RU2223511C1 - Бесконтактный способ определения потенциалов заряженной поверхности объекта и устройство для его осуществления - Google Patents

Бесконтактный способ определения потенциалов заряженной поверхности объекта и устройство для его осуществления Download PDF

Info

Publication number
RU2223511C1
RU2223511C1 RU2002119238/09A RU2002119238A RU2223511C1 RU 2223511 C1 RU2223511 C1 RU 2223511C1 RU 2002119238/09 A RU2002119238/09 A RU 2002119238/09A RU 2002119238 A RU2002119238 A RU 2002119238A RU 2223511 C1 RU2223511 C1 RU 2223511C1
Authority
RU
Russia
Prior art keywords
electret
potential
charged
measuring
measuring element
Prior art date
Application number
RU2002119238/09A
Other languages
English (en)
Other versions
RU2002119238A (ru
Inventor
Э.А. Гостищев
Original Assignee
Научно-исследовательский институт интроскопии при Томском политехническом университете
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Научно-исследовательский институт интроскопии при Томском политехническом университете filed Critical Научно-исследовательский институт интроскопии при Томском политехническом университете
Priority to RU2002119238/09A priority Critical patent/RU2223511C1/ru
Publication of RU2002119238A publication Critical patent/RU2002119238A/ru
Application granted granted Critical
Publication of RU2223511C1 publication Critical patent/RU2223511C1/ru

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

Использование: для диагностики электризации конструкционных материалов, а также в медицине для оценки функционального состояния человека, его органов и систем путем измерения электрических потенциалов в биологически активных точках (БАТ) кожного покрова. Технический результат заключается в расширении функциональных возможностей, повышении чувствительности и разрешающей способности. Способ заключается в том, что предварительно измеряют потенциал V' на измерительном элементе, выполненном в виде токопроводного электрода и установленного на нем пленочного электрета с противоположно заряженной свободной поверхностью относительно исследуемой поверхности, размещенном на расстоянии l от поверхности металлической пластины с нулевым потенциалом, затем измеряют потенциал V'' на измерительном элементе, размещенном на том же расстоянии l от заряженной поверхности объекта, а величину потенциала Vп заряженной поверхности, например кожного покрова, определяют по формуле VП= (V''-V')СвхL(ξl/L+1), где Свх - входная емкость регистрирующего устройства; СL - емкость электрета; ξ - диэлектрическая проницаемость материала электрета; L - толщина электрета. 2 с. и 2 з.п. ф-лы, 2 ил.

