RU2214941C1 - Энергетическая установка для длительного малошумного хода и работы подводного аппарата - Google Patents

Энергетическая установка для длительного малошумного хода и работы подводного аппарата Download PDF

Info

Publication number
RU2214941C1
RU2214941C1 RU2002124756/28A RU2002124756A RU2214941C1 RU 2214941 C1 RU2214941 C1 RU 2214941C1 RU 2002124756/28 A RU2002124756/28 A RU 2002124756/28A RU 2002124756 A RU2002124756 A RU 2002124756A RU 2214941 C1 RU2214941 C1 RU 2214941C1
Authority
RU
Russia
Prior art keywords
fuel
power plant
heat
gas
heat transfer
Prior art date
Application number
RU2002124756/28A
Other languages
English (en)
Other versions
RU2002124756A (ru
Inventor
Ю.Н. Кормилицин
В.Е. Зандт
Г.И. Нетребченко
В.В. Фоменко
Original Assignee
Федеральное государственное унитарное предприятие "Центральное конструкторское бюро морской техники "Рубин"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Центральное конструкторское бюро морской техники "Рубин" filed Critical Федеральное государственное унитарное предприятие "Центральное конструкторское бюро морской техники "Рубин"
Priority to RU2002124756/28A priority Critical patent/RU2214941C1/ru
Application granted granted Critical
Publication of RU2214941C1 publication Critical patent/RU2214941C1/ru
Publication of RU2002124756A publication Critical patent/RU2002124756A/ru

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Изобретение относится к подводному кораблестроению, в частности к энергетическим установкам подводных аппаратов. Энергетическая установка состоит из химического реактора с высокоэнергетическим топливом и форсуночным блоком, тепловым аккумулятором с размещенными в нем элементами химического реактора и высокоэнергетическим топливом. Форсуночный блок снабжен устройством изменения высоты впрыскивания окислителя. Система передачи тепла выполнена в виде трубчатого спирального змеевика с пористой наружной поверхностью и снабжена контуром с рабочей средой, газонагревателем, газоохладителем и газонагнетателем и системой охлаждения. Преобразователь тепловой энергии в механическую работу выполнен в виде турбины, ротор которой соединен с ротором генератора, с валом нагнетателя рабочей среды и пусковым электроприводом. Достигается увеличение подводной автономности подводного аппарата и упрощение конструкции энергетической установки. 2 ил.

