RU2217353C1 - Method of evasion of flying vehicle from guided destruction weapon - Google Patents

Method of evasion of flying vehicle from guided destruction weapon Download PDF

Info

Publication number
RU2217353C1
RU2217353C1 RU2002124531A RU2002124531A RU2217353C1 RU 2217353 C1 RU2217353 C1 RU 2217353C1 RU 2002124531 A RU2002124531 A RU 2002124531A RU 2002124531 A RU2002124531 A RU 2002124531A RU 2217353 C1 RU2217353 C1 RU 2217353C1
Authority
RU
Russia
Prior art keywords
aircraft
usp
angle
sight
control signal
Prior art date
Application number
RU2002124531A
Other languages
Russian (ru)
Other versions
RU2002124531A (en
Inventor
Ю.Я. Алексеев
В.В. Дрогалин
А.И. Канащенков
В.И. Меркулов
Г.А. Пучков
О.Ф. Самарин
В.В. Францев
В.П. Харьков
Original Assignee
Открытое акционерное общество "Корпорация "Фазотрон-Научно-исследовательский институт радиостроения"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Корпорация "Фазотрон-Научно-исследовательский институт радиостроения" filed Critical Открытое акционерное общество "Корпорация "Фазотрон-Научно-исследовательский институт радиостроения"
Priority to RU2002124531A priority Critical patent/RU2217353C1/en
Application granted granted Critical
Publication of RU2217353C1 publication Critical patent/RU2217353C1/en
Publication of RU2002124531A publication Critical patent/RU2002124531A/en

Links

Images

Landscapes

  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

FIELD: combat flying vehicles. SUBSTANCE: proposed method includes measurement of flight parameters of flying vehicle and guided destruction weapon and calculation of control signal of flying vehicle in such way that range between flying vehicle and guided destruction weapon change in accordance with where law third derivative of its change is present. EFFECT: enhanced safety of flights. 2 dwg

Description

Таблицых Table

Claims (1)

Способ уклонения летательного аппарата (ЛА) от управляемых средств поражения (УСП), заключающийся в том, что на борту ЛА измеряют значения курсового угла ЛА, бортового пеленга УСП, скорости сближения УСП и ЛА, воздушной скорости ЛА, дальности между ЛА и УСП, угловой скорости вращения линии визирования УСП в горизонтальной плоскости, нормальной перегрузки ЛА, угла атаки ЛА, угла тангажа ЛА, угла крена ЛА, вычисляют сигнал управления летательным аппаратом в горизонтальной плоскости в соответствии с формулами:The method of evading the aircraft (LA) from controlled weapons of destruction (USP), which consists in the fact that onboard the aircraft measure the heading angle of the aircraft, the onboard bearing of the USP, the approach speed of the USP and the aircraft, the airspeed of the aircraft, the distance between the aircraft and the USP, angular the rotation speed of the line of sight of the USP in the horizontal plane, the normal overload of the aircraft, the angle of attack of the aircraft, the pitch angle of the aircraft, the roll angle of the aircraft, calculate the control signal of the aircraft in the horizontal plane in accordance with the formulas: ε=ψcc, (1)ε = ψ cc , (1)
Figure 00000015
Figure 00000015
где ψc - курсовой угол ЛА;where ψ c - heading angle of the aircraft; φc - бортовой пеленг УСП;φ c - onboard bearing USP; ε - угол визирования ЛА с УСП;ε is the angle of sight of the aircraft with USP;
Figure 00000016
- скорость сближения УСП и ЛА;
Figure 00000016
- the speed of convergence of USP and aircraft;
Vc - воздушная скорость ЛА;V c - airspeed of the aircraft; ψp - курсовой угол УСП;ψ p - heading angle USP; Д - дальность между ЛА и УСП;D - the distance between the aircraft and USP; ω - угловая скорость вращения линии визирования УСП в горизонтальной плоскости;ω is the angular velocity of rotation of the line of sight of the USP in the horizontal plane; N0 - навигационная постоянная;N 0 - navigation constant; g=9,81м/c2 - ускорение с свободного падения тела;g = 9.81 m / s 2 - acceleration from the free fall of the body; nус - нормальная перегрузка ЛА;n us - normal aircraft overload; γс - угол крена ЛА;γ with the angle of heel of the aircraft; αс - угол атаки ЛА;α with the angle of attack of the aircraft; υс - угол тангажа ЛА;υ с - pitch angle of the aircraft;
Figure 00000017
- скорость изменения курсового угла ЛА;
Figure 00000017
- the rate of change of the aircraft heading angle;
В - проекция нормального ускорения ЛА на линию визирования УСП; δ - постоянная величина, значение которой определяют исходя из типа ЛА;B is the projection of the normal acceleration of the aircraft on the line of sight of the USP; δ is a constant value, the value of which is determined based on the type of aircraft;
Figure 00000018
- требуемые значения дальности между ЛА и УСП, ее первой, второй и третьей производной по времени и их начальные значения соответственно, которые определяют из условия согласования требуемой и фактической траектории полета ЛА в начальный момент уклонения, т.е. при t=0; t - текущее время;
Figure 00000018
- the required range values between the aircraft and the USP, its first, second and third time derivatives and their initial values, respectively, which are determined from the condition for matching the required and actual flight path of the aircraft at the initial moment of evasion, i.e. at t = 0; t is the current time;
λ0, λ1 - постоянные коэффициенты, значения которых определяют из условия обеспечения устойчивого устранения ошибки управления конкретного типа ЛА;λ 0 , λ 1 - constant coefficients, the values of which are determined from the conditions for ensuring sustainable elimination of control errors of a particular type of aircraft; kΔ - масштабный коэффициент;kΔ is the scale factor; Δг - сигнал управления летательным аппаратом, подают сигнал управления летательным аппаратом Δг в его систему автоматического управления и управляют летательным аппаратом в соответствии с его значением.Δ g is the control signal of the aircraft, the control signal of the aircraft Δ g is supplied to its automatic control system and the aircraft is controlled in accordance with its value.
RU2002124531A 2002-09-16 2002-09-16 Method of evasion of flying vehicle from guided destruction weapon RU2217353C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2002124531A RU2217353C1 (en) 2002-09-16 2002-09-16 Method of evasion of flying vehicle from guided destruction weapon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2002124531A RU2217353C1 (en) 2002-09-16 2002-09-16 Method of evasion of flying vehicle from guided destruction weapon

