RU2231058C1 - Способ газохроматографического определения фторуглеводородов - Google Patents

Способ газохроматографического определения фторуглеводородов Download PDF

Info

Publication number
RU2231058C1
RU2231058C1 RU2002135273/28A RU2002135273A RU2231058C1 RU 2231058 C1 RU2231058 C1 RU 2231058C1 RU 2002135273/28 A RU2002135273/28 A RU 2002135273/28A RU 2002135273 A RU2002135273 A RU 2002135273A RU 2231058 C1 RU2231058 C1 RU 2231058C1
Authority
RU
Russia
Prior art keywords
heptafluoropropane
silochrome
perfluoroisobutylene
impurities
carrier
Prior art date
Application number
RU2002135273/28A
Other languages
English (en)
Other versions
RU2002135273A (ru
Inventor
В.Ю. Захаров (RU)
В.Ю. Захаров
А.С. Дедов (RU)
А.С. Дедов
О.Б. Абрамов (RU)
О.Б. Абрамов
Л.А. Любимова (RU)
Л.А. Любимова
Л.А. Хахулина (RU)
Л.А. Хахулина
Е.П. Верещагина (RU)
Е.П. Верещагина
Original Assignee
Открытое акционерное общество "Кирово-Чепецкий химический комбинат им. Б.П.Константинова"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Кирово-Чепецкий химический комбинат им. Б.П.Константинова" filed Critical Открытое акционерное общество "Кирово-Чепецкий химический комбинат им. Б.П.Константинова"
Priority to RU2002135273/28A priority Critical patent/RU2231058C1/ru
Application granted granted Critical
Publication of RU2002135273A publication Critical patent/RU2002135273A/ru
Publication of RU2231058C1 publication Critical patent/RU2231058C1/ru

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

Использование: изобретение относится к аналитической химии и может быть использовано в химической промышленности при аналитическом контроле производств фторуглеводородов, в частности для анализа газов синтеза 1,1,1,2,3,3,3-гептафторпропана (R227еа). Сущность изобретения: газохроматографическое разделение анализируемой смеси фторуглеводородов в потоке газа-носителя на колонке с сорбентом - смешенным в объемном соотношении 2:1 предельно гидроксилированным силохромом с диатомитовым носителем, пропитанным трибутилфосфатом, взятым в количестве 23-27% от массы носителя. Анализируют R227еа, содержащий примеси ПФИБ, 1,1,1,2,2,3,3-гептафторпропана и других фторуглеводородов. Для регистрации компонентов при анализе сырца R227еа используют детектор по теплопроводности, а при анализе готового продукта - детектор ионизации в пламени. Нижняя граница измерения ПФИБ 0,001 об.%. Техническим результатом изобретения является разработка достаточно селективного в широком диапазоне концентраций метода анализа R227еа на содержание примесей, в том числе наиболее токсичной из них - перфторизобутилена (ПФИБ). 3 з.п. ф-лы, 5 табл., 1 ил.