Description

Изобретение относится к измерительной технике и может быть использовано для диагностики электризации конструкционных материалов, а также в медицине для оценки функционального состояния человека, его органов и систем путем измерения электрических потенциалов в биологически активных точках (БАТ) кожного покрова.
Известен способ измерения потенциала поверхности заряженного диэлектрика [1] , заключающийся в том, что исследуемый образец заряженного диэлектрика размещают внутри динамического конденсатора на его неподвижной обкладке, подвижная заземленная обкладка которого совершает гармонические механические колебания, и измеряют напряжение, наведенное полем диэлектрика на неподвижной обкладке конденсатора. Способ не может использоваться для непосредственного измерения потенциалов заряженной поверхности объекта.
Известен способ измерения, реализуемый устройством для исследования биополя объекта [2], заключающийся в измерении заряда, индуцируемого на измерительном элементе, выполненном в виде токопроводной рамки, на которую накладывается ладонь обследуемого. Вследствие больших размеров измерительного элемента функциональные возможности метода ограничены областью измерений биополей обширных биологически активных зон кожи.
Известен датчик для регистрации низкочастотного электрического поля биообъекта [3] . Измерение биополя обследуемого осуществляется путем наложения датчика на поверхность кожного покрова и регистрации протекающего в цепи измерительного элемента тока с частотой генератора возбуждения и амплитудой, пропорциональной напряженности измеряемого поля. Недостаток - восприимчивость к воздействиям внешних статических полей и низкое разрешение.
Известен датчик для бесконтактного измерения плотности поверхностного заряда [4], содержащий электростатический экран, измерительный электрод, на поверхность торца которого нанесена фторопластовая пленка с целью повышения чувствительности за счет уменьшения расстояния между торцом электрода и исследуемой поверхностью. Недостаток - погрешность измерений, обусловленная возможной трибоэлектризацией фторопластовой пленки при перемещении зонда вдоль измеряемой поверхности.
Наиболее близким по существу к предлагаемому способу определения потенциалов заряженной поверхности объекта является способ определения потенциалов в биологически активных точках (БАТ) кожи [5], заключающийся в наложении кожного покрова на неподвижно установленный экран с измерительным отверстием, с размерами, не превышающими средних геометрических размеров БАТ, и измерении потенциала, индуцированного однородным электростатическим полем кожи на измерительном элементе, установленном соосно под измерительным отверстием. Способ используется для оценки функционального состояния человека по методу Р.Фоля путем измерения потенциалов БАТ кожи пальцев рук.
Наиболее близким к предлагаемому устройству для реализации бесконтактного способа определения потенциалов заряженной поверхности является устройство для измерения электрического заряда биологического объекта [6], содержащее заземленный экран с измерительным отверстием и, коаксиально размещенный в его полости с возможностью продольного перемещения, дискообразный измерительный элемент, подключенный к регистрирующему устройству. Измерение электрического заряда биообъекта осуществляется методом электростатической индукции за счет изменения зазора между поверхностью и измерительным элементом. Устройство обладает невысокой чувствительностью и низким разрешением, обусловленным сравнительно большими размерами измерительного элемента.
Цель изобретения - расширение функциональных возможностей, повышение чувствительности и разрешающей способности.
Цель достигается тем, что способу определения потенциалов, заключающемуся в измерении потенциалов, индуцированных на измерительном элементе электростатическим полем поверхности объекта, предварительно измеряют потенциал V' на измерительном элементе, выполненном в виде токопроводного электрода и установленного на нем пленочного электрета с противоположно заряженной свободной поверхностью относительно исследуемой поверхности, размещенном на расстоянии l от поверхности металлической пластины с нулевым потенциалом, затем измеряют потенциал V'' на измерительном элементе, размещенном на том же расстоянии l от заряженной поверхности объекта, а величину потенциала Vп заряженной поверхности определяют по формуле:
Vп=(V''-V')Cвх/CL(ξl/L+1),
где Свх - входная емкость регистрирующего устройства; CL - емкость электрета; ξ - диэлектрическая проницаемость материала электрета; L - толщина электрета.
Для достижения поставленной цели в устройстве для осуществления бесконтактного способа определения потенциалов заряженной поверхности объекта, содержащем экран с измерительным отверстием и, коаксиально размещенный в его полости, дискообразный измерительный элемент, подключенный к регистрирующему устройству, измерительный элемент выполнен в виде токопроводного электрода с пленочным электретом на его поверхности, установленным противоположно заряженной свободной поверхностью к поверхности исследуемого объекта. Регистрирующее устройство выполнено в виде электрометрического усилителя, индикатора и автономного блока питания, причем токопроводный электрод подключен ко входу электрометрического усилителя, а выход электрометрического усилителя соединен с экраном, подключенным через нормально замкнутый ключ ко входу электрометрического усилителя.