Description

Изобретение относится к области подводного кораблестроения, а более конкретно к независимым от атмосферного воздуха источникам энергии для подводных аппаратов и может быть использовано для повышения подводной автономности и других целей, требующих работы энергетической установки без связи с атмосферным воздухом.
Известен электрохимический генератор, являющийся основой энергетической установки, не зависящей от атмосферного воздуха, в котором в качестве окислителя и восстановителя используются кислород и водород, обладающие высокой удельной химической энергией. Реакция соединения кислорода и водорода совершенно бесшумна, а КПД может достигать ~60%.
Наиболее существенным недостатком электрохимических генераторов является пожароопасность и взрывоопасность их реагентов - кислорода и водорода. Кроме того, необходимые запасы реагентов имеют большие массогабаритные характеристики, а частая перезарядка баллонов с реагентами требует всплытия на поверхность или возвращения в базу (журнал "Судостроение за рубежом", 8, 1989 г., л.17...23).
Известен также химический реактор и способ инициирования реакции лития на основе перхлората алюминия или натрия (патент Франции 2565677).
Недостатком этого химического реактора является наличие в нем газа, резко ухудшающего регулируемость процесса подачи окислителя.
Известна также автономная энергетическая установка, не зависимая от окружающей морской среды, состоящая из химического источника тепла, системы переноса тепла и двигателя Стирлинга, объединенных в автономный энергоблок. Источником тепла в установке служит химическая реакция между литием и шестифтористой серой, а передающей тепло средой является натрий (ВМТ и вооружение, 1977 г., 6, стр.19...28). В установке используется высокоэнергетическое топливо. Реагенты взрывобезопасны и нетоксичны. Эта установка принята в качестве прототипа.
Ее недостатком является недостаточное энергосодержание (около1200 кВт•ч) при больших габаритах (6, 2, 5 и 3 места) ЭУ и использование в процессе теплопередачи натрия.
Предлагаемым изобретением решается задача увеличения подводной автономности подводного аппарата путем увеличения энергосодержания источника тепловой энергии при сохранении приемлемых габаритов энергетической установки и упрощении ее конструкции, не требующей использования натрия.
Для достижения этого технического результата энергетическая установка подводного аппарата, состоящая из химического реактора с высокоэнергетическим топливом и форсуночным блоком, резервуаров с запасами химического топлива и окислителя, системы передачи тепла с теплопередающими элементами и каналом с рабочей газообразной средой, преобразователя тепловой энергии в механическую работу и тепловой изоляции, снабжена тепловым аккумулятором с размещенными в нем элементами химического реактора и высокоэнергетическим топливом, например литием, а форсуночный блок снабжен устройством изменения высоты впрыскивания окислителя, например, шестифтористой серы, размещен под поверхностью расплава топлива и соединен трубопроводом с арматурой с резервуаром с окислителем, выполненным в виде группы съемных баллонов, размещенных вне корпуса подводного аппарата, например в его надстройке, при этом система передачи тепла выполнена в виде трубчатого спирального змеевика с пористой наружной поверхностью, заполненной литием, расположенного вокруг форсуночного блока, и снабжена контуром с рабочей средой, например гелием, газонагревателем, газоохладителем и газонагнетателем и системой охлаждения с насосом забортной воды, при этом преобразователь тепловой энергии в механическую работу выполнен в виде турбины, ротор которой соединен с ротором генератора, с валом нагнетателя рабочей среды, например компрессора, и пусковым электроприводом, а все топливо, обеспечивающее заданную автономность подводного аппарата, размещается в тепловом аккумуляторе и вместе с продуктами сжигания топлива служит в нем теплоаккумулирующим материалом и тепловой изоляцией зоны химической реакции сжигания топлива.
Отличительным признаком предлагаемой энергетической установки от указанной выше известной, наиболее близкой к ней, является то, что энергетическая установка снабжена тепловым аккумулятором с размещенными в нем элементами химического реактора и высокоэнергетическим топливом, например литием, а форсуночный блок снабжен устройством изменения высоты впрыскивания окислителя, например шестифтористой серы, и размещен под поверхностью расплава топлива и соединен трубопроводом с арматурой с резервуаром с окислителем, выполненным в виде группы съемных баллонов, размещенных вне корпуса подводного аппарата, например в его надстройке, при этом система передачи тепла выполнена в виде трубчатого спирального змеевика с пористой наружной поверхностью, заполненной литием, расположенного вокруг форсуночного блока, и снабжена контуром с рабочей средой, например гелием, газонагревателем, газоохладителем и газонагнетателем и системой охлаждения с насосом забортной воды, при этом преобразователь тепловой энергии в механическую работу выполнен в виде турбины, ротор которой соединен с ротором генератора, с валом нагнетателя рабочей среды, например компрессора, и пусковым электроприводом, а все топливо, обеспечивающее заданную автономность подводного аппарата, размещается в тепловом аккумуляторе и вместе с продуктами сжигания топлива служит в нем теплоаккумулирующим материалом и тепловой изоляцией зоны химической реакции сжигания топлива.
Благодаря наличию этих признаков за счет периодического сжигания порций топлива обеспечивается систематическое восстановление энергозапаса теплового аккумулятора при меньшем количестве теплоаккумулирующего материала и меньшем размере самого теплового аккумулятора.