Description

Изобретение относится к аналитической химии и может быть использовано в химической промышленности при аналитическом контроле производств фторуглеводородов, например, для анализа газов синтеза 1,1,1,2,3,3,3-гептафторпропана (R227еа).
Продукт R227еа относится к озонобезопасным хладонам (фреонам) и находит широкое применение, в частности, для пожаротушения. В связи с этим предъявляются определенные требования к содержанию токсичных и озоноопасных примесей, которые могут присутствовать в этом продукте и зависят от условий синтеза, поэтому необходимо их полное газохроматографическое разделение по индивидуальным компонентам, в том числе полное отделение примесей от основного компонента. Наиболее токсичной примесью является перфторизобутилен, для которого ПДК в воздухе рабочей зоны составляет 0,1 мг/м3.
Известны способы анализа смеси фреонов методом газоадсорбционной хроматографии на колонке длиной 2 м, диаметром 6 мм, заполненной силикагелем марки МСК, при температуре колонки 40°С и скорости азота 2 л/час и методом газожидкостной хроматографии на колонке длиной 6 м, заполненной неподвижной фазой, которой служит трибутилфосфат, нанесенный на диатомит в количестве 16%, при температуре колонки 80°С и скорости азота 2 л/час [Чичугова Т.Н., Рабовский Г.В., Залесский В.Н. Хроматографический анализ фреонов.//Газовая хроматография. Сборник статей, вып.1. М., НИИТЭХИМ, 1964, с.132-134]. Эти способы применены для разделения фреонов метанового ряда (фторхлорпроизводные метана) и не могут быть использованы для анализа фторпроизводных этанового и пропанового рядов из-за низкой селективности и эффективности, а также низкой чувствительности при указанных условиях разделения. Кроме того, указанные способы не позволяют определить содержание перфторизобутилена в R227еа.
Наиболее близким к предлагаемому по совокупности существенных признаков является способ газохроматографического определения перфторизобутилена в присутствии других фторсодержащих галогенуглеводородов [патент РФ №2189037, МПК G 01 N 30/48, 30/02, опубл. 10.09.2002]. Способ осуществляют путем разделения анализируемой смеси в потоке газа-носителя на хроматографической колонке, заполненной силохромом, поверхность которого содержит 2-3 мкмоль/м2 ОН-групп, модифицированным дибутилфталатом, взятым в количестве 2-3% от массы сорбента, и регистрации перфторизобутилена с помощью детектора постоянной скорости рекомбинации или пламенно-ионизационного детектора.
Недостатком этого способа является низкая селективность и узкий диапазон определения перфторизобутилена и 1,1,1,2,2,3,3-гептафторпро-пана (R227ca) в присутствии основного компонента R227еа и сопутствующих примесей, получаемых в процессе его синтеза. Времена удерживания гексафторпропилена и неидентифицированной примеси, перфторизобутилена, R227са и R227еа, а также 1,1,1,3,3,3-гексафторпропана и неидентифицированной примеси близки, что не позволяет получить информацию о качественном и количественном составе анализируемого газа, содержащего эти компоненты в широком диапазоне концентраций.
Технической задачей настоящего изобретения является разработка обладающего достаточной селективностью в широком диапазоне концентраций метода анализа R227еа с расширением числа определяемых примесей, в том числе позволяющего проводить индивидуальный контроль за содержанием перфторизобутилена.
Поставленная техническая задача решается способом газохроматографического анализа, включающего разделение анализируемой смеси фторуглеводородов в потоке газа-носителя на хроматографической колонке, заполненной сорбентом, в состав которого входит силохром, поверхность которого содержит ОН-группы, и бутилсодержащий сложный эфир, и регистрацию компонентов, в котором согласно изобретению в качестве силохрома используют предельно гидроксилированный силохром, в качестве бутилсодержащего сложного эфира используют трибутилфосфат и в качестве сорбента используют смесь указанного силохрома с диатомитовым носителем, на который нанесен трибутилфосфат, причем для приготовления сорбента смешивают в объемном отношении 2:1 указанный силохром и диатомитовый носитель, содержащий 23-27 мас.% трибутилфосфата.
В качестве анализируемой смеси могут использовать 1,1,1,2,3,3,3-гептафторпропан, содержащий примеси перфторизобутилена, 1,1,1,2,2,3,3-гептафторпропана и других фторуглеводородов.
Для регистрации компонентов могут использовать детектор по теплопроводности, особенно при анализе сырца 1,1,1,2,3,3,3-гептафторпропана.
Для регистрации компонентов могут использовать детектор ионизации в пламени, особенно при анализе готового продукта 1,1,1,2,3,3,3-гептафторпропана.
Оптимальные условия хроматографического анализа приведены в таблице 1.
Figure 00000002
Для получения предельно гидроксилированного силохрома исходный силохром по ТУ 6-09-17-48-74 фракции 0,5-0,35 мм помещают в круглодонную термостойкую стеклянную колбу, заливают дистиллированной водой и выдерживают на кипящей водяной бане в течение 45 часов. Охлажденный до комнатной температуры силохром высушивают при температуре 120°С в сушильном шкафу до постоянного веса.
Навеску трибутилфосфата (23-27% от массы носителя) растворяют в хлороформе и заливают полученным раствором диатомитовый носитель фракции 0,5-0,25 мм. Производят испарение растворителя в вытяжном шкафу без нагревания при периодическом перемешивании до получения сухой сыпучей массы, затем сушат до постоянного веса при 100°С.
Для приготовления сорбента смешивают 50 см3 предельно гидроксилированного силохрома и 25 см3 диатомитового носителя, содержащего 23-27 мас.% трибутилфосфата. Приготовленным сорбентом заполняют хроматографическую колонку длиной 6 м, внутренним диаметром 3 мм и кондиционируют в потоке газа-носителя в течение 8-10 часов при температуре 80°С.
Ниже приведены примеры по аналогу, прототипу и примеры, поясняющие техническое решение задачи. Результаты проверки разделительной способности этих сорбентов приведены в таблицах 2 и 3. Для этого использовали пробу R227ea, содержащего в своем составе перфторизобутилен, R227сa, 1,1,1,3,3,3-гексафторпропан, перфторгексан и другие фторорганические примеси. Регистрацию компонентов проводили с использованием детектора по теплопроводности. Для уточнения времен удерживания индивидуальных компонентов использовали чистые вещества.