Устройство дополнительно снабжено комплектом насадок с отверстиями различного диаметра для установки их на измерительное отверстие экрана.
На фиг.1 представлена схема устройства, реализующего способ; на фиг.2 - схема измерения потенциалов заряженной поверхности.
Устройство содержит (фиг. 1) измерительный узел 1, регистрирующее устройство - электрометрический усилитель 2, с индикатором 3 и автономным блоком питания 4, размещенные в металлическом корпусе 5. Измерительный узел 1 содержит измерительный элемент 6, выполненный в виде токопроводного дискообразного электрода 7 с пленочным электретом 8, установленным на его поверхности, коаксиально размещенного на изоляторе 9 в полости экрана 10. Экран 10, с насадкой 11, с измерительным отверстием 12, установлен на изоляторе 13 в корпусе 5, соединен с выходом усилителя 2 и через нормально замкнутый ключ 14 подключен ко входу усилителя 2 с входной емкостью Свх, 15 - поверхность либо металлической пластины с нулевым потенциалом, либо заряженной поверхности исследуемого объекта (фиг.2).
Устройство работает следующим образом. Предварительно на экран 10, установленный на изоляторе 13 в корпусе 5 и, с размешенным в его полости на изоляторе 9 измерительным элементом 6, выполненным в виде электрода 7 с электретом 8, устанавливают насадку 11 с измерительным отверстием 12. Затем размыкают ключ 14 и перемещают устройство с автономным блоком питания 4 до момента касания насадки 11 измерительного узла 1 с поверхностью 15, в одном случае, металлической пластины с нулевым потенциалом, в другом - исследуемого объекта. При этом на входной емкости Свх электрометрического усилителя 2 выделится разность потенциалов, пропорциональная заряду, индуцированному на токопроводном электроде 7, в одном случае, полем электрета 8, в другом - результирующим полем электрета 8 и заряженной поверхности 15. Усиленное напряжение с выхода усилителя 2 поступает на индикатор 3 и параллельно по цепи обратной связи на экран 10 в противофазе напряжению на входе усилителя 2.
Сущность способа (фиг.2) заключается в измерении зарядов, индуцированных электростатическими полями пленочного электрета и заряженной поверхности исследуемого объекта (кожного покрова) на обкладках конденсатора С, подключенных к электрометрическому усилителю. Одной из обкладок конденсатора С является токопроводный электрод, с установленным на его поверхности пленочным электретом, другой служит элемент поверхности металлической пластины, либо элемент заряженной поверхности объекта с площадью S, равной площади электропроводного электрода.
Предположим, что обкладки конденсатора С плотно прилегают к пленочному электрету. Обкладкой, прилегающей к отрицательно заряженной поверхности электрета, служит металлическая пластина с нулевым потенциалом. Тогда на обкладках конденсатора С индуцируются противоположные по знаку и равные по величине заряды σэфS, σэф - эффективная поверхностная плотность заряда электрета. При этом разность потенциалов Vc на конденсаторе С будет равна электретной разности потенциалов Vэ (потенциал на поверхности электрета),
Vc = Vэ = (σэф/ξε0)L (1)
а на входной емкости Свх электрометрического усилителя, выделится разность потенциалов V′ = σэфS|Cвх (потенциал на токопроводном электроде, индуцированный полем электрета).
Подставляя σэф = V′Cвх/S в (1), получим
Vc=V'Cвх/CL.
С учетом того, что емкость электрета CL=С,
Vc=V'Cвх/C (2).
Если металлическую пластину заменить элементом положительно заряженной поверхности, в частности кожного покрова с площадью S, то разность потенциалов Vc на конденсаторе С изменится на величину потенциала Vп заряженной поверхности, а на входной емкости Свх электрометрического усилителя выделится разность потенциалов V'' (потенциал на токопроводном электроде, индуцированный суммарным полем электрета и заряженной поверхности объекта).
С учетом этого можно записать
Vc+Vп=V''Cвх/C (3).
Решая совместно (2) и (3) получим
Vп=(V''-V')Cвх/C (4).
Реализация рассмотренной схемы измерения потенциалов затруднена тем, что при наложении и последующем снятии заряженной поверхности объекта или металлической пластины с поверхности электрета, возникают микроразряды или дополнительные заряды на поверхности электрета, приводящие к изменению его электрических параметров.
В геометрии измерений, исключающей контактные явления, когда одна из обкладок конденсатора С (токопроводный электрод) прилегает к электрету, а другая размещена на расстоянии l от его свободной отрицательно заряженной поверхности, емкость конденсатора С будет равна эквивалентной емкости последовательно соединенных конденсаторов CL и Сl воздушного промежутка l, и тогда выражение (4) принимает вид:
Figure 00000002