Размещение форсуночного блока в объеме теплоаккумулирующего материала и расположение вокруг него трубчатого спирального змеевика с пористым покрытием, заполняемым литием, что защищает змеевик от коррозии и улучшает теплообмен, обеспечивает более полное использование выделяемого тепла и уменьшает его потери. Замена двигателя Стирлинга прототипа турбиной с более высоким КПД (72% против 32%), а также использование топлива в качестве теплоаккумулирующего материала снижают массогабаритные характеристики теплового аккумулятора, повышают экономичность энергетической установки. Важным фактором является и размещение зоны химической реакции в массе топлива, выполняющей еще и роль тепловой защиты. Кроме того, целесообразность сочетания химического реактора с тепловым аккумулятором подтверждает различие теплоемкости лития ~2 Квт•ч/кг и его энергосодержания ~13 кВт•ч/кг. Это позволяет при одной и той же массе топлива при его сжигании снять с теплового аккумулятора в ~6 раз большее количество тепловой энергии.
Предлагаемая энергетическая установка иллюстрируется чертежами.
На фигуре 1 представлена принципиальная схема объединенной энергосистемы прототипа, в состав которой входят: химический источник энергии 1, система передачи тепла 2, двигатель Стирлинга 3.
На фигуре 2 представлена принципиальная схема предлагаемой энергетической установки.
В ее состав входят: тепловой аккумулятор 1, тепловая защита 2, теплоаккумулирующий материал - химическое топливо 3, трубчатый спиральный змеевик 4, контур рабочей среды 5 с клапанами стопорным 6, регулирующим 7, турбина 8, генератор 9, газонагнетатель 10, газоохладитель 11, насос охлаждения 12, система охлаждения 13, газонагреватель 14, блок форсунок 15, трубопровод подачи окислителя 16 с клапанами: регулирующим 17, байпасным 18, стопорным 19, баллоны с окислителем, вынесенные из корпуса подводного аппарата 20, система электроразогрева топлива 21.
Для подготовки энергетической установки к пуску теплоаккумулирующий материал - топливо 3 прогревается системой электроразогрева 21 до ~750o. Одновременно идет прогрев турбины с ее периодическим проворачиванием. После окончания разогрева топлива 3 и прогрева турбины 8 включается пусковой электропривод (на схеме не показан) газонагнетателя 10, сидящий на его валу, после чего через 10 минут в зону химической реакции через форсунку форсуночного блока 15 по трубопроводу подачи окислителя 16 через открываемый регулирующий клапан 17 при открытом стопорном клапане 19 из баллонов 20 впрыскивается окислитель, что и обеспечивает начало химической реакции. Через 5.. . 10 минут в зоне трубчатого спирального змеевика 4 устанавливается температура ~850o, пусковой электропривод от вала газонагнетателя 14 отключается и при открытом стопорном клапане 6 открывается регулирующий клапан 7 и турбина 8 принимает нагрузку, запускается насос охлаждения 12 и система охлаждения вступает в действие..
Энергетическая установка работает следующим образом. Выделяемое при периодическом сжигании расплавленного топлива тепло поддерживает в тепловом аккумуляторе 1 требуемую температура (для лития ~850o), что обеспечивает нагрев в трубчатом спиральном змеевике 4 рабочей среды, например гелия, до заданной температуры и подачу ее по трубопроводу контура рабочей среды 5 через открытый стопорный клапан 6 и регулирующий мощность клапан 7 на турбину 8, преобразующую тепловую энергию в механическую работу на своем валу, соединенном с ротором генератора 9 и валом газонагнетателя 10. Отработавший в турбине газ поступает в газонагреватель 14, где отдает часть оставшегося тепла газу, направляемому в трубчатый спиральный змеевик 4. Газ, отдавший тепло в газонагревателе 14, поступает в газоохладитель 11 для охлаждения его до уровня, допускающего его подачу в газонагнетатель (компрессор) 10, откуда он через газонагреватель поступает для очередного нагрева в трубчатый спиральный змеевик 4 теплового аккумулятора 1.
Управление установкой выполнено по схеме обеспечения требуемой нагрузки и осуществляется путем регулирования расхода рабочего тела (газовой среды) клапаном 7, поддержанием температуры в тепловом аккумуляторе путем периодической подачи окислителя в зону реакции клапаном 17 и поддержанием среднего давления в контуре рабочего тела путем соединения контура с баллоном с высоким давлением.
Предлагаемая энергетическая установка обеспечивает взрывобезопасность и негорючесть реагентов химической реакции, инертность окислителя при температуре до 150o, абсолютную нетоксичность, допускающую возможность использования химического топлива в закрытых отсеках без систем фильтровентиляции, а также протекание реакции без образования газообразных продуктов и получение высокой удельной энергии и удельного энергосъема.
При умеренных МГХ, допускающих ее размещение на ПА, энергетическая установка обладает необходимой подводной автономностью и при дозарядке теплового аккумулятора не требует вывода установки из действия и всплытия на поверхность.
Практически длительность подводной автономности определяется величиной запаса реагентов химической реакции, пополнение которых может происходить без возвращения на базу.
Важную роль в увеличении подводной автономности играет совмещение химического реактора с тепловым аккумулятором и использование в качестве его теплоаккумулирующего материала химического топлива. Помещение всего необходимого запаса топлива в тепловой аккумулятор обеспечивает его поддержание в немедленной готовности к вступлению в реакцию при подаче окислителя. При этом используется тепло, оставшееся после нагрева рабочей среды в трубчатом спиральном змеевике. Таким образом, топливо играет еще и роль тепловой изоляции. Кроме того, размещение змеевика в объеме расплавленного топлива вблизи зоны химической реакции существенно повышает эффективность передачи тепла рабочей среде и позволяет обойтись без промежуточного теплоносителя пожароопасного натрия.
Все вышесказанное, а также замена двигателя Стирлинга, имеющего сложную технологию изготовления, турбиной с в два раза большим КПД дает существенное увеличение КПД энергетической установки, экономию топлива и увеличивает автономность подводного аппарата.