Пример 1 (контрольный, по аналогу). Пробу анализируют при условиях аналога методом газожидкостной хроматографии с использованием трибутилфосфата, нанесенного на диатомит в количестве 16%. Регистрацию компонентов проводят с помощью детектора по теплопроводности.
Пример 2 (контрольный, по прототипу). Газохроматографическое разделение компонентов пробы проводят на колонке с силохромом, содержащим 2-3 мкмоль/м2 ОН-групп, модифицированным дибутилфталатом в количестве 2-3% от массы сорбента, при условиях, приведенных в таблице 1.
Примеры 3-5 (контрольные). С целью установления оптимальной степени гидроксилирования поверхности силохрома для достижения необходимой селективности анализируют пробу R227ea, содержащего перфторизобутилен, R227сa и другие фторорганические примеси. В качестве сорбента используют силохром предельно гидроксилированный (пример 3), предельно дегидроксилированный (пример 4) и частично гидроксилированный (пример 5). Регистрация компонентов проводится с использованием детектора по теплопроводности. Данные результатов анализов по примерам 3-5, представленные в таблице 2, показывают, что только предельно гидроксилированный силохром позволяет в максимальной степени решить поставленную техническую задачу и получить наилучшее разделение компонентов пробы.
Figure 00000003
Но и в этом случае не обеспечивается полное разделение R227сa, перфторизобутилена и R227ea. Отмеченный недостаток устраняется добавкой к предельно гидроксилированному силохрому диатомитового носителя, содержащего 23-27 мас.% трибутилфосфата.
С целью определения оптимального соотношения предельно гидроксилированный силохром:диатомитовый носитель, содержащий 23-27 мас.% трибутилфосфата, в примерах 6-9 анализируют пробу R227ea, содержащего в своем составе перфторизобутилен, R227сa, перфторгексан и другие фторорганические примеси. Регистрация компонентов проводится с использованием детектора по теплопроводности. Условия анализа приведены в таблице 1, но в качестве сорбента используют смесь предельно гидроксилированного силохрома с диатомитовым носителем, содержащим 23-27 мас.% трибутилфосфата, взятых в разных объемных соотношениях.
В примере 8 указанное соотношение составляет 2:1, что соответствует настоящему изобретению. В примерах 6, 7, 9 (контрольные) соотношение составляет 0:1; 1,5:1 и 2,5:1 соответственно. Результаты анализов приведены в таблице 3. Из таблицы 3 видно, что только при использовании сорбента, состоящего из силохрома предельно гидроксилированного и диатомитового носителя, содержащего 23-27 мас.% трибутилфосфата, взятыми в объемном соотношении 2:1, можно достичь полного разделения всех приведенных в таблице 3 компонентов.
Figure 00000004
Если брать предельно гидроксилированного силохрома больше оптимального соотношения, деления перфторизобутилена, R227ca и R227ea достичь не удается, если брать, наоборот, предельно гидроксилированного силохрома меньше оптимального, получается неудовлетворительное деление двуокиси углерода и октафторпропана, гексафторпропилена и неидентифицированного компонента, перфторизобутилена и пентафторпропилена, а также перфторгексана и неидентифицированного компонента.
Примеры 10, 11, 12. С целью определения оптимального содержания неподвижной фазы на диатомитовом носителе анализируют пробу R227ea, содержащего в своем составе перфторизобутилен, R227ca, перфторгексан и другие фторорганические примеси. Регистрация компонентов смеси осуществляется с помощью детектора по теплопроводности. Условия анализа - в соответствии с таблицей 1, но в качестве второй (добавочной к предельно гидроксилированному силохрому) составляющей сорбента использовали диатомитовый носитель с различным содержанием трибутилфосфата. При этом в примере 11 (контрольный) использовали диатомитовый носитель, содержащий 20 мас.% трибутилфосфата, в примере 12 (контрольный) - диатомитовый носитель, содержащий 30 мас.% трибутилфосфата. Пример 10 - по настоящему изобретению. Результаты анализа, приведенные в таблице 4, показывают, что оптимальное содержание трибутилфосфата на диатомитовом носителе 23-27 мас.%. Только в этом случае достигается полное разделение “легких примесей” и возможно определение содержания перфторизобутилена и R227ca в основном компоненте - R227ea.
Figure 00000005
Пример 13. Анализ проводят аналогично примеру 10 (по изобретению), но в качестве анализируемой смеси используют пробу готового продукта R227ea, содержащего в своем составе перфторизобутилен, R227сa и другие фторорганические примеси с объемной долей от 0,001 до 0,2%. При этом для регистрации перфторизобутилена и других фторорганических примесей используют детектор ионизации в пламени.
Хроматограмма представлена на чертеже.
На хроматограмме обозначено: 1 - октафторпропан; 2 - гексафторпропилен; 3 - неидентифицированный; 4 - перфторбутен; 5 - пентафторпропилен; 6 - перфторизобутилен; 7 - 1,1,1,2,2,3,3-гептафторпропан; 8 - 1,1,1,2,3,3,3-гептафторпропан; 9 - перфторгексан; 10 - неидентифицированный; 11 - 1,1,1,3,3,3-гексафторпропан.
Figure 00000006
Примеры 14-17. Проводят анализ двух проб: сырца и готового продукта R227еа по прототипу и предлагаемому способу, при этом в примерах 14 (контрольный по прототипу) и 15 (по изобретению) анализируют сырец с детектором по теплопроводности, в примерах 16 (контрольный по прототипу) и 17 (по изобретению) - готовый продукт с детектором ионизации в пламени. Результаты анализа приведены в таблице 5.
Таким образом, разработан способ полного анализа смеси фторсодержащих углеводородов на хроматографической колонке, содержащей предельно гидроксилированный силохром и диатомитовый носитель, содержащий 23-27 мас.% трибутилфосфата, что не было возможным по прототипу. Предлагаемый способ характеризуется более высокой эффективностью и селективностью по сравнению с прототипом и позволяет определять все присутствующие в пробе компоненты, в том числе и высокотоксичный перфторизобутилен с нижней границей измерения 1·10-3 об.%.