Publications (2)

Publication Number Publication Date
RU2217353C1 true RU2217353C1 (en) 2003-11-27
RU2002124531A RU2002124531A (en) 2004-03-20

Family

ID=32028205

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2002124531A RU2217353C1 (en) 2002-09-16 2002-09-16 Method of evasion of flying vehicle from guided destruction weapon

Country Status (1)

Country Link
RU (1) RU2217353C1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2634659C1 (en) * 2016-06-03 2017-11-02 Евгений Николаевич Захаров Maneuvering method for high-speed unmanned aerial vehicle in possible coverage area of anti-missile and air defense means
RU2635022C1 (en) * 2016-07-08 2017-11-08 Евгений Николаевич Захаров Maneuvering method for high-speed unmanned aerial vehicle in possible coverage area of anti-missile and air defense means
RU2726512C2 (en) * 2018-05-17 2020-07-14 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военная академия Ракетных войск стратегического назначения имени Петра Великого" МО РФ Method for trajectories of high-speed unmanned aerial vehicles in the area of countermeasures arrangement

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2634659C1 (en) * 2016-06-03 2017-11-02 Евгений Николаевич Захаров Maneuvering method for high-speed unmanned aerial vehicle in possible coverage area of anti-missile and air defense means
RU2635022C1 (en) * 2016-07-08 2017-11-08 Евгений Николаевич Захаров Maneuvering method for high-speed unmanned aerial vehicle in possible coverage area of anti-missile and air defense means
RU2726512C2 (en) * 2018-05-17 2020-07-14 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военная академия Ракетных войск стратегического назначения имени Петра Великого" МО РФ Method for trajectories of high-speed unmanned aerial vehicles in the area of countermeasures arrangement

Also Published As

Publication number Publication date
RU2002124531A (en) 2004-03-20

Similar Documents

Publication Publication Date Title
CA1256564A (en) Warning system for tactical aircraft
US6484072B1 (en) Embedded terrain awareness warning system for aircraft
CA2881545C (en) Method for determining a guidance law for obstacle avoidance by an aircraft, related computer program product, electronic system and aircraft
US6871816B2 (en) Proactive optical trajectory following system
CN111351401B (en) Anti-sideslip guidance method applied to strapdown seeker guidance aircraft
US20100305784A1 (en) Embedded Ground Proximity Warning System for Helicopters
US9569848B2 (en) Advanced aircraft vision system utilizing multi-sensor gain scheduling
RU2644019C1 (en) Method and device for determining navigation data
US10336467B2 (en) Aircraft turbulence detection
EP0222571A2 (en) Line of sight missile guidance
RU2217353C1 (en) Method of evasion of flying vehicle from guided destruction weapon
CN111434586B (en) Aircraft guidance control system
US3689741A (en) Bombing instrument for targets having transverse motion relative to aircraft flight path
CN112445230B (en) High-dynamic aircraft multi-mode guidance system and guidance method under large-span complex environment
CN111290002B (en) Aircraft lateral deviation correction system applied to satellite signal unstable area
NZ207651A (en) Terrain closure warning system
US4662580A (en) Simple diver reentry method
US4215621A (en) Target marker placement for dive-toss deliveries with wings nonlevel
CN111273682A (en) Sideslip correction method based on virtual target point
RU2295104C1 (en) Method for aiming at a drop of loads to an earth surface point from maneuvering flight vehicle
CN111290427B (en) High-overload-resistant aircraft lateral deviation correction system
US3474704A (en) Toss bombing instrument having improved means for acquisition of distance data at pickle
Hoey et al. Mission Planning and Operational Procedures for the X-15 Airplane
RU2773992C2 (en) Method and system for indication of aircraft balancing on takeoff
Finch et al. Launch, Low-Speed, and Landing Characteristics Determined From the First Flight of the North American X-15 Research Airplane