Claims (1)

  1. Энергетическая установка для длительного малошумного хода и работы подводного аппарата, состоящая из химического реактора с высокоэнергетическим топливом и форсуночным блоком, резервуаров с запасами химического топлива и окислителя, системы передачи тепла с теплопередающими элементами и каналом с рабочей газообразной средой, преобразователя тепловой энергии в механическую работу и тепловой изоляции, отличающаяся тем, что энергетическая установка снабжена тепловым аккумулятором, с размещенными в нем элементами химического реактора и высокоэнергетическим топливом, например литием, а форсуночный блок снабжен устройством изменения высоты впрыскивания окислителя, например шестифтористой серы, размещен под поверхностью расплава топлива и соединен трубопроводом с арматурой с резервуаром с окислителем, выполненным в виде группы съемных баллонов, размещенных вне корпуса подводного аппарата, например в его надстройке, при этом система передачи тепла выполнена в виде трубчатого спирального змеевика с пористой наружной поверхностью, заполненной литием, расположенного вокруг форсуночного блока, и снабжена контуром с рабочей средой, например гелием, газонагревателем, газоохладителем и газонагнетателем и системой охлаждения с насосом забортной воды, при этом преобразователь тепловой энергии в механическую работу выполнен в виде турбины, ротор которой соединен с ротором генератора, с валом нагнетателя рабочей среды, например компрессора, и пусковым электроприводом, а все топливо, обеспечивающее заданную автономность подводного аппарата, размещается в тепловом аккумуляторе и вместе с продуктами сжигания топлива служит в нем теплоаккумулирующим материалом и тепловой изоляцией зоны химической реакции сжигания топлива.
RU2002124756/28A 2002-09-17 2002-09-17 Энергетическая установка для длительного малошумного хода и работы подводного аппарата RU2214941C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2002124756/28A RU2214941C1 (ru) 2002-09-17 2002-09-17 Энергетическая установка для длительного малошумного хода и работы подводного аппарата

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2002124756/28A RU2214941C1 (ru) 2002-09-17 2002-09-17 Энергетическая установка для длительного малошумного хода и работы подводного аппарата

Publications (2)

Publication Number Publication Date
RU2214941C1 true RU2214941C1 (ru) 2003-10-27
RU2002124756A RU2002124756A (ru) 2004-04-10

Family

ID=31989412

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2002124756/28A RU2214941C1 (ru) 2002-09-17 2002-09-17 Энергетическая установка для длительного малошумного хода и работы подводного аппарата

Country Status (1)

Country Link
RU (1) RU2214941C1 (ru)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Военно-морская техника и вооружение. №6, 1977, с. 19-28. *

Similar Documents

Publication Publication Date Title
US5867978A (en) System for generating hydrogen
ES2619639T3 (es) Almacenamiento y transporte de energía
US20070248509A1 (en) Method and apparatus for generating hydrogen gas on demand from water with recovery of water and complete recycling of consumable material
JP3702121B2 (ja) 発電装置
WO2014113880A1 (en) Hydrogen production system and methods of using same
WO2014200597A2 (en) Fuel conditioner, combustor and gas turbine improvements
CN108253416B (zh) 一种预置式锂/六氟化硫燃烧换热一体化装置及使用方法
ES2229223T3 (es) Generador de vapor y unidad de impulsion de turbina de vapor para el uso de gas propulsor, particularmente hidrogeno.
CN105020062B (zh) 车载压力流量可控式柴油内燃机氢氧气体发生器
US20230272981A1 (en) Thermochemical energy storage device
CN101604933B (zh) 氢气-碱金属热电直接转换器发电系统
RU2214941C1 (ru) Энергетическая установка для длительного малошумного хода и работы подводного аппарата
KR20140139143A (ko) 잠수함의 AIP(Air Independent Propulsion) 폐열을 이용한 발전효율 향상 시스템
US3606866A (en) Controlled oxidation heat source
JPH10299576A (ja) 水素燃料供給システム
CN104895708B (zh) 燃料充分燃烧的方法和系统
CN106299406A (zh) 水下燃料电池aip动力系统
JP7004887B2 (ja) 水素と酸素を燃焼するエンジン。
RU130637U1 (ru) Устройство для поддержания двигателей внутреннего сгорания в прогретом и безотказном предпусковом состоянии
RU22951U1 (ru) Автономный ледовый термобур
US12013121B2 (en) Exhaust gas purification device for gas turbine engine
CN117968060A (zh) 预热式锂/六氟化硫高效燃烧集成装置及控制方法
CN105020025B (zh) 柴油内燃机辅助动力同步监测电控系统
CN114109651B (zh) 一种固态燃料火箭组合冲压发动机
RU2187679C1 (ru) Анаэробная энергоустановка с двигателем стирлинга для подводных технических средств

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20050918