-PDCH via a single common rate control sub-channel
US8306541B2 (en) * 2005-03-08 2012-11-06 Qualcomm Incorporated Data rate methods and apparatus
US7885293B2 (en) * 2005-03-08 2011-02-08 Qualcomm Incorporated Methods and apparatus for implementing and using a maximum rate option indicator
US7894324B2 (en) * 2005-03-08 2011-02-22 Qualcomm Incorporated Methods and apparatus for signaling data rate option information
US7974253B2 (en) * 2005-03-08 2011-07-05 Qualcomm Incorporated Methods and apparatus for implementing and using a rate indicator
US9137330B2 (en) * 2005-03-16 2015-09-15 Alcatel Lucent Method of dynamically adjusting quality of service (QoS) targets
US8315240B2 (en) * 2005-07-20 2012-11-20 Qualcomm Incorporated Enhanced uplink rate indicator
JP4751673B2 (ja) * 2005-08-29 2011-08-17 株式会社エヌ・ティ・ティ・ドコモ 伝送速度制御方法及び移動局
US8102878B2 (en) * 2005-09-29 2012-01-24 Qualcomm Incorporated Video packet shaping for video telephony
US8842555B2 (en) 2005-10-21 2014-09-23 Qualcomm Incorporated Methods and systems for adaptive encoding of real-time information in packet-switched wireless communication systems
US7852810B1 (en) 2007-01-03 2010-12-14 Sprint Spectrum L.P. Dynamic adjustment of forward-link frame-error-rate (FFER) target
US7813323B1 (en) 2007-06-13 2010-10-12 Sprint Spectrum L.P. Dynamic adjustment of reverse-link frame-error-rate (RFER) target based on reverse-link RF conditions
US8433349B2 (en) * 2007-07-10 2013-04-30 Qualcomm Incorporated Methods and apparatus for successive interference cancellation based on transmit power control by interfering device with success probability adaptation in peer-to-peer wireless networks
US9521680B2 (en) * 2007-07-10 2016-12-13 Qualcomm Incorporated Methods and apparatus for successive interference cancellation based on three rate reports from interfering device in peer-to-peer networks
US8855567B2 (en) * 2007-07-10 2014-10-07 Qualcomm Incorporated Methods and apparatus for successive interference cancellation based on two rate feedback in peer-to-peer networks
US8874040B2 (en) * 2007-07-10 2014-10-28 Qualcomm Incorporated Methods and apparatus for successive interference cancellation based on rate capping in peer-to-peer networks
US8849197B2 (en) * 2007-07-10 2014-09-30 Qualcomm Incorporated Methods and apparatus for active successive interference cancellation in peer-to-peer networks
US9668225B2 (en) * 2007-07-10 2017-05-30 Qualcomm Incorporated Methods and apparatus for active successive interference cancellation based on one rate feedback and probability adaptation in peer-to-peer networks
US8797850B2 (en) 2008-01-10 2014-08-05 Qualcomm Incorporated System and method to adapt to network congestion
US7936698B1 (en) * 2008-05-13 2011-05-03 Sprint Spectrum L.P. System and method for reducing reverse noise rise in wireless communications
US7948887B2 (en) * 2008-06-24 2011-05-24 Microsoft Corporation Network bandwidth measurement
US8107988B1 (en) 2008-07-25 2012-01-31 Sprint Spectrum L.P. Conducting power control based on reverse-link RF conditions
US8477733B1 (en) * 2009-01-21 2013-07-02 Sprint Spectrum L.P. Method and system for providing multiple reverse activity bits
US8526468B1 (en) 2009-03-16 2013-09-03 Sprint Spectrum L.P. Method and system for quality-of-service-differentiated reverse activity bit
US9007907B1 (en) * 2009-08-26 2015-04-14 Sprint Spectrum L.P. Method and system of reverse-link transmission
US8477686B1 (en) 2009-09-10 2013-07-02 Sprint Spectrum L.P. Automatic increase of target frame error rate for duration based on call drop timer
US8270357B1 (en) 2009-10-13 2012-09-18 Sprint Spectrum L.P. Methods and systems for EV-DO femtocells to use proximity to prioritize service to access terminals
US8259606B1 (en) 2009-11-17 2012-09-04 Sprint Spectrum L.P. Using differentiated reverse activity bits (RABs) based on mobile-station revision
US8289874B1 (en) 2009-11-17 2012-10-16 Sprint Spectrum L.P. Using mobile-station revision ratio to improve reverse-link performance
US8290532B1 (en) 2010-04-19 2012-10-16 Sprint Spectrum L.P. Selectively conducting reverse-link power control and call admission control
US8537700B1 (en) 2010-04-19 2013-09-17 Sprint Spectrum L.P. Identifying and selectively controlling reverse-noise contribution on a per-access-terminal basis
CN107005591B (zh) 2014-12-04 2020-07-28 索尼公司 数据处理设备、数据处理方法及程序