Подставляя
Figure 00000003

в (5), получим формулу для определения потенциалов положительно заряженной поверхности объекта (кожного покрова)
Figure 00000004

Полученное выражение 6 справедливо и для определения потенциалов отрицательно заряженной поверхности, для этого на токопроводный электрод устанавливают пленочный электрет с полярностью обратной той, что представлена на фиг. 2. Повышение чувствительности обеспечивается тем, что предложено принципиально новое схемотехническое решение измерительного узла, позволяющее:
- во-первых, исключить из измерительной системы емкостной делитель напряжения, характерный для известных емкостных схем измерения, что в свою очередь позволяет исключить влияние частичной емкости измерительного отверстия, шунтирующей измеряемое поле;
- во-вторых, уменьшить входную емкость Свх, за счет введения обратной отрицательной связи, путем соединения экрана с выходом электрометрического усилителя.
Кроме того, повышение чувствительности обеспечивается за счет суммирования потенциалов, индуцированных на измерительном электроде полями электрета и заряженной поверхностью.
В целом, по экспериментальным данным, чувствительность предложенного устройства многократно превышает чувствительность этого же устройства, но без использования электрета в измерительном узле.
Экстремально высокая чувствительность, в свою очередь, позволяет получить предельно высокое продольное разрешение, порядка 1 мм.
Функциональные возможности расширились за счет выполнения устройства, в виде малогабаритной конструкции с автономным блоком питания, позволяющей определить электрический потенциал в любой точке поверхности исследуемого объекта.
Способ осуществляется следующим образом (фиг.2). Предварительно измеряют потенциал V', индуцируемый полем пленочного электрета 8. Для этого размыкают ключ 14 и перемещают устройство (фиг.1) до момента касания насадки 11, с измерительным отверстием 12, измерительного узла 1 с поверхностью металлической пластины. Регистрируют показание индикатора 3 в вольтах, прямо пропорциональное потенциалу V, индуцированному полем пленочного электрета 8 на токопроводном электроде 7. Замыкают ключ 14.
Затем, в той же последовательности проведенных операций, устанавливают устройство на исследуемый участок заряженной поверхности 15 объекта (кожный покров) и регистрируют показание индикатора 3 в вольтах, прямо пропорциональное потенциалу V'', индуцированному на электропроводном электроде 7 результирующим полем электрета 8 и заряженной поверхностью 15. Подставляя измеренные значения величин V' и V'' в формулу (6), получают искомую величину потенциала Vп поверхности объекта.
Поскольку V'= const, то последующие измерения ограничиваются измерением величины V'', а при определении потенциала поверхности Vп используют однажды найденное значение величины V'.
Для определения местоположения биологически активной точки БАТ кожи устройство, в последовательности описанной выше, устанавливают на кожный покров и перемещая по его поверхности, добиваются максимальных показаний индикатора, характерных для БАТ.
Оптимальные условия реализации предложенного способа, имеют место, когда величина потенциала V', индуцированного полем электрета, совпадает по знаку и равна средней величине потенциалов (V''-V'), индуцированных полем заряженной поверхности объекта. Это достигается выбором электрета с соответствующими параметрами и расстоянием l.
Необходимо отметить, что установка пленочного электрета на измерительные электроды устройств с динамической емкостью, в частности вибрационного типа, также приводит к многократному повышению чувствительности этих устройств. Следовательно, представляется возможным повышение чувствительности существующих устройств для измерений электрических полей за счет применения электретов, в качестве активных элементов, в измерительных узлах этих устройств.
Источники информации
1. A.с. СССР 1651245, кл. G 01 R 29/12, 1991 г.
2. A.с. СССР 1627128, кл. А 61 B 5/05, 1991 г.
3. A.с. СССР 1530172, кл. А 61 В 5/05, 1989 г.
4. А.С. СССР 1497591, кл. G 01 R 29/12, 1989 г.
5. Заявка 2001114379 от 4.05.2001 г. на выдачу патента РФ на изобретение.
6. A.с. СССР 1378814, кл. А 61 В 5/05, 1986 г.

Claims (4)

1. Бесконтактный способ определения потенциалов заряженной поверхности объекта, заключающийся в измерении потенциалов, индуцированных на измерительном элементе электростатическим полем поверхности объекта, отличающийся тем, что предварительно измеряют потенциал V’ на измерительном элементе, выполненном в виде токопроводного электрода и установленного на нем пленочного электрета с противоположно заряженной свободной поверхностью относительно исследуемой поверхности, размещенном на расстоянии l от поверхности металлической пластины с нулевым потенциалом, затем измеряют потенциал V′′ на измерительном элементе, размещенном на том же расстоянии l от заряженной поверхности объекта, а величину потенциала Vп заряженной поверхности определяют по формуле
VП=(V′′-V′)СвхL(ξl/L+1),
где Свх - входная емкость регистрирующего устройства;
СL - емкость электрета;
ξ - диэлектрическая проницаемость материала электрета;
L - толщина электрета.
2. Устройство для осуществления бесконтактного способа определения потенциалов заряженной поверхности объекта, содержащее экран с измерительным отверстием и коаксиально размещенный в его полости дискообразный измерительный элемент, подключенный к регистрирующему устройству, отличающееся тем, что измерительный элемент выполнен в виде токопроводного электрода с пленочным электретом на его поверхности, установленным противоположно заряженной свободной поверхностью к поверхности исследуемого объекта.
3. Устройство по п.2, отличающееся тем, что регистрирующее устройство выполнено в виде электрометрического усилителя, индикатора и автономного блока питания, причем токопроводный электрод подключен ко входу электрометрического усилителя, а выход электрометрического усилителя соединен с экраном, подключенным через нормально замкнутый ключ ко входу электрометрического усилителя.
4. Устройство по пп.2 и 3, отличающееся тем, что дополнительно снабжено комплектом насадок с отверстиями различного диаметра для установки их на измерительное отверстие экрана.
RU2002119238/09A 2002-07-16 2002-07-16 Бесконтактный способ определения потенциалов заряженной поверхности объекта и устройство для его осуществления RU2223511C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2002119238/09A RU2223511C1 (ru) 2002-07-16 2002-07-16 Бесконтактный способ определения потенциалов заряженной поверхности объекта и устройство для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2002119238/09A RU2223511C1 (ru) 2002-07-16 2002-07-16 Бесконтактный способ определения потенциалов заряженной поверхности объекта и устройство для его осуществления