Claims (4)

1. Способ газохроматографического определения фторуглеводородов, включающий разделение анализируемой смеси в потоке газа-носителя на хроматографической колонке, заполненной сорбентом, в состав которого входит силохром, поверхность которого содержит ОН-группы, и бутилсодержащий сложный эфир и регистрацию компонентов, отличающийся тем, что в качестве силохрома используют предельно гидроксилированный силохром, в качестве бутилсодержащего сложного эфира используют трибутилфосфат, и в качестве сорбента используют смесь указанного силохрома с диатомитовым носителем, на который нанесен трибутилфосфат, причем для приготовления сорбента смешивают в объемном отношении 2:1 указанный силохром и диатомитовый носитель, содержащий 23-27 мас.% трибутилфосфата.
2. Способ по п.1, отличающийся тем, что в качестве анализируемой смеси используют 1,1,1,2,3,3,3-гептафторпропан, содержащий примеси перфторизобутилена и 1,1,1,2,2,3,3-гептафторпропана.
3. Способ по п.2, отличающийся тем, что для регистрации компонентов при анализе сырца 1,1,1,2,3,3,3-гептафторпропана используют детектор по теплопроводности.
4. Способ по п.2, отличающийся тем, что для регистрации компонентов при анализе готового продукта 1,1,1,2,3,3,3-гептафторпропана используют детектор ионизации в пламени.
RU2002135273/28A 2002-12-25 2002-12-25 Способ газохроматографического определения фторуглеводородов RU2231058C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2002135273/28A RU2231058C1 (ru) 2002-12-25 2002-12-25 Способ газохроматографического определения фторуглеводородов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2002135273/28A RU2231058C1 (ru) 2002-12-25 2002-12-25 Способ газохроматографического определения фторуглеводородов