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL91529A0 (en) 1988-10-28 1990-04-29 Motorola Inc Satellite cellular telephone and data communication system
ZA946674B (en) 1993-09-08 1995-05-02 Qualcomm Inc Method and apparatus for determining the transmission data rate in a multi-user communication system
US5671218A (en) * 1994-04-28 1997-09-23 Lucent Technologies Inc. Controlling power and access of wireless devices to base stations which use code division multiple access
US5638412A (en) * 1994-06-15 1997-06-10 Qualcomm Incorporated Method for providing service and rate negotiation in a mobile communication system
JP2968706B2 (ja) * 1995-07-26 1999-11-02 日本電気エンジニアリング株式会社 移動無線機
US5974106A (en) * 1995-09-01 1999-10-26 Motorola, Inc. Method and apparatus for multirate data communications
US6038216A (en) 1996-11-01 2000-03-14 Packeteer, Inc. Method for explicit data rate control in a packet communication environment without data rate supervision
US6219343B1 (en) * 1997-07-29 2001-04-17 Nokia Mobile Phones Ltd. Rate control techniques for efficient high speed data services
KR100265585B1 (ko) * 1997-10-09 2000-09-15 정태기 이동통신시스템에서의 역방향 링크 전력 제어 장치
US6574211B2 (en) 1997-11-03 2003-06-03 Qualcomm Incorporated Method and apparatus for high rate packet data transmission
WO1999030442A1 (fr) * 1997-12-10 1999-06-17 Mitsubishi Denki Kabushiki Kaisha Systeme de communication mobile
US6735185B1 (en) * 1997-12-24 2004-05-11 Nokia Mobile Phones Ltd DS/CDMA reverse link structure for high data rate transmission
US6700881B1 (en) * 1998-03-02 2004-03-02 Samsung Electronics Co., Ltd. Rate control device and method for CDMA communication system
ES2184430T3 (es) * 1998-04-17 2003-04-01 Matsushita Electric Ind Co Ltd Dispositivo de comunicacion por radio y procedimiento que permite ajustar la velocidad de transmision.
DE69904107D1 (de) * 1998-04-30 2003-01-09 Roke Manor Research Leistungsregelung und Übertragungsrate-Verfahren für ein Mobilfunkübertragungssystem
JP3286247B2 (ja) * 1998-05-08 2002-05-27 松下電器産業株式会社 無線通信システム
KR100334818B1 (ko) * 1998-07-07 2002-08-27 삼성전자 주식회사 이동통신단말장치의전력제어신호전송방법
JP2000032561A (ja) 1998-07-08 2000-01-28 Canon Inc 無線通信装置、通信制御方法および記憶媒体
KR100401191B1 (ko) * 1999-02-13 2003-10-10 삼성전자주식회사 이동통신시스템의 역방향 링크 송신제어장치 및 방법
KR20000061251A (ko) * 1999-03-24 2000-10-16 단흥덕 씸리스 손목시계 밴드
US6567420B1 (en) * 1999-04-15 2003-05-20 Qualcomm, Incorporated Method and apparatus for high rate channel access control
US6556549B1 (en) * 1999-07-02 2003-04-29 Qualcomm Incorporated Method and apparatus for signal combining in a high data rate communication system
JP3344373B2 (ja) 1999-07-09 2002-11-11 日本電気株式会社 移動体パケット通信システム
EP1513269B1 (en) * 1999-07-13 2008-09-24 Alcatel Lucent A method for improving performances of a mobile radiocommunication system using a power control algorithm
US6397070B1 (en) * 1999-07-21 2002-05-28 Qualcomm Incorporated Method and apparatus for estimating reverse link loading in a wireless communication system
US6728217B1 (en) * 1999-08-17 2004-04-27 Ericsson Inc. System and method for modifying the data rate for data calls in a cellular network
JP4387001B2 (ja) * 1999-08-27 2009-12-16 三菱電機株式会社 移動局および通信方法
US6665272B1 (en) * 1999-09-30 2003-12-16 Qualcomm Incorporated System and method for persistence-vector-based modification of usage rates
US6535523B1 (en) * 1999-09-30 2003-03-18 Qualcomm Incorporated System and method for persistence vector based rate assignment
US6563810B1 (en) * 1999-09-30 2003-05-13 Qualcomm Incorporated Closed loop resource allocation
JP2001320326A (ja) * 2000-03-03 2001-11-16 Sony Corp 通信システム、通信方法及び通信装置
GB0008020D0 (en) * 2000-03-31 2000-05-17 Koninkl Philips Electronics Nv Radio comunication system
US6760313B1 (en) * 2000-06-19 2004-07-06 Qualcomm Incorporated Method and apparatus for adaptive rate selection in a communication system
KR200204497Y1 (ko) * 2000-06-24 2000-11-15 이원창 공압을 이용한 원터치방식의 철도차량용 브레이크완해시스템
CA2313290A1 (en) * 2000-06-30 2001-12-30 Frank Van Heeswyk Adaptive rate power control cdma system
KR100387057B1 (ko) * 2000-07-04 2003-06-12 삼성전자주식회사 이동 통신시스템의 역방향 데이터 전송율 결정 방법 및 장치
US6876866B1 (en) * 2000-07-13 2005-04-05 Qualcomm Incorporated Multi-state power control mechanism for a wireless communication system
US7142867B1 (en) * 2000-09-15 2006-11-28 Lucent Technologies Inc. Method of determining transmission rate from a mobile station to a base station in a wireless communication system
US6930981B2 (en) * 2000-12-06 2005-08-16 Lucent Technologies Inc. Method for data rate selection in a wireless communication system
US6999425B2 (en) * 2000-12-07 2006-02-14 Lucent Technologies Inc. Dynamic reverse link rate limit algorithm for high data rate system
US6980523B1 (en) * 2001-01-23 2005-12-27 Sprint Spectrum L.P. Method and system for facilitating end-to-end quality of service in a wireless packet data system
US6741862B2 (en) * 2001-02-07 2004-05-25 Airvana, Inc. Enhanced reverse-link rate control in wireless communication
DE60219977T2 (de) * 2001-02-12 2008-01-17 Lg Electronics Inc. Datenübertragungsratensteuerung auf der Aufwärtsstrecke für jede Mobilstation
US7006483B2 (en) * 2001-02-23 2006-02-28 Ipr Licensing, Inc. Qualifying available reverse link coding rates from access channel power setting
CN1500317B (zh) * 2001-03-26 2015-01-14 三星电子株式会社 在移动通信系统中控制反向传输的方法
US6588541B2 (en) * 2001-05-30 2003-07-08 Delphi Technologies, Inc. Soft-disable damping for electric power steering
US6731947B2 (en) * 2001-10-23 2004-05-04 Qualcomm Incorporated Method and apparatus for controlling data rate on a forward channel in a wireless communication system
US7072630B2 (en) * 2003-03-06 2006-07-04 Qualcomm, Inc. Adaptive data rate determination for a reverse link communication in a communication system
KR100712323B1 (ko) * 2003-10-02 2007-05-02 삼성전자주식회사 패킷 통신 시스템에서 빠른 전송율 변화를 지원하는 역방향 전송율 스케쥴링 방법 및 장치
US7426395B2 (en) * 2005-03-31 2008-09-16 Intel Corporation Techniques to select data rates for a wireless system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8254314B2 (en) 2005-04-28 2012-08-28 Samsung Electronics Co., Ltd Method of requesting allocation of uplink resources for extended real-time polling service in a wireless communication system
US9113493B2 (en) 2005-04-28 2015-08-18 Samsung Electronics Co., Ltd Method of requesting allocation of uplink resources for extended real-time polling service in a wireless communication system
US7733832B2 (en) 2005-10-12 2010-06-08 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving control information of user equipment for uplink data transmission