Publications (2)

Publication Number Publication Date
RU2002119238A RU2002119238A (ru) 2004-01-20
RU2223511C1 true RU2223511C1 (ru) 2004-02-10

Family

ID=32173025

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2002119238/09A RU2223511C1 (ru) 2002-07-16 2002-07-16 Бесконтактный способ определения потенциалов заряженной поверхности объекта и устройство для его осуществления

Country Status (1)

Country Link
RU (1) RU2223511C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2559574C1 (ru) * 2014-02-26 2015-08-10 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Измеритель электростатического потенциала и заряда тела человека
RU178350U1 (ru) * 2017-06-20 2018-03-30 Акционерное Общество "Центр Прикладной Физики Мгту Им. Н.Э. Баумана" Устройство для определения координаты и электрического потенциала

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2559574C1 (ru) * 2014-02-26 2015-08-10 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Измеритель электростатического потенциала и заряда тела человека
RU178350U1 (ru) * 2017-06-20 2018-03-30 Акционерное Общество "Центр Прикладной Физики Мгту Им. Н.Э. Баумана" Устройство для определения координаты и электрического потенциала

Also Published As

Publication number Publication date
RU2002119238A (ru) 2004-01-20

Similar Documents

Publication Publication Date Title
WO2010010683A1 (ja) 液位センサ
US3928796A (en) Capacitive displacement transducer
US9846024B1 (en) Solid-state electric-field sensor
JPH0792486B2 (ja) 静電量モニタ−装置
Chiang et al. A semicylindrical capacitive sensor with interface circuit used for flow rate measurement
Kumada et al. Pockels surface potential probe and surface charge density measurement
RU2223511C1 (ru) Бесконтактный способ определения потенциалов заряженной поверхности объекта и устройство для его осуществления
Sotirov et al. Design and development of an electrostatic voltmeter based on surface potential sensor
US20080079435A1 (en) Electrostatic Voltmeter With Spacing-Independent Speed of Response
Johnson et al. An acoustically driven Kelvin probe for work‐function measurements in gas ambient
US7202675B2 (en) Device and method for measuring toner current
Xie et al. A novel sedimentation analyser
Pandey et al. Verification of non-contacting surface electric potential measurement model using contacting electrostatic voltmeter
JP3032152B2 (ja) 精密ずり応力測定装置
Miles et al. Report on non-contact DC electric field sensors
Noras Charge detection methods for dielectrics–Overview
Horenstein Measuring surface charge with a noncontacting voltmeter
Liess et al. The scanning Kelvin microscope with voltage modulation: a new principle to image discrete surface potentials
Lenzhofer et al. Development of a Compact Wireless Sensor for Electric Field Measurements
Subbicini et al. Drift Rejection Differential Frontend for Single Plate Capacitive Sensors
RU1783453C (ru) Способ определени напр женности электрического пол в плоскости объема твердого диэлектрика
JP2003232823A (ja) 電位測定素子
JPS6027928B2 (ja) 静電形変位振動計
SU1112318A1 (ru) Устройство дл измерени электростатических зар дов материалов
RU1802345C (ru) Устройство дл определени параметров локального электрического пол

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20100717