Publications (2)

Publication Number Publication Date
RU2002135273A RU2002135273A (ru) 2004-06-20
RU2231058C1 true RU2231058C1 (ru) 2004-06-20

Family

ID=32846616

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2002135273/28A RU2231058C1 (ru) 2002-12-25 2002-12-25 Способ газохроматографического определения фторуглеводородов

Country Status (1)

Country Link
RU (1) RU2231058C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106556653A (zh) * 2016-08-30 2017-04-05 北京碧水源膜科技有限公司 一种IsoparG中磷酸三丁酯含量测定方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106556653A (zh) * 2016-08-30 2017-04-05 北京碧水源膜科技有限公司 一种IsoparG中磷酸三丁酯含量测定方法

Similar Documents

Publication Publication Date Title
Demeestere et al. Sample preparation for the analysis of volatile organic compounds in air and water matrices
Mochalski et al. Blood and breath levels of selected volatile organic compounds in healthy volunteers
Schmidt et al. Solid phase microextraction (SPME) method development in analysis of volatile organic compounds (VOCS) as potential biomarkers of cancer
Wille et al. Volatile substance abuse—post-mortem diagnosis
Kolomnikov et al. Early stages in the history of gas chromatography
Johansson Determination of organic compounds in indoor air with potential reference to air quality
Jones et al. Interfering substances identified in the breath of drinking drivers with Intoxilyzer 5000S
RU2231058C1 (ru) Способ газохроматографического определения фторуглеводородов
KR20040076387A (ko) 개선된 고상 미세 추출 파이버, 그 제조방법 및 이를이용한 수질시료 중의 알킬페놀류와 비스페놀-a의 분석방법
Rodinkov et al. Comparison of the efficiencies of carbon sorbents for the preconcentration of highly volatile organic substances from wet gas atmospheres for the subsequent gas-chromatographic determination
Patil et al. Determination of benzene, aniline and nitrobenzene in workplace air: a comparison of active and passive sampling
Gonzalez et al. Interfacing of an atomic absorption spectrophotometer with a gas-liquid chromatograph for the determination oftrace quantities of alkyl mercury compounds in fish tissue
Ojanperä et al. Identification limits for volatile organic compounds in the blood by purge-and-trap GC-FTIR
Knarr et al. Determination of methanethiol at parts-per-million air concentrations by gas chromatography
JP2014211433A (ja) チオール化合物及びスルフィド化合物の定量方法
Ueta et al. Rapid temperature-programmed separation of carbon monoxide and carbon dioxide on a packed capillary column in gas chromatography: application to the evaluation of photocatalytic activity of TiO2
RU2189037C1 (ru) Способ газохроматографического определения перфторизобутилена
Cao et al. Detection methods for the analysis of biogenic non-methane hydrocarbons in air
Schomburg et al. Coupled gas chromatographic methods for separation, identification, and quantitative analysis of complex mixtures: MDGC, GC-MS, GC-IR
RU2698506C1 (ru) Способ количественного газохроматографического анализа паров пропионовой кислоты в зараженном воздухе
Evgen'ev et al. Sorption–Chromatographic Determination of Aniline, 4-Chloroaniline, and 2, 5-Dichloroaniline in Air
RU2226688C1 (ru) Способ газохроматографического определения закиси азота в газах
LIPSKI Liquid chromatographic determination of dimethyl formamide, methylene bisphenyl isocyanate and methylene bisphenyl amine in air samples
Hrivnák et al. Analysis of unmetabolized VOCs in urine by headspace solid-phase microcolumn extraction
RU2697461C1 (ru) Способ количественного газохроматографического анализа паров трет-бутилбензола в зараженном воздухе

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Effective date: 20050315

PC4A Invention patent assignment

Effective date: 20060327

QZ4A Changes in the licence of a patent

Effective date: 20050315

PD4A Correction of name of patent owner
MM4A The patent is invalid due to non-payment of fees

Effective date: 20181226