Also Published As

Publication number Publication date
CA2408161A1 (en) 2002-10-10
JP3943029B2 (ja) 2007-07-11
US20020181410A1 (en) 2002-12-05
CA2408161C (en) 2007-10-09
CN1461538A (zh) 2003-12-10
EP1248417A2 (en) 2002-10-09
AU2002249632B2 (en) 2004-09-23
CN1214549C (zh) 2005-08-10
EP1248417A3 (en) 2005-12-28
JP2004528769A (ja) 2004-09-16
EP1248417B1 (en) 2019-05-15
KR100800884B1 (ko) 2008-02-04
US8717968B2 (en) 2014-05-06
RU2002131154A (ru) 2004-03-20
WO2002080406A1 (en) 2002-10-10
KR20020076652A (ko) 2002-10-11
BR0204497A (pt) 2003-06-03
US7609635B2 (en) 2009-10-27
US20140241288A1 (en) 2014-08-28
US20100002673A1 (en) 2010-01-07
US9356728B2 (en) 2016-05-31

Similar Documents

Publication Publication Date Title
RU2237365C2 (ru) Устройство и способ управления обратной передачей в системе мобильной связи
AU2002241387B2 (en) Method of controlling reverse transmission in a mobile communication system
KR100968556B1 (ko) 무선 자원 활용 최적화 및 데이터 레이트 조정 방법,와이어리스 디지털 통신 시스템 및 무선 자원 활용 최적화시스템
US6374103B1 (en) Method and system for overhead message updates
KR100429540B1 (ko) 이동통신시스템의패킷데이터통신장치및방법
US7426385B2 (en) Communication device and method for communicating over a digital mobile network
EP1638361B1 (en) Method for routing downlink control information from multiple active base stations through a single serving base station
AU2002241387A1 (en) Method of controlling reverse transmission in a mobile communication system
UA55477C2 (ru) Канальная структура системы связи; передатчик и приемник для системы с такой структурой
US7532609B2 (en) Fairness method for supplemental channel resources
US7453860B2 (en) Scheduling method for supplemental channel resource
KR100713443B1 (ko) 이동통신 시스템에서 역방향 링크의 송신 제어 방법
US7072319B2 (en) Method and system for optimally allocating orthogonal codes